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Analysis of the Reaction ~ +p ~ q+ n near Threshold~
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We successfully fit both the total and the differential cross sections for the reaction w +P —+ q+n in the
region of T„ from threshold (558 MeV) to 900 MeV with both multichannel Breit-Wigner and eBective-
range formulas. We find that an S-wave resonance accounts for the enhancement of the reaction near thres-
hold. A comparison is made of the various m-p S» phase-shift analyses with the phase shifts predicted by our
multichannel fits. A search was made for the S-matrix poles of our Breit-Wigner and effective-range solutions
on the various sheets of the energy plane.

'HE measurement of the reaction 7r +p —+ rt+rt
by Bulos et u/. ' revealed an enhancement of the

total g production cross section o-„~ just above threshold.
Several authors, ' ' with varying degrees of success, have
attempted to show that this enhancement is due to a
pole of the S~~ partial-wave scattering amplitude. A
scattering-length-approximation fit2 of both the re-
action data and the orp elastic-scattering phase shifts
failed to reveal evidence of a pole. A more successful
multichannel effective-range approach was attempted
by Hendry et c/. ' Although they could not find solutions

by considering two channels (i.e., the srp and
channels), they were able to find a resonance by
considering more than two channels. They achieved a
similar success using a Breit-Wigner form for the
scattering amplitude instead of the effective-range
approximation. The more recent measurements of
Richards et al. ' have reconfirmed the enhancement of
fT„~. They have also revealed a nonisotropic angular
distribution, however, which the older data did not.

We shall analyze the more recent data, fitting both
the total and differential cross sections. Because of the
large disparities between the various phase-shift solu-

tions, ' " we felt that fitting the reaction and elastic
data simultaneously might prove misleading. We have
therefore handled the reaction data independently of
the phase-shift analyses. We were able to explain the
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enhancement of 0-„~ in terms of a two-channel 5-wave
Breit-Wigner resonance. The angular distributions
were fitted by adding small amounts of I' and D wave
to the dominant 5-wave term. A successful two-channel
effective-range fit to the data was also performed, yield-
ing results similar to the Breit-Wigner fit.

The sharp rise of o-„~ just above threshold indicates
that p production is mainly 5 wave. This is verified by
the fact that only an 5-wave resonance fits cr,~. Addi-
tional supporting evidence for 5-wave dominance may
be obtained by considering the energy dependence of
the Sit srp inelasticity parameter rts. For a majority of
the phase-shift solutions, &8 is exactly one below the pe
threshold. Above threshold qq becomes less than one,
reaching a minimum at the precise energy at which o-„~

is a maximum. This demonstrates the dominance of the
inelastic part of SI~ by q production. This agrees with
the results of Yodh, I2 which showed that the 7=-,'-
one-pion production (the only other srp reaction at this
energy with a non-negligible cross section) is principally

and D wave. One can estimate the relative con-
tribution of the 5» wave to cr„~ by comparing the
experimental values of a„r with the values of" (2/9)
(sr/ttts)(1 —stq') obtained from the various phase-shift
solutions (qi is c.rn. momentum of the srp system). This
comparison reveals that p production is almost entirely
5 wave. This dominance is not complete, however,
because of the nonisotropy of the angular distribution.
There must be small contributions from other waves.
In fact, Richards et a/. ' have shown with a Legendre
polynomial fit of the differential cross section that there
are Pi(cos8) and Ps(cose) terms. These terms are most
easily accounted for by assuming that the 5» waves
interfere with small contributions from the I'II and D~3
waves.

Our model for fitting the reaction data consists of
contributions from the three partial waves: 5~~, P~y,
and D».'4 The 5-wave is assumed to be dominated by a
two-channel resonance. With the K matrix de6ned by
5= (1+/I~)(1 iE) ', the 5-wav—e elements of E are

"G. B. Yodh, University of Maryland, Technical Report No.
512, 1966 (unpublished).

n The factor of 2/9 arises from a —,
' coming from isospin con-

sideration and a 3 from the branching ratio of q —+ 2y.
"From here on we shall drop the subscripts and denote these

waves by 5, I', and D, respectively.
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TAsI.K I. The parameters and x~ for the Breit-signer solutions.

