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we have plotted the reduced temperatures and densities
and also the critical ratios of various substances against
\ and compared these with the results of our model.® In
the case of the critical ratio there is experimentally an
increase of about 59 as X increases from Xe to He?,

9 After completion of this paper M. E. Fisher supplied us with
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whereas the model shows a decrease of 0.5%, over the
same range of A. Thus our model agrees with the ex-
periment by giving only a small variation of the critical
ratio due to quantum effects. When the reduced critical
temperatures and densities of the noble gases and hydro-
gen isotopes are plotted against A, the agreement of the

results with those of the model is remarkably good,

more recent experimental data collected by him for Ref. 4. How- % > *
especially for the dependence of critical density on A.

ever, use of those results makes only about 19, change to Fig. 2.
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Temperature Dependence of the Structure of Liquid Indium*
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The x-ray diffraction pattern of liquid indium were measured at 170, 280, 390, 500, and 650°C. For com-
parison, liquid mercury was measured at room temperature. All data were taken with a 6-9 diffractometer
from the open surface of the melt between values of K =47 sing/A=1.5 and 15 A1 Absolute intensity data
I,y 2 were obtained by scaling the measured intensity of In to that of liquid mercury (coh=-coherent, e.u.
=electron units). The values of I, u.% for K>12 did not show extensive modulation and were in good
agreement with the square of the dispersion-corrected scattering factor f of In. The interference function
I(K) was calculated by dividing the I, 4.t values by the theoretical f2 values. Fourier transform of I(K)
yielded the radial distribution function RDF =4#7%(r) and pair probability function g(r) =p(r)/po, where
po is the atomic density. The RDF curve of Hg is completely free of ripples below <D, where D is the
hard-sphere diameter, indicating that J....%? and f2 were determined accurately. In the case of In, ripples
were found below the first peak in the RDF. We conclude that these ripples are a consequence of the use
of inappropriate f? values rather than errors in I, 4", since Hg and In were measured under identical
conditions. Fourier transform of the ripple-free RDF yielded an I (K) curve which was about 109, higher in
the region of the first peak. Dividing 7,.4.%® by the corrected I (K) leads to values of the scattering factor
which are 5% lower in the range of K=1.5 to 8 A~ than the Dirac-Slater scattering factors. The distribu-
tion of the atoms in liquid In can be approximately described by the hard-sphere model with a packing
density of 0.45 compared to 0.74 in the solid. This density corresponds to a hard-sphere diameter D=2.86 A,
which is the first value of 7 in the RDF where p(7) =po. The interatomic distances 7; taken as the position
of the first peak maximum in the RDF and the coordination number CN decrease with increasing tempera-
ture. Both variations are a consequence of the excess or free volume created in the liquid. The electrical
resistivity pr and thermoelectric power Q of liquid In were calculated from the measured I(X) and the
theoretical values of the Fourier transform U(K) of the pseudopotential for different temperatures. The
predicted values of pg are about 509, lower than those observed experimentally. The theory also under-
estimates the temperature dependence of the resistivity by about a factor of 3.

I. INTRODUCTION

HE liquid state of matter is the least understood

of the three common states solid, liquid, and
gaseous. The atomic arrangement in the liquid state
represents a compromise between the long-range order
characteristic of crystalline solids and total disorder
characteristic of gases. There must be correlations
between atoms separated by short distances in the
liquid, but complete randomness between atoms or
molecules separated by large distances.

The distribution of atoms as a function of the radial
distance 7 about a given reference atom, i.c., 4w (r),
can be obtained from the x-ray intensity 7x(K) scat-
tered by IV atoms with scattering factors f as a function

of the magnitude of the diffraction vector K =4 (sinf)/A,
where 20 is the angle between the incident and diffracted
x rays and X is the wavelength!3:

2 ©
4rr2p (r) = 4aripo+ (:)f K[I(K)—1](sinKr)dK, (1)
e 0

where po is the average atomic density and 7 (K) is the
interference function given by

H(E)=Iy(E)/(Nf?) =LowMK)/[*. @)

To.u.8(K) is the coherent scattering from one atom in
electron units.

1 A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals,
and Amorphous Bodies (W. H. Freeman and Company, Inc., San
Francisco, 1963).

