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Bremsstrahlung spectra as a function of target thickness up to several radiation lengths, to be used for
particle production in high-energy electron machines, are investigated. The shower equations are cast in
integral forms which are then solved by iteration. The iterations are performed up to the second-generation
photons; and the numerical results show that for most experiments the first-generation photons alone will
give sufficiently accurate results. For example, for a target thickness of two radiation lengths and for k/E,
=0.5, where £ is the photon energy and E, is the incident electron energy, the ratio of the second- to the
first-generation photon intensity is 8%. This ratio decreases rapidly as one increases k/E, and decreases the
target thickness. A very simple formula which approximates the first-generation photon spectra as a function
of target thickness is derived. This approximate formula is shown to be accurate enough for estimating the
secondary-beam production by electrons. As by-products of our investigation the first- and the second-
generation electron and positron spectra were obtained as functions of target thickness. These spectra are
useful in estimating the electron and positron background. Some aspects of target considerations for the
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secondary-beam production are given as an illustration of the use of our formulas.

I INTRODUCTION

T is expected that muon, pion, kaon, and antibaryon
beams of usable intensity can be photoproduced by
an electron machine such as the Stanford Linear Ac-
celerator. In order to estimate the flux of these second-
ary beams, it is necessary to have a simple and reliable
formula for the bremsstrahlung spectra covering target
thicknesses up to several radiation lengths and the
photon energy %, in the range 1E,<k<E, where E,
is the incident-electron energy.

Most of the articles in the literature! are mainly con-
cerned with photon energy much smaller than an
incident-electron energy o, and hence are inapplicable
to our problem. Among experimentalists, a computer
program by Alvarez? seems to be widely used. Alvarez’s
program essentially treats the emission of the brem-
strahlung by the first-generation electrons (degraded
in energy using Heitler’s straggling formula) and the
absorption of the bremsstrahlung by a factor 1— (7/9)
X (t—1) due to pair production, where {—¢ is the
target thickness (in radiation lengths, r.l.) from the
point of gamma production ¢ to the point ¢ where the
gammas are to be used. Actually the factor 1— (7/9)
X (t—1t') in Alvarez’s program is a series expansion of
exp[— (7/9)(t—#)] and hence is applicable only for
target thicknesses very small compared with a radiation
length. There are many other technical notes about this
subject by various people. Every experimentalist seems
to have his own version of a thick-target bremsstrahlung
formula, and each one of them seems to be widely
different from the others, none of them being very con-
vincing. Apparently what is needed is a detailed deriva-
tion of a formula whose error can be evaluated and

* Work supported by the U. S. Atomic Energy Commission.

! B. Rossi, High Energy Particles (Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1956).

2 R. A. Alvarez, High Energy Physics Laboratory, Stanford Uni-
versity, Internal Reports HEPL-228 and 229, 1961 (unpublished).
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range of applicability stated. Also, in case a refinement
is required, the treatment given can be a useful
reference.

The method we used is similar to that of Bhabha
and Heitler? This method is particularly suited to
calculating the shower components whose energies are
not small compared with the incident-electron energy.
The method consists of successive approximations for
solving the shower equations: First calculate the energy
distribution of the first-generation electrons, 7,V (,E),
as a function of target thickness. 7, (;,E) represents
the straggling of the incident electrons owing to the
emission of bremsstrahlung. Then I,® (¢,E) is used to
calculate the first-generation photon spectra 7,® (z,k)
with absorption of the resultant photons due to pair
production taken into consideration. I,® (k) is then
used to calculate the second-generation electron spectra,
I,®(,E), by pair production with straggling of the
resultant electrons due to the bremsstrahlung taken into
consideration. 1,% (¢,E) is then used to calculate the
second-generation photons, 7,®(sk), and so forth,
until the contribution becomes negligible. The energy
distribution of the photons as a function of thickness is
then given by the sum

L, (k) =I,0 (t,k)+ 1@ (L) +1,® (LE)+- - -.

Bhabha and Heitler® were mainly concerned with the
multiplicity and energy distribution of electron showers,
whereas we are interested in obtaining a reasonably
accurate and compact formula for 7,(f,k) to be used
in photoproduction of particles.

Our main results are contained in Eqgs. (24), (25),
and (29). Equation (24) gives the first-generation
bremsstrahlung energy distribution as a function of
target thickness 7,® (4,k).

3H. J. Bhabha and W. Heitler, Proc. Roy. Soc. (London)
A159, 432 (1937).
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We have used the complete screening formula for the
hremsstrahlung cross section. Hence our 7,® (4,k) is not
reliable at the tip of the bremsstrahlung spectra. Our
formula is correct only when

k 137m
l——=e=

Eo  28BE+137Tm’

where z is the atomic number of the target and m is the
mass of the electron. For example, for Ey=10 BeV and
for a Be target (z=4), ¢ must be much larger than
1.5X1073. For the type of experiment in which a pre-
cise shape of the bremsstrahlung tip is required, one
can easily insert the exact formula for the bremsstrah-
Iung cross section in Eq. (23) and obtain an adequate
I,® (k). Equation (25) is a compact expression which
gives approximately I, ® (¢,k). From Fig. 3 and Table I,
we see that [1,® (2,k) Japprox 1s indeed an excellent ap-
proximation to 7,®(4k); thus it may be used safely
for the purpose of estimating the secondary beam pro-
duction. Equation (29) gives I,®(4,k). The small nu-
merical values of 7,®(4k) compared with 7,® (k)
assure us that 7., (¢,k) is negligible. Numerical values
of Eol .,V (t,E) and Eol ,® (¢,E) are shown in Table II.