Solution

BW-I
BW-II

I'(ms)
(MeV) (MeV)

1557 156
1565 144

0.23
0.085

I'&(ms)
(Mev)

110
41

0.207
0.44

46
103

0.61
0.61

90
90

3.03
3.03

16
16

r, (~s) c~ (r,r,}, c& (r,r,)0
(MeV) (BeV 4) (MeV2) (BeV ') (MeV')

33.7
31.1

chosen to be

E;; = ,'(I'-F )'"/(w w—s), (1)

where i and j run over 1 and 2 and represent the Irp and
p&s channels, respectively, m is the center-of-mass total
energy, and ms is the position of the resonance. The
quantities F1 and F2 are related to the center-of-mass
momentum q& and'q2 of these channels by the equation
F;=g,q;, where g1 and g2 are constants. The partial-
wave scattering amplitude from channel i to channel j,
f,;, is related to E;; by

f,;=E,/, (1 iE)/. , '.—
Substituting Eq. (1) into Eq. (2) we have

X (F .F,)I /2

. .8
U

WS—W —22(FI+F2) D

kinetic energy in the lab) along with four total cross-
section and 40 differential cross-section points of Ref. 6
at T =592, 655, 704, and 875 MeV. Four of the total
cross-section points were used to normalize the four
angular distributions; hence there are 46 independent
data points. Our fit therefore has 41 degrees of freedom,
since there are five free parameters. Our least-squares
fit revealed two regions of our parameter space where
X' was less than 41. The local minima of these two
regions are listed in Table I. The fits" to the data are
displayed in Fig. 1.The observed cross sections' ' shown
there are about 3 of the true q production cross sections
because only those p's which decayed into 2p were
observed and the branching ratio for this mode is
approximately -,'. Although the exact value of the
branching ratio is uncertain, it does lie somewhere

We shall assume that the Pll and D22 IrP resonances
couple to the I/22 channel, as well as the IrP and the other
inelastic channels. The partial-wave scattering ampli-
tude for these two waves is thus given by

2 (Fl/F2I)'/2
12

I,—
WI —W—

2 ($)FI
t P D

7

where the total width FI)FII+I'2I. The values of wl and
F& can be derived from the phase-shift analyses of the
IrP system. The products &FIF2IClq22'+'q22'+' are un-

knowns, however. Our model therefore contains five
parameters ms, g&, g2, C&, and C& which may be varied.
There is very little ambiguity in determining the values
m~ ——1531 MeV and I'~ ——120 MeV from the various
phase-shift solutions. v "Determining the parameters of
the I'11 wave is a great deal more dificult; indeed, there
is disagreement among the various solutions as to
whether or not E1~ is resonant. We choose the values
+~=1503 MeV and j. ~ ——308 MeV. As we shall see
later, our results do not depend crucially on this
choice.

We have fitted the six total-cross-section data points
of Ref, 1 below T =900 MeV (T equals the pion

These amplitudes may be expressed in terms of gs and
the real part of the elastic phase shift 81s by

~2ib .S
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FIG. 1.The 6t of the two Breit-Wigner solutions of the experi-
mental total and differential q production cross sections.

"Note that the experimental angular distributions are not the
true g angular distributions, but the g bisector distributions (i.e.,
the distribution of the bisector of the two y rays coming from the
decay p ~2y). The diBerence between these two distributions,
however, is considerably less than the experimental errors.
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TABLE II. The location of the poles of both the Breit-Wigner and effective-range scattering amplitudes on the four
sheets of the energy plane in terms of the real and imaginary part of m. No poles were found on sheet I.

Sh

IV

lution

Rem
Imw

Rex
Imm

BW-I
(Mev)

1560
&32

1537
~76

No pole

BW-II
(MeV)

Xo pole

1540
~70
1555
&27

E-I
(Mevl

1575
&31

1547
~90

No pole

E-II
(Mev)

No pole

1546
&73

1564
~15

E-III
(Mev)

No pole

1535
~154
1567
~35

E-IV
(Mev)

No pole

1582
+83
1579
&22

between 0.38 and 0.31.' The results of our analysis,
however, do not depend sensitively on this value. This
is because a change of the branching ratio changes the
over-all normalization of 0-„~, which can be accounted for
by changing g& and g2 by a few percent. The contribution
of the S wave alone to Og~ is shown for one of the solu-
tions to show the dominance of this wave over I' and D.
Because of the ambiguity in determining the values m p
and I'&, we also checked the sensitivity of our results to
these values. We found that our results were very
insensitive to either the magnitude or energy de-
pendence of w~ and F~(w), and hence that our results
are independent of our model for the I' wave.

The two solutions we found correspond to resonances
at 1557 and 1565 MeV with full widths, F(ws), of 156
and 144 MeV, respectively. The major difference
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Fxo. 2. A plot of 81 versus 1' for the four phase-shift solutions
of Refs. 6-8 and the two Breit-Wigner solutions BW-I and
BW-II.

between the two solutions, however, is the fact that for
solution BW-I g~=g2 Lor Fq(ws)&F~(wa)$, whereas
for solution BW-II g2»g~ (or Fq(ws)(F~(ws)j. This
leads to differences in the behavior of the elastic phase
shifts. The values of b~ and b2 for both solutions were
obtained with the help of Eqs. (3) and (4). All our
phase shifts have a cusp at the gm threshold. The values
of b~ are plotted in Fig. 2. Note that b~(ws) goes through
90' for solution BW-I and through 0' for solution
BW-II. We found the opposite behavior for b2(w), i.e.,
b2(w8) =0' for BW-I and 90' for BW-II. Comparison of
b~(w) with the various phase shift solutions' " shows
that solution BW-I most resembles Bransden's I,'
while solution BW-II is somewhat like Brandsen's II'
or Auvil's. ' The disparity between the various phase-
shift solutions' " is greatest above T =600 MeV.
Below this energy they more or less agree. Note that
BW-I gives somewhat better agreement with these
values below 600 than BW-II.