3 N. S. Gingrich, Rev. Mod. Phys. 15, 90 (1943).

* This paper is based on the D. Eng. thesis of H. Ocken sub-
2 K. Furukawa, Rept. Progr. Phys. 25, 395 (1962).

mitted to the School of Engineering, Yale University, 1966.
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The Fourier transform of Eq. (1) yields an expression
for the interference function in terms of the radial dis-
tribution function (RDF):

sinKr

I(K)=1+/ 4rr* o (r)—po dr
0 Kr

3)

It is important to note that RDF and 7 (K) are two dif-
ferent representations of the same information. The
RDF provides a description in real or object space,
while 7 (K) represents a description of the atomic ar-
rangment in reciprocal space. The passage from one
space to the other is effected through Fourier trans-
forms. In order to show this reciprocity more clearly
and to facilitate the transformation operation, Kaplow,
Strong, and Averbach* use the notation

F(K)=K[I(K)—1], 4)
G(r)=4ar[o(r)—po]=4mrpg(r)—1],  (5)

where g(r) is the pair correlation function. Therefore,
Egs. (1) and (3) can be written as

G(r)= (;) /0 ) F(K)(sinKr)dK , (6)

F(K)= [ " G(7) (sinKr)dyr. @)

The RDF is of interest in the theories of the liquid
state because, in conjunction with the knowledge of the
intermolecular potential, the thermodynamic functions
of the liquid can be specified. It also allows direct com-
parison with RDF’s obtained from particular models of
liquids, such as the hard-sphere model®® or the long-
range oscillatory-potential model.”-®* The RDF’s show
fluctuation about the average atomic distribution
4mr?po. The maxima represent the preferred distances of
separation between atoms in the liquid and the area
under a peak gives the coordination number CN. These
data can be directly compared with solid-state values,
and provide some insight into the structural changes
that occur upon melting.

In the last few years, the most exciting advances in
the theory of metallic liquids have been related to a de-
scription of the transport properties.* ! Measurements
of the Hall constants R of liquid metals have shown
that they deviate very little from the value predicted

¢ R. Kaplow, S. L. Strong, and B. L. Averbach, Phys. Rev. 138,
A1336 (1965).

5 N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).

6 M. S. Wertheim, Phys. Rev. Letters 10, 321 (1963).

7 A. Paskin and A. Rahman, Phys. Rev. Letters 16, 300 (1966).

8 J. E. Enderby and N. H. March Advan. Phys. 14 453 (1965).

9 J. M. Ziman, Phil. Mag. 6, 1013 (1961).

©0C. C. Bradley, T. E. Faber, . G. Wilson, and J. M. Ziman,
Phil. Mag. 7, 865 (1962).

1 N. E. Cusack, Rept. Progr. Phys. 26, 361 (1963).
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by the free-electron theory,'? i.e., R=1/Ne, where N is
a number of conduction electrons per unit volume and e
is the charge of the electron. The theoretical difficulties
associated with the calculation of the transport parame-
ters have been overcome by the introduction of the free-
electron-like pseudo-wave function or pseudopotential,
which describes the electron-ion interaction.

The electrical resistivity pr can be calculated from the
expression?10:13,14

pr=[3r (m*)/ Wk po) KI(K) | U(K)|?), (8)

where m* is the effective mass and e is the charge of the
electron, #="7%/2m, h is the Planck constant, po is the
average atomic density, and & is the wave vector asso-
ciated with the Fermi energy Er, i.e.,

Ep=12(3n2N)*3/ 2m*) =Wk 52/ (2m*). 9

N=¢{po is the number of valence electrons per unit
volume and { is the number of valence electrons per
atom. The average value of (I (K)|U(K)|?) is defined

as
1

)| UE) =4 / 1K) | UE))?

0
K\* /K
Nl LI
2kr/ \2kp
As shown by Ziman,'® this approach also yields a theo-
retical expression for the thermoelectric power Q;

Q=[—="#T/(3|e| Er)][3—2I(2kr)
X|UQkr) /I (K) | UEK)[%], (11)

where k is the Boltzmann constant and 7" is the abso-
lute temperature.

In principal, we should be able to calculate the elec-
trical resistivity and thermoelectric power of liquid
metals directly from the above equations. In practice,
one is often hampered by the lack of accurate values of
the interference function I (K) and the transform of the
pseudopotential U (K).

