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exists such that
0 0)

(2Q —$)%'= 0 —1 0 4'.
0 0 —1

Since the matrices E,; are obtained from unitary
matrices, they are the matrices that lead to SU(3).
In other words, it appears that SU(3) has been built
into the formalism.

The six permutation matrices and 2Q —E together with
their products and linear combinations generate the nine
matrices

(Kj)mn =Rm~jn ~
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It is proved that to maintain consistency of the commutation relations among spatial current components
with the Jacobi identity, a Schwinger term antisymmetric with respect to interchange of isotopic (or unitary)
indices is needed. The proof is based on the use of the Jacobi identity for triple commutators and of the
Lehman-Kallen expression for the vacuum expectation value of a current commutator. Additional conditions
to be satisfied by the new Schwinger term are derived from an analysis of the origin of a discrepancy between
the Lee—Dashen —Gell-Mann and the Cabibbo —Radicati sum rules for magnetic moments, and a solution
of the discrepancy is proposed.

I. INTRODUCTION AND SUMMARY OF RESULTS

'HE quark model suggests the commutation
relation (p, vW4)

I:J."(~), i."'(y)3*,=w. =~~"'(x—y)4.f-t .io'"'(~)
+ (terms symmetric in nP)

between vector current components j„~ '(x) $n= 1, 2, 3
in SU(2) or += 1, 2, , 8 in SU(3)], or between chiral
vector current components. We prove here the incon-
sistency of the above equation, essentially by inserting
its expression into the vacuum expectation value of the
Jacobi identity for a triple commuta, tor of currents and
performing a spectral analysis of the expression ob-
tained. The validity of the Jacobi identity a,t equal times
if postulated. We erst develop the argument for SU(2)
currents, and then extend the proof to SU(3). The in-

*John Simon Guggenheim Fellow and on leave of absence from
the University of Rochester, Rochester, New York.

consistency can be avoided if the antisymmetric part
in n,P of the current commutator has a form different
from that suggested by the quark model. The new anti-
symmetric Schwinger terms (R terms) must necessarily
be q numbers, as directly shown by our proof. To derive
further information on the new terms we perform a com-
parison of the Lee—Dashen —Gell-Mann sum rule' with
the Cabibbo —Radicati sum rule' for the magnetic mo-
ments. A discrepancy of a factor of 2 between the two
formulas' is analyzed for its possible origin and is
shown to be directly imputable to the R terms. Further-
more, to eliminate the discrepancy, two alternative
choices of supplementary conditions are proposed that

' B.W. Lee, Phys. Rev. Letters 14, 613 (1965); R. F.Dashen and
M. Gell-Mann, Phys. Letters 17, 142 {1965);these authors assume
SU(3) in deriving the sum rule. However it has been noted by C.
Ryan, Phys. Rev. 140, 8480 (1965), that the SU{2) subalgebra is
sufhcient for the derivation.' N. Cabibbo and A. L. Radicati, Phys. Letters 19, 697 (1966).'F. Succella, G. Veneziano, and R. Gatto, Nuovo Cimento
42, 1019 (1966).
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must be satisfied by the E terms. Further speculations
presented include some remarks on higher moments and
the resolution of a discrepancy between analogous sum
rules derived for pseudoscalar mesons.

triple commutator (4):

R.,„v""(x,y,s)+ Ee,."'v(y, s,x)+E,.t&»"(s,x,y) =0, (5)

II. INCONSISTENCY OF COMMUTATION
RELATIONS

To be definite let us assume the quark model and set

j„& &(x) =-,'io (x)y„).oo(x),

where q (x) is the quark field and n is a unitary index.
With the definition

j4"(x)=—ijo& &(x),

and we take its vacuum expectation value. Let us first
restrict ourselves to SU(2) (n, P, &=1, 2, 3). Symmetric
terms in n,P from the rhs of Eq. (3), will not contribute
to the vacuum expectation value of Eq. (4) because of
isospin invariance with i~variant vacuum. One has

""'(*y s))
= i4,oe, ;~&o&(y—s) &Lj,'"'(x),jo"'(y)1*,=.o&o (6)

and similarly for the other terms of Eq. (5). Let us
now consider the Lehman-Kallen representation

the current j„&(x) is self-conjugate, i.e., for ted=1, &i j„&~&(x) j„&e&(y)j&o
2, 3, 0,

(2) =- & e d(m') D'&„,pi(m) po(—m) &&„&&,5&(x y, m—), (7)f
Formal application of the canonical commutation re-
lations among &v(x) and &v(x) gives at eclu~l ™,for where we have again assumed isospin invariance. The
p) V+4, spectral weights pi(m) and pz(m) are defined by

+ (terms symmetric in nP) . (3)

Possible Schwinger terms symmetric in nP are included
in the right-hand side (rhs) of Eq. (3). Commutation
relations analogous to Eq. (3) hold for chiral vector
currents in the combinations V&A.