It is a major problem to dispose of electron beams
after they have been used to produce secondary beams.
The formulas for 7,% (¢,E) and 1,® (t,E) given in this
paper may be used to calculate the intensity and energy
distribution of the electron beams and thereby assist
in the problem of disposing of electrons.

In Sec. III, we state some of the practical problems
involved in using a thick target and also illustrate how
our formula may be used for the calculation of secondary
beam yield.

II. CALCULATIONS
A. Shower Equations at High Energies

We are interested in deriving a reasonably compact
formula for the photon spectrum as a function of target
thickness produced by a single incident electron with
an incident energy £o>1 BeV. Since £, is high and we
are interested only in the high-energy component of
the shower, we need to consider only the energy loss of
electrons due to bremsstrahlung and the attenuation of
the photon beam due to pair production. It is convenient
to measure the thickness of the target in units of radia-
tion length. We also use the complete screening for-
mulas for both the bremsstrahlung and pair production
cross sections. As mentioned in the Introduction, this
will cause inaccuracy near the very tip of the brems-
strahlung, especially when the target is very thin.
However, this difficulty can be remedied easily later.

_electron | dt
]
T

Fic. 1. A thick target. b
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When an electron with energy £ passes through an
infinitesimally thin target d¢ (in r.l.), the number of
photons produced in the energy internal dk is*

dtdk(1/R)[$(1—k/E)+ (R/E)*]. 1

When a photon with energy %k passes through dt, the
number of electrons plus positrons produced in the
energy interval dE is

dtdl(2/ k)5 (1—k/ E)+ (k/E) 12/ k2. )

The number of photons lost due to pair production in
dt per incident photon is

(7/9)ds. 3)

Consider an electron with energy £, incident on a
target, as shown in Fig. 1. Let the intensity of the
electrons in the energy range dE at depth ¢ be I,(t,E)dE
and that of the photons in the energy range dk be
I,(t,k)dk. Then after passing through an additional
thickness df, 7, and 7., are altered by bremsstrahlung
and pair creations. From Egs. (1), (2), and (3) we
obtain the shower equations:

oL, (k) T oo
A N / I.(t,L)
ot 9 k
4 k k\*CE
SECROIE

3 E E k

and

Al (4,I5) /0t

<

» 4y kN g R\E
=2/ Iy(t’k)[—<1—_——>+<“> :,—dk
E 3 E E k3
Eo—E 4 k k 2dk
+ / LG, E+k>[—(1— )+( )J—
0 E+k E+k k

3
o[ TH-OTE o

The last two integrations in Eq. (5) have infrared
divergence; however, the difference of the two integra-
tions is finite.

Our objective is to obtain 7,(4k) and I.(¢,E) with
the boundary conditions

I1,(0,k)=0, (6)
1,(0,E)=06(E— Ey). ©)

Substituting 7.,(¢,k)=F (t,k)e="/»*in (4), and solving
for F(t,k) using the boundary condition (6), Eq. (4)

4H. A. Bethe and J. Ashkin, in Experimental Nuclear Physics,
edited by E. Segre (John Wiley & Sons, Inc., New York, 1953).
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may be integrated into the form

1 t Eo
I,(t,k)=—f e‘"/”(‘“"’dt’f I.(¢YE)
k 0 k

4 k k\?
x[-( 1__)+(_) }uz. ®)
3 E E

The physical meaning of Eq. (8) is clear. The last
integration represents the bremsstrahlung produced at
# and the term exp[— (7/9)({—#)] just represents the
attenuation of the photons due to the pair production
in going through the thickness (t—¢').

Equation (5) can also be cast in a similar form. To
do that we first let 7,=0 and solve Eq. (5) with the
boundary condition (7); the result must be, by defini-
tion, equal to I, (4,E), the intensity of the first genera-
tion electrons per incident electron. 7,V (¢,E) is also
called the straggling formula because it represents the
energy distribution of the incident electron itself after
having passed through thickness ¢. For convenience, let
us restore the Eo dependence of 7,V (¢,E) and write

IG(I) (t;E) =G (t;E’EO) . (9)

Then obviously Eq. (5) with the boundary condition
(7) may be cast in the form

t Eo
I.(,E)=1,0(4,E)+ / dt / dE'G(i—1, E,E')
0 E

(10)
Fo 47k E\*E"
x [ Canewx| {1 +(5)
% 3\ E/ \E/Ip

By a direct substitution, one can show that Eq. (10)
satisfies Eq. (5). The physical meaning of Eq. (10) is
as follows. The net flux of electrons and positrons at
thickness ¢ consists of an energy-degraded incident
electron beam 7,9 (¢,E) plus photon-induced pairs. The
k integration in the second term times dE’dt’ represents
the number of electrons and positrons in the energy
interval dE’ photoproduced in dt’. These electron-
positron pairs suffer straggling in traveling from # to
¢t and their contribution to the number of e* and e~
with energy E at ¢ is given by the £’ and k integrations.
Finally, dt’ is integrated from O to ¢.