The positions of the poles of solutions BW-I and
BW-II are found by searching the four sheets of the
complex m plane near the second threshold for the zeros
of the complex denominator D of Eq. (3). In denoting
these four sheets we shall use the notation of Frazer and
Hendry. ""Sheet I, or the physical sheet, has two cuts
along the positive real axis beginning at the ~p and qm

thresholds, respectively. The unphysical sheets II and

III, are connected directly to the real axis (between the
two thresholds for sheet II and above the ge threshold
for sheet III). Sheet IV, the super-unphysical sheet, on

the other hand, is not directly connected to the physical
axis except at the point +TH, the energy of the gn
threshold. For each of our solutions we find two pairs of
poles, one of which is on sheet III near the real axis, just
above the ge threshold. The other pair of poles is on
sheet II for solution BW-I and sheet IV for BW-II. The
exact location of the poles are listed in Table II. The
dependence of the location of the poles on g~ and g2 is

"W. R. Frazer and A. W. Hendry, Phys. Rev. 134, B1307
(1964).

"The sheet structure of the m plane near the qn threshold for
the Breit-Wigner scattering amplitude and the effective-range
amplitude happens to be the same as that of the s plane discussed
in Ref. 13.The dehnition of 01 and 02 for the m plane is completely
analogous. W'e shall number the sheets of the m plane just as
Frazer and Hendry numbered the sheets of the s plane.
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TABLE III. The parameters, y', and phase shifts for the effective-range solutions.

Solution
3fII

(aev)
%22

(SeV)
My2

(BeV) R1
Cg

(aev 4)
Cg)

(SeV ')
Sg(T =680 S,(T =680

Me V) MeV)

I
II

III
IV

—28.0—28.0
0.25—0.56

—28.0—8.4
0.35
0.14

—28.34—15.73
0.51
0.59

—4.0—4.0
45—4.0

—4.0—4.0
4.5—4.0

0.44
0.44
1.0
0.61

2.21
2.48
3.31
2.21

44.1
44 4
44.4
49.0

800
00
60

174'

40
73'

50
470

similar to a Breit-Wigner model discussed by Eden and
Taylor. "

Although the results of our Breit-Wigner analysis
does not provide a clear choice for 8~, it does favor
solutions which go through either 0' or 90' near
T =680 MeV. This might be due to our use of the
Breit-Wigner form to fit the reaction data rather than
the uniqueness of our fits. To test whether or not this is
the case, we have attempted fitting the data with a
model in which f;,' is given by an effective-range
approximation. The I' and D waves are treated just as
before. The inverse of E', however, is expanded about
the rle threshold in powers of (w —wTH), viz. ,

E;; (w) =M,—,+ (w —w TH)R;,8,;, (7)

denominator DE+F of Eq. (8). Two pairs of poles were
found for each of the solutions. They are listed in Table
II.Note that the poles of E-I and E-II are at almost the
same positions of the poles belonging to the BW solu-
tions I and II, respectively. Since the behavior of 8r (w)
and bs(w) and the location of their poles is identical, it
may safely be assumed that K-I and E-II are the
effective-range approximations of BW-I and II,
respectively.

The results of our effective-range fits are very en-

couraging. First of all, they yield the two BW solutions
we obtained earlier. Secondly, although there is another
solution (E-III), they all share the common feature that
8& is approximately 0' or 90 at T„=680 MeV. The
phase shifts for the effective-range approximation,

where M;; and R,; are constants and wTH=M~+M„
=1488 MeV t (T )TH=557 MeV). Ross and Shaw"
have shown that to a good approximation E,; may be
taken diagonal. Our expression for f, is obtained by
substituting Eq. (7) into Eq. (2), from which we obtain