We shall prove first that the commutation relation
of Eq. (3) leads to an inconsistency both for SU(2)
(n, P, y=1, 2, 3) and for SU(3) (n, P, y=1, 2, 8)
when one requires the validity of the Jacobi identity.
A conservation law B„j„&~&(x)=0 will not be assumed.
The proof will thus be valid also for chiral V&A
currents and for the o model fin the latter case j„&~&(x)
stands for the nucleonic part of the isospin current).
The inconsistency implies the existence of a Schwinger
term &trttisymmetric in n, P in the rhs of Eq. (3).

A similar inconsistency in the commutation relation
(vW4) Lj4& '(x), j„&e&(y)$ was proved by Schwinger, 4

assuming B„j„& '(x) =0, and was also proved without
this assumption by one of the authors. ' Such arguments
are not, however, directly applicable here to prove the
inconsistency of Eq. (3), as we are considering a case
p, &&4 and including additional symmetric terms in
the rhs of Eq. (3).

We suppose that Eq. (3) is valid with inclusion in its
rhs of any Schwinger tenn symmetric in n,p. Let us set

E.t&„v""(x,y, s)
= Lj."(x), Lj &e&(y):fj."&(s)Z*=.=:„(4)

where ti, v, XA4. We write the Jacobi identity for the

4 J. Schwinger, Phys. Rev. Letters 3, 296 (1959); R. Johnson,
Nucl. Phys. 25, 431 (1961).

2 ~"&(p—p-)&oI j,"(0)i~&&~I j "'(o) Io&
(27r)'

=b.eg„,pi(m)+p„p, po(m)$; (p'+m')=0. (8)

As noted elsewhere' they must satisfy the inequalities

m'p, (m) & pi(m) & 0.
The conservation law B„j„&"& (x) = 0—not assumed here,
for the sake of generality —would actually imply
m'po(m) = pi(m). Equation (7) for &i =4, v&4, and xo ——yo
implies

&i:j4 (x) j (y)]*o-vo&o

Bt&&'&(x—y)= 8 e d(m')po(m) . (10)

We now insert Eqs. (6) and (10) into the vacuum ex-
pectation value of Eq. (5) and obtain for the expectation
value

c&8&'&(x—y)
d(m')t, (m) ~„, ~&»(y —z)

BSp,

c&6 &'& (y —x)
+8» 8 "&(x—x)

&&&&
&'& (x—x)

8 &'&(x—y) =0. (11)
Bs'p,

Choosing in particular v=XW&i in Eq. (11), one finally

' S. Okubo, Nuovo Cimento (to be published).
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d(m') ps(m) =0. (12)

be present in Eq. (3). Familiar arguments demand that
Eq. (3) for p, v/4 be modiled as

[j.(")( ),J ")(y)]*.=-.o= ~")( —y)t', .f e j "'( )

Comparing this result with Eq. (9) we see that

p, (m) =p~(m) = 0 (13)

provided there are no zero-mass particles. Then Eq. (8)
together with the Federbush-Johnson argument' shows
that

j„(-&(x)=o

unless Eq. (2) does not hold. This completes our argu-
ment for SU(2).

To extend the argument to the SU(3) currents
(+=1, 2, . 8), we write the Jacobi identity for the
antisymmetrized operator

R.&,~""(x,y,s) =R.(&„~""(x,y, s) —R.,s~ "(x,y, s) .

Putting

[j."(x),j "'(y)] o=-.o=S""'(x,y)+~"'(x,y),

where we have written S„„~for all the terms symmetric
in nP and A„„'s for all the terms antisyrnmetric in nP, we
6od for the contribution of the 5 terms to the vacuum
expectation value of the Jacobi identity for R

([j "'( ) S..'( y)])o+ (I j.")(y) S~."(,*)])o
—(same with P~ y). (14)

Assuming SU(3) (with invariant vacuum) we see that
the indices nPy must be combined as in d B„with
f (&~ excluded because it is completely antisymmetric.
The expression (14) is, however, antisymmetric in Pp, so
it can only be zero. The proof of the inconsistency now
runs exactly as for the case of SU(2), apart from the
trivial extension e (&~&+2f s„-.