Now Eqgs. (8) and (10) are completely equivalent to
shower Egs. (4) and (5) with boundary conditions (6)
and (7). Once 7,® is obtained, Egs. (8) and (10) can
be solved by iterations;

1 t Eo
I,™ (;yk)z_/ e‘”’”“*")dz’/ I.™ (' E)
kJo &

(e o
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t Ey Eo
T, (¢ k)= / dt / dE'G(t—V, EE) / 21, (¢ k)
0 E E’
4 k k \?E"?
g T o
3 E' E’ k3

n=1,23, .

The final solutions are

0

I'v(t,k)z Z Iv(n) (t;k>, (13)
and
LE)= 3 1,0 (4E). (14)

n=l1

B. First-Generation Electron Intensity, I, (,E)

By definition 7,® (3,E) is the solution of Eq. (5) with
I,=0. A very good approximate solution for 7,® (z,E)
can be obtained by using a Heitler trick®; namely, the
bremsstrahlung shape in the last two integrations is
approximated by a more convenient form :

41 k kE2—4—————k/E 15
E[ E}L(/ )_gln[l/(l—k/E)]. 1s)

In Fig. 2 we compare the shape of the above two ex-
pressions. It should be noted that for k/E=0 the two
expressions coincide, and for k/E<0.5 the approximate
expression is, at most, 109, higher than the exact
expression. Since the approximate expression for the
photon emission is more accurate for low k%, the re-
sultant solution for 7,® (¢,E) must be more accurate
for E closer to Eoq—this is exactly what we want.

With this approximation we have, from Eq. (5),

a1, (1,E) /o1

4 rt 1 E dv
S / [I.,U)(t,E)————Ie(”(t, ——)]———
3/ 1—v 1—o/dIn(1/1—2)
(16)

Multiplying both sides by £¢ and integrating £ from
0 to « (i.e., taking the Mellin Transform of both
sides), we have®

M (t,5)/0t

S M 1 M &
_ (ts)— (1—2v)M, lf, -
3 0[ (t,5)— (1—v)*M ,( S)]In(l/(l—v))

=—4M,(ts) In(1+45), (17)

5 W. Heitler, Quantum Theory of Radiation (Oxford University
Press, Oxford, England, 1954).

6 L. Eyges, Phys. Rev. 76, 264 (1949). The analytical method
of obtaining the Bethe and Heitler straggling formula was first
used in this reference. We carried out these manipulations ex-
plicitly here for completeness.
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0.2k
ol
0 1 1 1 1 1 ! 1 1 1
(0 0. 0.2 03 04 05 06 07 08 03 1.0
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where . C. First-Generation Photons, I,V (¢,k)
Me(t,s)=/ E IO (tE)E. (18) Substituting Eq. (22) into Eq. (11) we obtain
0 1 [te D=ty rEoy [\ @o)¢—1
. .. o EPONS IOGR=| — In—
Applying the boundary condition 7,W(0,E)=8(E—E,) <+ Lt
kJo  T(5t) k E
to Eq. (18), we have
4 k k\?>7dE
M L0,9)= B (19) % H 1__>+(_> ]—. (23)
3 E E/ 1E
Hence from Eq. (17) we have 0 )
sg—(@/3)¢ In (I+-5) Equation (23) as it stands has a singularity in the
M o(t,5)=Eye integrand when Eo=FE and 4<1. In order to carry
=Ly (14s)~ @™, (20)  out numerical integration by a computer, it is con-

Using the inversion formula for the Mellin transform
we obtain

1
Ie(l)(t,E)=———/E‘<I+“)E08(1+8)_(4/3)‘ds: (21)
2wt ¢

where the integration path ¢ runs parallel to the
imaginary axis with Res>0. If one completes the con-
tour by an infinite semicircle on the left plane and
evaluates the residue at s=—1, one obtains

1 [In(Ey/E)]@s -1

I, (t,E) = __..L/__.._

E, (30
EG(t,E,Eo) .

This is the well-known formula first obtained by Bethe
and Heitler.” [See Heitler,5 page 378. Instead of £ in
the formula he used a different value. We used % in
order to force the approximate formula (15) to agree
with the exact value at the infrared limit (¢=0); thus
1,9 (t,E) has the correct value for E near E,.]

(22)

"H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146,
83 (1934).

venient to write it in a different form. Changing the
variable of integration E=Ewe %, and integrating by
parts, the second integration in Eq. (23) can be written
as

44 Ep\@HY | In(Zo/k) 3

J— 1 ) ___/ _x(4/3)t’

3t’< k Ey, Jo 44

n—

k?
XI:—% ‘x—l-—e”}dx.
02
The terms ¢~ and e® are then expanded into a power
series and the integration carried out term by term.
We then obtain
1 4/3)¢
ln—)
u

L5 (=1)r—u?]

t 6(7/9) t’

kIy(l)(tyk)=e~(7/9)£/ ___._<

o T(34'+1)

X +°° —_—

!u Eﬂn!(n—l—%t’—l—l)
1 n+1

(o) Yo,

u
where u=k/E,.
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TasrLe 1. Numerical values of Fiin=f(k/Eo) from Eq. (1), Foxact=kI,D (t,k)/t from Eq. (24),

and Fupprox==E[ 1y D (2,k) Japprox/t from Eq. (25).