Any experimental study of the liquid state is likely
to be hindered to varying degrees by high vapor pres-
sures, chemical reactivity of the sample with the con-
tainer, and high temperatures. X-ray-diffraction studies,
which provide a direct means for determining the atomic
arrangement in liquids, are particularly hampered by
the weak intensities characteristic of the scattering
from liquids. Early investigations, which were generally
motivated by a desire to obtain a knowledge of inter-
atomic distances and coordination numbers, often show
significant variations in the interference functions at
small values of K. As such discrepancies have little
effect on the RDF, the quantities of interest could be

12 J, E. Enderby, Proc. Phys. Soc. (London) 81 772 (1963).

BT, J. Sundstrom, Phil. Mag. 11, 657 (1965

¥ N. W. Ashcroft and L. J. Guild- Sundstrom Phys. Letters
14, 23 (1965).
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obtained quite accurately. On the other hand, the trans-
port properties are extremely sensitive to the details of
the interference function at low values of K. Only
recently has some measure of reproducibility been
achieved in the measurement of the low-angle region of
the interference function. Pfannenschmid,'® Kaplow
et al.,* Wagner et al.,' and Black and Cundall'” report
interference functions of liquid mercury which agree to
+79%, in the region of the first maxima. We therefore
propose that measurements of the scattering from this
element be used as the basis for the comparison of the
diffraction patterns of liquids obtained at different
laboratories.

In view of the difficulties surrounding the x-ray dif-
fraction studies of liquids, it is not surprising that there
have been few investigations of the temperature de-
pendence of the structure of liquids. Including neutron-
diffraction measurements, the only metallic elements
which have been investigated over a large temperature
range are mercury,'® rubidium,* cesium,! and tin.20

In this paper we present a study of the temperature
dependence of the x-ray scattering from liquid indium.
An extensive comparison of theoretical and experi-
mental values of the electrical resistivity and thermo-
electric power of liquid metals by Sundstrom'® pre-
sented no such calculation for indium. Using inter-
ference functions based on a hard-sphere model of a
liquid, Ashcroft and Lekner® compare theoretical and
experimental resistivities just above the melting point.
Measurements over a range of temperatures will provide
a means for obtaining a theoretical value of the tem-
perature coefficient of the resistivity. Such a quantity
will provide a more severe test of the pseudopotential
approach than has hitherto been available. To insure a
high degree of accuracy, measurements will be made
using a focusing 6-6 diffractometer and a scintillation
detector. Particular attention will be paid to factors
affecting the measured intensities and their conversion
to absolute units. Measurements will be standardized
against the scattering from liquid mercury at room tem-
perature. The data should also enable the somewhat
surprising discrepancies which have been reported in
the RDF of liquid indium to be resolved. Gamerts-
felder,! Kim et al.,”? and Orton® give a value of the first
preferred separation distance 7;=3.30 A, whereas

15 Q. Pfannenschmid, Z. Naturforsch. 15a, 603 (1960).

16 C. N. J. Wagner, H. Ocken, and M. L. Joshi, Z. Naturforsch.
20a, 325 (1965). )

17P. J. Black and J. A. Cundall, Acta Cryst. 19, 807 (1965).
(1;‘1 %) A. Campbell and J. H. Hildebrand, J. Chem. Phys. 11, 330

19 N. S. Gingrich and L. Heaton, J. Chem. Phys. 34, 873 (1961).

® K. Furukawa, B. R. Orton, J. Hamor, and G. I. Williams,
Phil. Mag. 8, 141 (1963).

2 C. Gamertsfelder, J. Chem. Phys. 9, 450 (1941).

Y. S. Kim, C. L. Standley, R. F. Kruh, and G. T. Clayton,
J. Chem. Phys. 34, 1464 (1961).

% B. R. Orton, Ph.D. thesis, University of London, 1964
(unpublished).
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Hendus* and Knosp? obtain 7,=3.17 and 3.15 A,
respectively.

II. EXPERIMENTAL PROCEDURE

The experimental arrangement for the measurement
of the scattered x-ray intensities from the liquid was
identical to the one described by Wagner et al.® The
focusing diffraction geometry was realized with a
6-6 diffractometer which allows the measurement of the
scattered x rays from the open surface of the liquid. A
quartz-crystal monochromator in the diffracted beam
was used to eliminate the white spectrum, the K radia-
tion, most of the Compton scattering, and the fluores-
cent radiation from the sample.