3Eg2
—

, (8)
(A &As

—
q&qs

—M&s') —
i(q&As+ qsA r) DEFF

where A;= M, ;+R;,(w —w Tn). With this model we have
seven free parameters altogether, M~~, &22, &~2, Ry, E2,
C~, and CD. We found four regions of our parameter
space for which X' was small. These four solutions, along
with their respective X, are listed in Table III. The
phase shifts for each of our four effective-range solutions
were calculated using Eqs. (2), (4), and (7). Plots of 8t
versus T for the four different solutions are shown in
Fig. 3 and the values of 6~ and 52 at T =680 MeV are
listed in Table III. We see that the phase shifts of
solutions E-I and E-II behave almost exactly lik.e those
of solutions BW-I and II, respectively. 6& for E-III is
similar to BW-II, but 62 is quite different. As mentioned
before, the various phase-shift solutions' "agree below
T =600 MeV. Of our four effective-range solutions,
only the phase shifts for E-I agree with these values.
Those of E-II and E-III are similar in shape but too
small in magnitude, while those of E-IV differ dras-
tically. Therefore, shall not consider E-IV a solution.

The poles of the effective-range solutions were found
by searching the m plane, as before, for the zeros of the
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(1963).
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FIG. 3. A plot of B1 versus T„ for the two phase-shift solutions oi
Ref. 7 and the four effective-range solutions E-I—IV.
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however, are not constrained to go through 0' or 90'
like the BW phase shifts. Another common feature of
all our 8% and effective-range 6ts of the reaction data
is that each has a pole on sheet III near the real axis 50
to 60 MeV above threshold. This is a good indication
that the enhancement of fT„~is a resonance phenomenon. "
"We note, however, that in the present circumstances the

resonance is caused by poles on both sheet III and sheet II (or IV).

It is a pleasure for us to thank Professor J.D. Jackson
for his frequent and valuable discussions. We also wish

to thank Professor K. Dietz and Professor R. Schult for
their helpful comments. One of us (F. U.-C.) wishes to
thank Professor G. M. Almy for his hospitality.

Only when the poles lie far from threshold (in units of F) does the
pole on sheet III dominate the resonance.
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The Ward identity is used to display the connection between the electromagnetic form factor and propa-
gator normalizations.

I. INTRODUCTION
' 'N the context of asymptotic 6eld theory the nor-
~ ~ malization of the propagator for the interpolating
fields comes from the normalization of the asymptotic
fields and spectrum, as is well-known. ' Within the
context of such a theory it is possible to introduce
electromagnetic interactions, without recourse to a
Lagrangian, by adopting the Ward-Takahaski equa-
tions as supplementary conditions characterizing
quantum electrodynamics. ' The particle electromag-
netic form factors of the theory are then de6ned as
matrix elements of the electromagnetic current be-
tween single-particle states. The customary procedure
in fixing the normalizations of these form factors is to
require the space integral of their zero-momentum-
transfer values to be equal to the observed particle
charge. It is possible however to show that the normaliz-
ation of these form factors follows from just the
propagator normalization and the Ward- Takahaski
equations. It is the purpose of this paper to show this.

One difhculty we do not deal with is that of the
existence of the asymptotic condition in the presence
of the electromagnetic interactions. The difficulty
alluded to here is that associated with the zero mass
of the photon. In this connection we will find it neces-
sary to postulate the normalization of the photon
propagator.

* Supported by the U. S. Of6ce of Naval Research,
$ This work is based on a part of the author's Ph.n. thesis at

the University of Illinois.' See, for example, the derivation of the Kallen-I. ehmann repre-
sentation for the propagator in G. Barton, Introduction to Advanced
Infield Theory (Interscience Publishers, Inc. , New York, 1963),
p. 506.

K. Nishijima, Phys. Rev. 119, 485 (1960).

We demonstrate the connection between the nor-
malization conditions for scalar and vector 6elds by
way of example. Section II reviews the derivation of
the Ward identity (which is all we need for our proof)
from the Ward-Takahaski equations. Section III, in
the well-known way, relates the electromagnetic form
factor to the vertex function arising out of the Ward
identity, the (unit) normalization of the particle
propagator being carried along for didactic reasons.
Section IV discusses the propagator and its tensor
properties, and Sec. V completes the derivation of the
equality of the two normalization conditions by as-
sembling the results of the preceding sections.

AF (xi—x,)= d4p Fip (z4—22lg I(p).
(2 )4

(II.2)

where we use the Minkowski (space-favored) metric
p x=p' x+p4x4= p' x—ppxp.

The electromagnetic (vector photon) vertex function
is defined by

(0~ TLC (xi)4'(x2)A1(xp)]
~
0)= —

q d4xi' d'x2' d4xp'

X+F (xi x1 )Pi'(xi xp j x3 x2 )+F (x2 x2)

XDF'), ),(xp' —x,), (II.3)

II. DEMVATION OF THE WARD IDENTITY

The Feynman propagator of a complex scalar field
4(x) is

~F (xl x2) = &0~ &[4'(»)@'"(x2)]I 0), (II &)

where 4(x) is the particle-interpolating field operator.
The momentum-space propagator is defined by