/Eo

Finin Fexact F "approx Fexact I "approx Foxact I "approx 1"exact F, approx Fexact 7, approx
t=0.01 t=0.05 t=0.1 1=0.2 t=0.3
0.10 1.20997 1.20417 0.99542 1.18110 0.97735 1.15277 0.95529 1.09772  0.91288 1.04475 0.87265
0.20 1.10664 1.10071 0.99464 1.07713  0.97350 1.04815 0.94775 0.99178 0.89840 0.93745 0.85178
0.30 1.02331 1.01740 0.99375 0.99387 0.96916 0.96490 0.93929 0.90840 0.88234 0.85378 0.82890
0.40 0.95998 0.95406 0.99273 0.93046 0.96419 0.90130 0.92966 0.84416 0.86427 0.78868 0.80349
0.50 0.91665 0.91055 0.99153 0.88616 0.95835 0.85591 0.91843 0.79638 0.84353 0.73841 0.77475
0.60 0.89332 0.88668 0.99005 0.86013 0.95126 0.82716 0.90494 0.76225 0.81904 0.69929 0.74142
0.70 0.88999 0.88222 0.98816 0.85123 0.94223 0.81289 0.88793 0.73811 0.78886 0.66670 0.70125
0.80 0.90666 0.89671 0.98550 0.85735 0.92970 0.80929 0.86467 0.71774 0.74883 0.63319 0.64951
0.82 0.91239 0.90181 0.98481 0.86001 0.92648 0.80921 0.85877 0.71311 0.73888 0.62521 0.63693
0.84 0.91893 0.90760 0.98403 0.86302 0.92289 0.80908 0.85223 0.70791 0.72797 0.61636 0.62326
0.86 0.92626 0.91407 0.98316 0.86625 0.91886 0.80873 0.84489 0.70186 0.71587 0.60634 0.60825
0.88 0.93440 0.92119 0.98216 0.86956 0.91422 0.80789 0.83653 0.69456 0.70224 0.56471  0.59155
0.90 0.94333 0.92889 0.98097 0.87272  0.90878 0.80616 0.82679 0.68543 0.68658 0.58084 0.57261
0.92 0.95306 0.93710 0.97951 0.87534 0.90219 0.80289 0.81508 0.67353  0.66806 0.56373  0.55058
0.94 0.96360 0.94566 0.97765 0.87674 0.89377 0.79691 0.80030 0.65720 0.64520 0.54161 0.52393
0.96 0.97493 0.95421 0.97502 0.87538 0.88210 0.78565 0.78010 0.63289 0.61480 0.51085 0.48942
0.98 0.98707 0.96164 0.97056 0.86653 0.86261 0.76136 0.74715 0.59021 0.56736 0.46102 0.43769
0.999 0.99933 0.95451 0.95157 0.79765 0.78482 0.64338 0.62504 0.43255 0.41355 0.30367 0.28309
1=0.5 t=0.7 t=1.0 t=1.5 t=2.0

0.10 1.20997 0.94458 0.79825 0.85154 0.73117 0.72421 0.64258 0.54181 0.52158 0.39397 0.42679
0.20 1.10664 0.83465 0.76612 0.73931  0.68960 0.60981 0.58975 0.42932 0.45615 0.29138 0.35446
0.30 1.02331 0.75015 0.73170 0.65415 0.64610 0.52503 0.53641 0.35073  0.39398 0.22525 0.28992
0.40 0.95998 0.68318 0.69446 0.58584 0.60025 0.45695 0.48237 0.28993 0.33512 0.17727 0.23286
0.50 0.91665 0.62848 0.65360 0.52828 0.55143 0.39899 0.42738 0.24005 0.27958 0.14029 0.18298
0.60 0.89332 0.58142 0.60786 0.47669 0.49868 0.34675 0.37101 0.19731 0.22737 0.11064 0.13990
0.70 0.88999 0.53678 0.55508 0.42626 0.44038 0.29659 0.31250 0.15918 0.17837 0.08604 0.10317
0.80 0.90666 0.48695 0.49091 0.37071 0.37331 0.24448 0.25032 0.12351 0.13225 0.06475 0.07214
0.82 0.91239 0.47525 0.47595 0.35813 0.35829 0.23333  0.23717 0.11645 0.12330 0.06074 0.06653
0.84 0.91893 0.46256 0.45999 0.34476  0.34253 0.22178 0.22368 0.10934 0.11439 0.05676 0.06110
0.86 0.92626 0.44863 0.44280 0.33041 0.32587 0.20973 0.20976 0.10214 0.10552 0.05279 0.05581
0.88 0.93440 0.43307 0.42409 0.31481 0.30810 0.19701 0.193531 0.09480 0.09662 0.04880 0.05065
0.90 0.94333 0.41535 0.40341 0.29757 0.28890 0.18345 0.18017 0.08723 0.08766 0.04474 0.04557
0.92 0.95306 0.39463 0.38006 0.27817 0.26780 0.16872  0.16409 0.07929 0.07851 0.04055 0.04052
0.94 0.96360 0.36950 0.35283 0.25556 0.24397 0.15231 0.14661 0.07077 0.06901 0.03610 0.03540
0.96 0.97493 0.33710 0.31921 0.22785 0.21571 0.13317 0.12685 0.06121  0.05878 0.03117 0.03001
0.98 0.98707 0.28960 0.27224 0.18982 0.17839 0.10847 0.10229 0.04937 0.04672 0.02511 0.02378
0.999 0.99933 0.16770 0.15839 0.10381  0.09802 0.05768 0.05447 0.02607 0.02462 0.01325 0.01252