Indium of 99.99%, purity was heated in a graphite
crucible (25X20 mm?) and He-209%, H mixture in the
high-temperature camera.?® Before each run the indium
sample was heated to 800°C, where any oxide was
quickly reduced by the protective atmosphere, and then
brought to the temperature of the measurements.
Alignment of the sample into the diffractometer axis
and calibration of the high temperature camera have
been described previously.!® Measurements were made
at 170, 280, 390, 500, and 650°C+5°C.

All data were obtained with Mo radiation using a
0.54° divergence slit, a 0.14° receiving slit and no Soller
slits. Scatter shields above the sample and the mono-
chromator crystal and scatter slits in the diffracted
beam served to minimize extraneous scattering. The
time required to count 4000 x-ray pulses was registered
at intervals of 0.2° between 8° and 20°, 0.5° between
20° and 80°, and 1° between 80° and 125° in 26. This
angular range corresponds t0 Kmin=1.5 A t0 Kmax
=15.7 AL The reported data below 20° in 20 corre-
spond to an average of three runs at each temperature.

III. ANALYSIS AND RESULTS

The interference and radial distribution functions
were determined from the measured intensities with the
aid of a FORTRAN program compiled for use with an
IBM 7040-7094 computer. After subtracting the
counter noise, the measured intensities Imess Were
divided by the proper polarization and absorption
factors,

PA=[(14cos?2a cos?28)/ (14 cos?2a) ]/ 2u,

where 2e is the diffraction angle of the monochromator
and p is the linear absorption coefficient (see Table I*7).
The corrected intensities Jeor=17Imeas/PA4 are propor-
tional to the sum of the coherently scattered radiation

2 H. Hendus, Z. Naturforsch. 2a, 505 (1947).

% H. Knosp, Dipl. Arbeit, Techn. Hochschule, Stuttgart, 1964
(unpublished).

26 M. L. Joshi, Rev. Sci. Instr. 36, 678 (1965).

27P. J. McGonigal, J. A. Cahill, and A. D. Kirshenbaum,
J. Inorg. Nucl. Chem. 24, 1012 (1962).
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Tasie I. The mass absorption coefficients (u/p) for Mo Ke
radiation, the mass densities p,* and the atomic densities po of Hg
and In at different temperatures.

ulp

Temp P pPo
Element (°C) (cm?/g) (g/cm?) (&9
Hg 28 132 13.55 0.0407
In 170 31.8 7.014 0.0368
280 31.8 6.939 0.0364
390 31.8 6.864 0.0360
500 31.8 6.790 0.0356
650 31.8 6.688 0.0351

s Reference 27.

I..,.*" and Compton radiation /... ¢ in electron units,

ie.,
(12)
(13)

where 8=1/(®py) is the normalization constant. The
product of Bpo=1/® is independent of the liquid sample
and depends only on the experimental arrangement.!®
Values of the average atomic density po were calculated
from the macroscopic densities?® and are shown in
Table I. The values of 8, shown in Table II, were ob-
tained with the high-angle method (8) and the modi-
fied radial-distribution-function method (8rpr), hither-
to referred to as the modified Krogh-Moe and Norman
method.1® The atomic scattering factors used in the
analysis were those of Cromer and Waber?® and the dis-
persion corrections were those of Cromer.?®* The two
normalization constants were identical in the case of
Hg, but 8, was always smaller than Brpr in the case of
In. The difference was still less than 29,. Using the
value of B(Hg), we obtained a value of 3(In):

B(In)=B(Hg)po(Hg)/po(In).

This value was about 19, smaller than 8, (In), indicating
that the measured intensities and the theoretical scat-
tering factors were quite accurate for larger values of X,
i.e., K>10 Al The difference between 8; and Brpr
for In must be due to the particular choice of the dis-
persion corrected scattering factors at smaller values
of K.