We have thus proved that Eq. (3) cannot be valid,
both in SU(2) and in SU(3). We note that our argument
may not be used to directly disprove the once-integrated
relation

+(' symmetric terms in nP), (16)

where the repea. ted index k means automatic summation
over k = 1, 2, 3, and R„„,&,

(» (x) is an unknown function of
x. As we have remarked, the once-integrated commu-
tator Eq. (15) could still be valid. If we conjecture that
it is in fact valid, we must impose the condition

R„., ), (»(x) =0.
Bxk

Ke shall see that such an additional constraint may
reconcile the discrepancy between the Cabibbo-
Radicati' (C-R) and the Lee—Dashen —Gell-Mann'
(L-D-G) sum rules. It is worth while to emphasize that
R„,, &, (&)(x) must be a q number. If it is a, c number, our
proof of the inconsistency still applies. In fact any c-
number term in the rhs of Eq. (3) does not contribute
to the triple commutator of Eq. (4) and therefore
cannot affect our proof of the inconsistency. We may
also remark that for the commutation relation

[jo"(x),jo"'(y)]., .,= ~f-s=.~'"(x y)j "'—(x) (18)

we are unable to prove or disprove the existence of
possible inconsistencies. Equa, tion (18) was used to
derive the C-R re".ation.

III. DISCREPANCY BETWEEN THE CABIBBO-
RADICATI AND THE LEE—DASHEN-

GELL-MANN SUM RULES

The I -D-G relation was obtained by considering the
sum of commutators

[m&2( ) m&2(t))]+[m2&( ) m2&(s)]
—[m&2( ),m~((s)] —[m2(( ),m)~(s)], (19)

j„(-)(x), d'y j "'(y) =~~"f-s jo")(x) where

+(symmetric terms in nP), (15)
m;&" = d'x x,j(('(x), (2o)

once Eq. (3) has been relaxed. Equa, tion (15) might
still be valid even though Eq. (3) is not. This fact may
be relevant for many applications of the algebra of
currents, as we shall see shortly.

At any rate we have found that, to avoid inconsist-
ency, the antisymmetric term in the rhs of Eq. (3)
must be different from its assumed simp) e form.
Additional Schwinger terms proportional to f (&, must.

' P. Federbush and R. Johnson, Phys. Rev. 120, 1926 (1960).

taken between proton states at rest with E and E*
intermediate states. In this way one obtains

(21)

if one starts from Eq. (3), or equivalently from Eq.
(16), neglecting the contributions from the R„„,), ( '(x)
term. In Eq. (21) the notation is standard and p*
represemts the E*-X transition magnetic moment.
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On the other hand, the C-R sum rule, under the same
restriction as to the intermediate states, gives'

of course,

(p I I m)2",m»"')
I p&

(&&
—

&

2m (2m
(22) =if.p, (pl d'xx, 'j,&»(x)lp), (25)

P

Ke note a discrepancy of a factor of 2 between the
right-hand sides of the two relations, Eq. (21) and

Eq. (22). Equation (21) may of course be incorrect
simply because of the neglect of a contribution from
the Schwinger terms R„„,), &»(x). However, the difference

of just a factor of 2 might not be accidental. In order to
pinpoint the possible origin of this rather curious coinci-
dence we note that Eq. (19) can actually be split into a,

sum of relations such as

$m» & ),m12&P)) =if.p„d'x(xi)' jo"'(x)

t9

f p, —d'x(xi)' R,2 ),
&» (x), (23)

t9XIc

(m»& ),m»&P))= f p„d'—x

X x2L+21,1 (x) ~12,1 (x))

+xixu E2i ) &»(x), (24)
~&a

where we have inade use of Eq. (16). The additional
terms in Eq. (16) symmetric inaP need not be considered
in the above equations. This is obvious for Eq. (23).
To show it for Eq. (24), we take the equa, tion between
states (p,S, I

and
I p,S,'), where S, and S.' are the

spin components along s and y is also directed along z.
The left-hand side of Eq. (24) gives

(pS, I
Lm»& )m2)&p))

I p S*')= (pSslE(x/2)~ '(vr/2)

XLmi2& ),mgi&P )R()r/2)R(x/2) 'I P,S,'&

=e'& /2)&8 8. )(p S
I I m2, & ),m)2&p))lp, S',),

where we have introduced a rotation of 90' around the
s axis. However, S,—S,' can only assume values 0,
&2, &4 because of the selection rules due to angular
momentum. In particular for spin —,', S,=S,' and hence

(P,S,
I
Lm»& &,m2i'P')

I P,S,')
=

&P S
I Lm» "' mi2&P&) IP,S,'&,

showing that the commutator behaves as an antisym-
metric object in u,p. We have thus justified our neglect
of symmetric terms in Eq. (24).

Let us now suppose, for a moment, that somehow the
R terms in Eqs. (23) and (24) do not contribute at all
to matrix elements between one-nucleon states. Then,

&p I
Lm»&-), m»&p))

I p&=0, (26)

&„., ),&»(x) =0,
BSA,

&„., ),")(x) = —E,„,g&»(x).

where for simplicity we have omitted the spin indices.
These are the equations one obtains by starting from
Eq. (3). We can show that Eq. (25) leads to the C-R
relation, while Eqs. (25) and (26) together, inserted
into the sum of Eq. (14), lead to the L-D-G relation,
always in the E and S*dominance model. Hence, the
simultaneous validity of both Eqs. (25) and (26) is
contradictory.