The infinite series converges rapidly when # is near 1.
For example, summing the series up to n=135, one ob-
tains an accuracy of better than 0.19, at #=0.5.

D. Approximate Expression for I,V (¢,k)

In many problems in which the photoproduction
cross section is given by a simple formula, one may use
Eq. (24) directly. However, in some problems in which
the photoproduction cross section is expressed in terms
of multifold integrations, a simplified expression repre-
senting 7, ® (2,k) is desirable. Let us go back to Eq.
(23) and make the following approximations.

(1) Replace [4(1—k/E)+ (k/E)*] by 1. An inspec-
tion of Fig. 2 shows that this approximation will at
most make a 109, overestimate in the high-energy half
of the bremsstrahlung spectrum.

(2) Replace In(Fo/E) by (Eq— E)/Eo. This approxi-
mation is also good when E is close to E,.

(3) Replace I'(%t') by 3/(4¢"). This replacement is
correct to within 129 as long as 4¢'/3<1.25.

We obtain then an approximate expression for
1, O @,k) ;

1 (1—k/Eq) @) t— g= 19t
[Ivm (t,k) ]avprox: - .
kL(7/9)+5 In(1—k/Eo) ]

(25)

The approximations made in deriving this formula
are extremely crude and not valid at all when E/E,— 0
and #'>1. However, the numerical comparisons shown
in Table I and Fig. 3 indicate that up to ¢=2r.l. and
0.2<k/Eo<1, the difference between I,®(4,k) and
[1,@ (t,k) Japprox. is about 0 to 159%,. The reason for this
miraculous agreement between the numerical values of
the two expressions can be understood by closer inspec-
tion of the behavior of the integrand of Eq. (23). We
notice that the integrand is big only when %<1 and
E — E,. But our approximations are good under these
circumstances, and hence, even though they are very
bad in other regions of integration, the integrand there
hardly contributes anything to the final result.
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F16. 3. Exact and approximate first-generation photon spectra as a function of target thickness.

E. The Second-Generation Electron and Brems-
strahlung Spectra: I,? (t,E) and I, (t,k)

In this section we would like to make rough estimates
of I,® (¢,E) and 1,®(t,k) in order to have some feeling
for the errors involved in using 7,V (4,E) and 7, @ (4,k)
in doing further calculations.

Substituting Egs. (25) and (22) into Eq. (12), we
obtain

t Ey
I,® (t,E)=/dt’/ dE
0 E
Ey

X/ 2L, (Y Jappron
El

4 k E N\ E"?
-2 GE) e
3 E' E'J 1B
Since we are interested in E very close to Eyand ESE’

<k<LE, we may approximate [$(1—k/E")+ (k/E')*]
X E?/k* by 1. Using the identity

Eg Eo Eo k
/dE’/ dk:/ dk/dE’,
E 4 E B

the integration with respect to d£’ can be carried out

/[ln (E'/E)]@s (=)-1
rfg@—2)]

(26)

and we obtain

Eo dk t
1@ (4,E)=2 / — / at’
B kJo

X (Cln &/ BY]4 =/ T[4 (= £)+17)

X [I’Y(l) (k:t,)]approx N (27>

Now the gamma function may be replaced by 1 be-
cause when %(1—#)<1.25, this replacement causes
129, error at most, and when $(})—#)>1.25 the term
(Ink/E) @3 =) decreases rapidly with increasing {— ¢’
when k/E is very close to 1. With these approximations
the integration with respect to ¢’ can be carried out and
we obtain