Values given by Sagel®® were used to account for the
Compton incoherent scattering. Positioning the quartz
crystal monochromator in the diffracted beam results
in the Compton radiation being eliminated when the
resolving power of the monochromator is greater than
the wavelength shift of the Compton radiation. An esti-
mate of this cutoff point was obtained by measuring
the dispersion profile as a function of wavelength after
reflection of the primary beam from a single crystal of
NaCl in the sample position. The wavelength spread

Icor=1meas/ (PA) =¢P0(Ie.u.co}l+[e.u.inc) y

Ie.u.c°h= B]cor—le.u.mc )

(14)

28 D, T. Cromer and J. T. Waber, Acta Cryst. 18, 104 (1965).

2 D, T. Cromer, Acta Cryst. 18, 17 (1965).

% K. Sagel, Tabellen zur Rintgenstrukturanalyse (Springer-
Verlag, Berlin, 1958).
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TaBLE II. Representative values of the square of the disper-
sion-corrected atomic-scattering factors. (C&W) denote values
obtained using the uncorrected atomic-scattering factors of
Cromer and Waber (Ref. 28). The last column gives values for
indium deduced from the refinement procedure. The dispersion
corrections used were those of Cromer (Ref. 29).

K Hg(C&W) In(C&W) In
0 6055 2318 2318
2 4852 1727 1610
4 3286 1066 1003
6 2245 661 625
8 1596 445 431

10 1166 328 325

12 865 254 256

14 650 196 199

was then related to the resolving power of the crystal
using the penetration aberration analysis of Scott.® For
the quartz crystal in question the cutoff point was found
to occur at 20=18° or K=2.8 A-1.

The interference function I(X) was obtained by
dividing the coherently scattered intensity Je...%" per
atom in electron units by the square of the dispersion-
corrected scattering factors. At small values of K, i.e.,
K<1.5 A1, where measurements were unobtainable,
I(K) was smoothly extrapolated to K=0 using the
relation?

(15)

where % is the Boltzmann constant, 7" is the absolute
temperature, and Kz is the isothermal compressibility.
Values of Kg given by Hill*? were used to calculate the
value of 1(0).

The function F(K)=K[I(K)—1] can then be gen-
erated from the interference function 7 (K). Usually the
values of F(K) at large values of K are the least re-
liable because any error in 7(K) is magnified by the
factor K. One must remember that 7 (K) at large values
of K is the quotient of two small quantities J,.." and
72 which may not be too reliably known. To prevent
the high angle or large K value region of F(X) from
assuming a disproportionate influence in the Fourier
transform, F(K) was weighted by a factor exp[—oK?],
where o was chosen to be zero and 0.005. When the dif-
ferences between 7,.,.®"(K) and f? were on the order
of the error resulting from counting statistics, F (K) was
arbitrarily set equal to zero. This value of Kmax was
always larger than 12.0 AL

The interference functions of In for different tem-
peratures are shown in Fig. 1 and are tabulated in
Table I1I for 1.0< K < 3.0 A%, The corresponding radial
distribution functions are represented in Fig. 2. For
comparison, the I(K) and 4% (r) of Hg measured at
room temperature are shown in Fig. 3. The RDF are
those obtained from I(K) terminated at Kmyax=12.5
A-! and no damping factor applied. Values of the inter-

](0): kTPOKﬂ )

31 R. E. Scott, Rev. Sci. Instr. 35, 118 (1964).
2 T, E. Hill, M..S. thesis, Cornell University, 1965 (unpublished).
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1(K)

) I T .| l | B -

1 .
10 15 A
K= 4n(sinByn

o
Ut -

Fic. 1. Interference functions I (K) of liquid indium for different
temperatures. The values of 7 (K) were obtained by dividing the
absolute intensities 7,.4.°2(K) per atom by the square of disper-
sion corrected scattering factors of Cromer and Waber (Refs.
28,29).

atomic distance 7;, obtained from both the RDF and
the pair distribution function g(r) and the coordination
number CN, are given in Table IV. The interatomic
distances were obtained by extrapolating the midpoints

SOIIIII]]

- Indium

Fic. 2. Radial distribution functions 4x7% () of liquid indium
for different temperatures obtained from the refined interference
functions.
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TasiE III. Interference functions I (K) of liquid mercury and
liquid indium, calculated from the measured x-ray intensities and
the dispersion corrected scattering factors of Cromer and Waber

(Ref. 28).