We note that intermediate contributions to Eq. (25)
or (26), saturated in the rest system 1&=0, arise only
from states of positive parity and with total angular
momentum J&«

—', . Let us now compare

(elm)2 )Ip) and (nlm2) Ip),
e being a state of positive parity and with J «& —,. By a
90' rotation around s one finds

()), Im»& &Ip)= —e'& )')&8 e")(nlm2, & &lp)

with the selection rule S,—S',=0, &2. Intermediate
states with 2= 2 Lsuch as the nucleon pole, or the sug-
gested X*(1425), etc.) simply give

&~=5 lm»'"'I p) = —(~= 2 I
m»"

I p&.

As for E*(1238) with j=~+, one finds for the M)+
transition, for which S,=S,'

&x*lm„-
I p&= —&x*lm„&-)

I p&.

The F~& contribution (experimentally negligible) also
vanishes for degenerate masses. Finally, N*(1518) and
other negative parity states do not contribute. Con-
tributions from E*(1688) with j=—',+, etc. , will be
reduced considerably because of centrifugal effects.

%e have thus seen that the approximate saturation of
Eqs. (25) and (26) seems to indicate that the left-hand
sides of the two equations are roughly of equal magni-
tude, in contrast to the right-hand sides. At the same
time one notes that the validity of Eq. (25) will lead
to the C-R relation, Eq. (22). This fact explains why
the insertion of Eqs. (25) and (26) into Eq. (19) gives
the L-D-G formula, Eq. (21). The conclusion seems to
be that the Schwinger terms 2&.'„„,), &~)(x) cannot be
neglected in the lhs of Eq. (24), although they can be
neglected in Eq. (23). Such a circumstance can easily
be explained if R„„,&, &&)(x) satisf'ies either one of the
following alternative conditions:
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lt is easy to see from Eqs. (23) and (24) that for
either of the two alternatives )Eqs. (28) and (29)],
Eq. (25) remains valid, but not Eq .(26). The first
alternative, Eq. (28), was suggested in the previous
section Lsee Eq. (17)] as a sufficient condition to pre-
serve the validity of the once-integrated commutation
relation, Eq. (15). The second alternative, Eq. (29),
appears verv simple and may in fact be obtained by the
ordinary limiting procedure to get the Schwinger term
if we use a particular limiting assumption.

Another possibility, on an entirely different basis,
is that the commutation relations have a different form
from that in the quark model, namely

Lj."(x),j."'b')]*o=wo=». '"'(x—»f-»~o'"(')
(terms symmetric in aP),

with Jo&»(x) satisfying, for some reason,

(p( d'",'J, '»(x)
) p)=0.

The inconsistency would be solved and, saturating
with X and S*,one would find

p*= (5/4)(2V2/5)(p" —p")=125(2~2/3)vu,

in surprisingly perfect agreement with data (see, for
instance, Dalitz's analysis of photoproduction').

We would now like to study briefly what effects would
follow from the addition of the antisymmetric Schwinger
term to the commutation relations of higher momenta.
Sum rules for higher momenta have been studied by
Bietti. One easily sees that only the commutation
relations involving components of j along the same di-
rection are free from contributions from the Schwinger
terms introduced. On the basis of Eq. (16), one would

obtain the interesting relation

d'x x3xij2&"&(x), d'X X3yii 2"'(X)
—&0~90

=if.s, d'x xi2x3'jo"i(x).

One would not obtain the relation given in Eq. (6) of
the second paper by Bietti'. His conclusions would thus
be invalidated. We may also comment about Schnitzer's
argument on the mean-square radius of the pion. '
Schnitzer evaluates Eq. (19) between psuedoscalar-
meson states truncating the intermediate summation to
vector-meson contributions. We can show, by the same
procedure we have used above for the L-D-G relation,
that the contributions from the Schwinger terms in
Eqs. (22) and (24) cannot be neglected without con-
tradiction. Under either of the two alternatives, Eq (28).
and Eq. (29), we can again neglect the contribu-
tions from the R terms in Eq. (23), and we find that
Schnitzer's prediction for (r ') has to be multiplied by
a factor of —,', in agreement with the C-R result for this
quantity, as obtained from the commutation rule in
Eq. (18).

AVhen this work was completed, one of us (S. O.)
was informed by Professor D. Amati that recently
Bouchiat and Meter' have also been able to resolve the
discrepancy between the L-D-G and C-R sum rules.
They assume the existence of an antisymmetric
Schwinger term by a plausibility argument instead of
proving its existence, and suppose the validity of our
Eq. (29).
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