[O0E) = 2 rldx 1
2 )—Eo » a2 (7/9)+% In(1—2)
(1—x) @D t— (1—y/x) @)
ol
$ In[ (x—%)/ (x—v)]
(7/9) ¢t — 3)¢t
e ¢ v/x)(“/)jl, 28)
(7/9)+4% In(1—2/x)

where v=I/E, and x=Fk/E,.
In Table II we compare Eof, ™ (£,E) with Eol @ (4,E).
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TaBLE II. Numerical values of Eol .M (t,E) and EoI,® (¢,E) as functions of ¢ and E/E,.
E/E, E¢XI,®  E¢XI,®  EgXIW E¢XI,® EoXI. W E¢XI®  EgXI® EyXI,®  E¢XIM E¢XI,®
t=0.2 =04 t=0.6 t=0.8 t=1.0
0.50 0.3863 0.0288 0.7128 0.0849 0.9243 0.1424 1.0106  0.1902 0.9911 0.2263
0.55 0.4306  0.0231 0.7638 0.0666 0.9520  0.1094 1.0006 0.1434 09434  0.1666
0.60 0.4832 0.0184 0.8219 0.0518 0.9824  0.0833 0.9902 0.1071 0.8952 0.1220
0.65 0.5475 0.0144 0.8900 0.0397 1.0165 0.0625 0.9790 0.0786 0.8458 0.0877
0.70 0.6289  0.0112 0.9719 0.0299 1.0556  0.0458 0.9668 0.0562 0.7942 0.0614
0.75 0.7362 0.0084 1.0745 0.0217 1.1020  0.0324 0.9530  0.0388 0.7393 0.0414
0.80 0.8870  0.0060 1.2097 0.0151 1.1594 0.0217 0.9370  0.0252 0.6793 0.0262
0.85 1.1191 0.0040 1.4026  0.0097 1.2353 0.0134 0.9175 0.0150 0.6112 0.0151
0.90 1.5379 0.0024 1.7171 0.0053 1.3472 0.0070 0.8913 0.0075 0.5290 0.0073
0.95 2.6072 0.0010 2.4026 0.0020 1.5558 0.0025 0.8496  0.0025 0.4161 0.0023
t=12 =14 t=1.6 =18
0.50 0.8983 0.2479 0.7656 0.2580 0.6205 0.2589 0.4819 0.2527 0.3609 0.2416
0.55 0.8220  0.1807 0.6735 0.1850 0.5247 0.1827 0.3918 0.1758 0.2820  0.1656
0.60 0.7480 0.1291 0.5876 0.1300 0.4390  0.1264 0.3144 0.1206 02170  0.1121
0.65 0.6753 0.0911 0.5070 0.0902 0.3619 0.0863 0.2476  0.0805 0.1633 0.0738
0.70 0.6030  0.0625 0.4304  0.0608 0.2922 0.0572 0.1901 0.0526 0.1192 0.0476
0.75 0.5300 0.0412 0.3573 0.0393 02290  0.0363 0.1407 0.0329 0.0833 0.0294
0.80 0.4551 0.0255 0.2867 0.0239 0.1717 0.0217 0.0986  0.0194 0.0546  0.0171
0.85 0.3762 0.0143 0.2178 0.0131 0.1199 0.0117 0.0633 0.0103 0.0322 0.0090
0.90 0.2901 0.0067 0.1496 0.0060 0.0734  0.0053 0.0345 0.0046 0.0156 0.0040
0.95 0.1884  0.0021 0.0802 0.0018 0.0325 0.0016 0.0126  0.0013 0.0047 0.0011
TasLE III. Intensity ratio of second-generation to first-generation photon spectra as functions of k/E, and ¢.
k/E,y 1=0.2 =04 1=0.6 t=0.8 t=1.0 t=1.2 =14 t=1.6 =18 1=2.0
0.50 0.002 0.007 0.015 0.023 0.032 0.041 0.050 0.059 0.069 0.078
0.55 0.002 0.006 0.011 0.017 0.024 0.031 0.038 0.045 0.053 0.060
0.60 0.001 0.004 0.008 0.013 0.018 0.023 0.029 0.034 0.040 0.045
0.65 0.001 0.003 0.006 0.009 0.013 0.017 0.021 0.025 0.029 0.033
0.70 0.001 0.002 0.004 0.007 0.009 0.012 0.015 0.018 0.021 0.024
0.75 0.000 0.001 0.003 0.004 0.006 0.008 0.010 0.012 0.014 0.016
0.80 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.009 0.010
0.85 0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.005
0.90 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002

The second-generation photons can be obtained by sub-
stituting 7,® (¢,E) in Eq. (11). Since we are interested
only in the order of magnitude, we may again approxi-
mate $(1—k/E)+ (k/E)? by 1. After integration with
respect to #/, we obtain the second-generation brems-
strahlung spectra as a function of target thickness:

ldy 1 N2 3"‘N2
e e i
1D2 D2D3

tNy N3z;—N
- o
D; D32

where

x=k/Ey, (v=E/E, y=Fk'/Ey),
D= (7/9)+4% In(1—y),
Dy=4§ In((y—2")/(y—)),
Dy=(7/9)+% In[1—v/y],
Ni= (1—5)eo%,
Ny= et

st[l_w/yj(ua’)t.

In Table III the intensity ratio of the second-generation
to the first-generation bremsstrahlung, 7, (4,k)/
1,9 (k) Japprox, from Egs. (25) and (29) is given. It
is seen that this ratio is 0.078 at t=2r.l., k/Ey=0.5 and
it becomes smaller as ¢ is decreased or k/E, is increased.
The smallness of these ratios assures us that for those
experiments which only utilize bremsstrahlung in the
energy range $<k/E¢<1 and thickness {<2r.l., the
second-generation photons can safely be ignored.

III. APPLICATIONS

Let us briefly mention some of the problems® in-
volved in using a thick target at high energies with an
intense electron beam.

1. Temperature: Consider, for example, a beam of
20-BeV electrons with an intensity of 10" electrons
per second. This beam has a power of 320 kW; if its
energy is completely absorbed in a target, it will prob-
ably destroy the target immediately, even with normal
cooling. Of course one can overcome this problem by

8 Z. Guiragossian (private communication).



149

using a less intense beam or a thinner target so that
only a fraction of the beam energy is deposited in the
target.

2. Electron and Positron Backgrounds: With high-
energy and high-intensity beams it is not practical to
sweep away all the electrons after they are used to pro-
duce the bremsstrahlung in a thick target (¢>0.03).
The same target must be used for both the bremsstrah-
lung and particle production. Thus there will be many
electrons with intensity spectrum 7,(¢,E) in addition to
u, m, K, p, n, P, @i, etc. This blast of electron beam can
be avoided in two ways. (a) Shun the near forward
angle and use a thinner target (in order to suppress
the angular spread of the electrons due to multiple
scatterings); or (b) Use a very high z absorber after
the main target to slow down all the high-energy
electrons. High z materials are better because their
absorption coefficients per radiation length (roughly
proportional to A—** where A4 is atomic weight) for the
strongly interacting particles are smaller. To estimate
the high-energy component of the electrons and posi-
trons after the absorber, Egs. (22) and (28) may be
used. Because of the heating problem, this scheme will
work only when a relatively low-intensity beam is used.
The separation of other particles is a very complicated
technical problem and beyond the scope of this article.

Let us assume that the problems mentioned above
can be solved and ask what is the optimum thickness
and material of the target for producing high-energy
secondary particles. Since the same target is used for
producing the bremsstrahlung and the secondary par-
ticles, the yield ¥ per unit energy and solid angle of
the secondary particle per incident electron is given by

Y=(NX,/4)

T Eo
X f dt e~ / 1,(1,k) (%o /dQdqo)dk, (30)
0 k

min

where NV is 6X10%, Avogadro’s number; 4 is the atomic
weight of the target nucleus; X, is the unit radiation
length in g/cm? of the target material and equals

[140.12(2/82)2]4
4aN3(z+1)r2 In(1835715%)

nis (V/A)Xo,, nuclear absorption coefficient per radia-
tion length for the secondary particle in the target;
I,(tk): Use [I,V(4k)Japprox given by Eq. (25) for
this purpose; d%¢/dQdq, is the differential cross section
for the secondary particle production by a photon with
energy k; T is the target thickness in radiation lengths;
E, is the incident-electron energy; and Zmi, is the mini-
mum energy of the photon kinematically allowed for
the photoproduction process.

o, is the absorption cross section of the secondary
particles for the target nucleus. For most purposes, we
may assume the absorption cross section to be 809,
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of the total cross section and the total cross sections for
m, K, and P, etc., on the nuclei are given by ot(4)
=¢t(1)A?%3, that is, the total cross section for the proton
times 4273, The total cross sections at high energies for
w, K=, K*, and $ incident on protons can be obtained
from experimental data?;

ortpt=25 mb,
ox-p'=22 mb,
or+pt=18 mb,

80
a,—,p’=(45-|--ﬁ—) mb,

where p is the incident § momentum in BeV/¢ in the
lab system. (¢3,*=50 mb for our purpose.) From these
we obtain the values of 9 for various secondary particles
in some target materials. (See Table IV.)

TaBLE IV. Nuclear absorption coefficient n per radiation length.

Target
Particle VA A Xo 7
T Be 4 9 65 3.75X1071
T C 6 12 44.6 2.34X10™
T Cu 29 63.57 13.1 3.93X1072
T Pb 82 207.2 6.5 1.32X1072
K- Be 3.3 X107
K+ Be 2.7 X101
D Be 7.5 X107t

Using Eq. (30) we have calculated? the yield of
m, K=, kt, k%, p from the electron machine using various
kinds of production mechanisms. The numerical results
show that the smaller the 3 the better the yield since no
strongly interacting particles are photoproduced with
z® dependence; hence the yield per radiation length is
larger from small z materials than from high z materials.
The nuclear absorption coefficient, 5, is larger for the
low z materials than for the high z ones, but it is not a
very decisive factor in the choice of materials because
there is not much sense in using a target thicker than 2
radiation lengths. Thus, ¥ is rather weakly dependent
upon 7.

We have used Be targets to calculate the yields for
various particles. The results indicate the optimum
thickness of the target is around 7'=2 for = and K
productions and 7'=1.6 for § photoproduction. For
muon production, the nuclear absorption coefficient 7
is zero; thus as far as the yield is concerned, the thicker
the target the better. However, more than 909, of the
maximum number of muons with energy >%E, are
produced within a thickness of four radiation lengths.

9 T. Kycia e} al., quoted by Lindenbaum in the Proceedings of
the Twelfth Annual International Conference on High Energy
Physics, Dubna, 1964 (Atomizdat, Moscow, 1965).

0 See SLAC User’s Handbook (Stanford University, Stanford,
California, 1966).
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Fic. 4. Plots of %I,W(t,k), as
given by Eq. (24), as functions of
t and k/E,.
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IV. DISCUSSION

From the numerical examples, the following conclu-
sions may be drawn:

(i) Second-generation bremsstrahlung is negligible
for T<2r.l and k/Ey>0.5.

(il) For calculating yield per equivalent quanta,
either 7,® (t,k) or [1,® (t,k) Japprox, given by Egs. (24)
and (25), respectively, may be used, depending upon
the degree of accuracy desired.

1 1 1
0.925 0.950 0.975 1.0

071

06}

0.5

0.3+

0.1

k/E,

(©

(iii) For the photon-difference type of experiments
in which the accurate shape of the bremsstrahlung tip
is required, one may insert a more accurate bremsstrah-
lung spectrum! in Eq. (23) and calculate 7.,® (4,k)
accordingly.

(iv) To estimate the electron and positron back-
ground from a thick target, J.®W(4,E) and I,®(,E)
given by Eqgs. (22) and (28) may be used. The angular

1 H, W. Koch and J. W. Motz, Rev. Mod. Phys. 31,920 (1959) .
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spread of these electrons and positrons is mainly caused
by multiple scatterings, and not by the production
mechanisms.

Some qualitative features of 7,® (£,k) may be under-
stood in the following way. Since we are interested in
k comparable to the incident-electron energy FE,, the
energy of the electrons £ from which these v’s are
produced must also be very close to £, Now the
electron spectrum given by 7,® (4,E), Eq. (22) changes
its shape abruptly at 1=0.75r.l. For {<0.75, we have
1,9 (t,Eg)= 0 ; whereas for £>0.75, we have 1,0 (¢, E,)
=0. This tells us qualitatively that practically all the
high-energy v’s are produced from {=0 to ¢=0.75, and
after t=0.75, the intensity of the v’s is just attenuated
by the absorption factor ¢=7/2¢¢=0.78) " a5 shown in Fig. 3.
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In Figs. 4(a), (b), and (c) the curves for kI, @ (%),
given by Eq. (24) as functions of ¢ and k/E, are plotted.
The computer programs (in Arcor) for generating all
the numerical values given in this article are available
upon request.
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We show that the noncompact groups U (6,6), GL(6,C), and U (6) XU (6)X0O(3,1) proposed by many
authors to underlie a classification of hadrons can be excluded on the basis of existing information on the
hadron spectrum. A scheme which at least avoids the obvious difficulties of the above noncompact groups

is mentioned.

I. INTRODUCTION

ANY papers!? have been devoted lately to the

idea’ that much as in the case of the hydrogen
atom* a noncompact group G should be used in classi-
fying hadrons. All baryons are then expected to lie in
one infinite-dimensional unitary representation (i.d.u.r.)
Dg of G. Of course, the mass of the higher members
should increase as a consequence of G-symmetry-
breaking effects, but one should be able to foretell
unambiguously the spectrum of baryon resonances that
follow the lowest lying 56 states. Similarly all mesons
are expected to belong to an id.u.r. Dy of G. Con-
cerning G, the following candidates have been dis-
cussed™® G=U(6,6), GL(6), and U(6)X U (6)X0(3,1).
We wish to show in this paper (Sec. II) that existing

* This work supported in part by the U. S. Atomic Energy
Commission.

LY. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Letters
17, 148 (1965); C. Fronsdal, Trieste Report No. IC/65/68 (to
be published).

2 A. Salam and J. Strathdee (Trieste Report) have developed
tec}(miques for constructing vertex functions for U(6,6) and
GL(6,C).

8 R. P. Feynman (unpublished).

4 See, e.g., A. Salam, in Proceedings of the Oxjord Internaiional
Conference on Elementary Particles, 1965 (Rutherford High Energy
Laboratory, Harwell, England, 1966), p. 241.

experimental evidence, especially on the baryon
spectrum, is sufficient to exclude all these three possi-
bilities. In Sec. IIT we will propose an alternative
possibility based on the group U(12) X U (12X SL(2C)
which has at least a chance of survival besides some
speculatively interesting features.

Let us still recall the differences between the groups
mentioned above: SL(6,C) (U(6,6)) starts with a
given U(6) (U(6)X U (6)) multiplet and keeps adding
s-wave mesons to it in the most symmetrical way.
Thus at each step the maximum spin increases by one
unit and also new SU(3) representations appear.
SL(6,C) and U (6,6) thus lead to large spins paired with
large unitary (SU(3)) spins. U(6)X U (6)X0(3,1), on
the other hand, starts with a given U(6)X U (6)XO0(3)
representation and keeps exciting its constituent quarks
into higher and higher orbital states. Again, maximal
spin increases by one unit upon each step, but no
higher SU(3) representations are introduced. High
spins appear with low unitary spins. We could label
SL(6,C) and U(6,6) as “SU(3) and spin explosive”
and U(6)X U (6)X0(3,1) as “orbital explosive” groups.

Now in order to get a precise idea about the particles
appearing in a given i.d.u.r., we shall always write out
the few lowest terms in an i.d.u.r. By lowest terms we
mean lowest representations of the maximal compact