Hg Indium
Temp. °C 28 170 280 390 500 650
K I(K) I(K) I(K) I(K) I(K) I(K)
0 0.006 0.006 0.008 0.010 0.012 0.016
1.0 0.021 0.007 0.009 0.012 0.014 0.016
1.1 0.026 0.009 0.011 0.013 0.015 0.018
1.2 0.033 0.012 0.013 0.016 0.018 0.021
1.3 0.040 0.017 0.019 0.022 0.024 0.027
14 0.049 0.024 0.026 0.031 0.034 0.040
1.5 0.060 0.035 0.040 0.046 0.052 0.061
1.6 0.076 0.053 0.060 0.071 0.078 0.093
1.7 0.107 0.084 0.093 0.109 0.128 0.140
1.8 0.188 0.133 0.154 0.180 0.211 0.218
1.9 0.301 0.257 0.281 0.306 0.337 0.373
2.0 0.542 0.504 0.524 0.566 0.635 0.677
2.1 1.095 1.045 1.031 1.030 1.060 1.023
2.2 1.898 2.048 1.636 1.586 1.512 1.371
2.3 2.476 2486 2.056 1.841 1.747 1.565
24 2.219 2127 1794 1716 1.638 1.481
2.5 1.871 1.607 1.441 1451 1395 1.323
2.6 1.606 1271 1182 1.227 1.205 1.166
2.7 1.372 1.019 1.027 1.028 1.050 1.047
2.8 1.158 0.857 0.879 0.890 0916 0.915
29 0.965 0.734 0.746 0.764 0.792 0.798
3.0 0.766 0.637 0.650 0.689 0.698 0.705

of the peak to the peak maximum. The values obtained
in this manner from the RDF are about 0.05 A larger
than the values obtained from g(7). The area under the
RDF from =0 to #=7mni,, which is the position of the
minimum value of the RDF after the first peak, was
taken as the coordination number.

K = 4n6in¥a in A

0] S 10 15
Yo L2 L B L L B
y:/
L Mercury  28°C //lf'_ 3
/:
40 | i
I -
430 2
-

I(K)

10

F16. 3. Interference function 7 (K) and radial distribution
function of mercury at 28°C.
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TaBLE IV. The first preferred distance of separation 7; determined from the functions g(r)=p(r)/po and 4nr%(r) using different
values of the upper limit of integration Kmax and of the modification function M (K) =exp(—¢K?). CN is the nearest-neighbor coordi-

nation number.

g(r) 41r1’2p (7’) CNmens. CNwln.
Knax 12.5 12.5 7.5 12.5 12.5 7.5
i 0 —0.005 0 0 —0.005 0
Temp
Element (°C) (&) ri(R) (atoms)
Hg 28 3.02 3.03 3.07 3.06 3.07 3.12 10.0 10.1
In 170 3.16 3.17 3.22 3.20 3.23 3.27 10.5 10.2
280 3.13 3.14 3.19 3.18 3.20 3.25 10.1 9.8
390 3.11 3.13 3.17 3.16 3.18 3.23 9.9 9.7
500 3.12 3.13 3.17 3.18 3.19 3.24 9.7 9.6
650 3.12 3.13 3.16 3.18 3.19 3.24 9.4 9.5

Using values of U(K) given by Animalu,?® the elec-
trical resistivity and thermoelectric power were calcu-
lated for liquid In as a function of temperature and are
given in Table V.

IV. DISCUSSION
A. Error Analysis

The radial distribution functions usually show erro-
neous features. The primary source of such errors are
incorrect measurements of the x-ray intensity scattered
by the liquid, use of incorrect values for the normaliza-
tion constants and the atomic-scattering factor, and
termination of the Fourier transform at a finite value of
K = K rsx due to limitations imposed by the wavelength
of the chosen x rays.

The termination of series error has been discussed
extensively in the literature. It produces spurious
ripples on both sides of the peaks of the RDF at a
distance Ar==8/Km.x from the peak maximum posi-
tion.? By varying the value of Ky,x one is able to dis-
tinguish these spurious peaks from those caused by
other errors.

In order to reduce the spurious peaks in the RDF,
F(K) can be weighted by a modification function
M(K)=exp(—aK?). In this way, errors in F(K) at
larger values of K do not have too large an influence in
the Fourier transform. However, small shifts to larger
distances 7 in the position of the first peak maximum of
the RDF (i.e., the interatomic distance 7;) result from
the use of this modification function. This is similar to
the effect of decreasing the values of Kma.x in the
Fourier integral which also produces shifts in 7; to
larger values of 7 as shown in Table IV. The change in
interatomic distance 7; is smaller when a mild modifica-
tion function M (K)=exp(—0.005 K?) is applied to
F(K) terminated at Kmax=12.5 A~ as compared to the
shift resulting from the termination at Kpax=7.5 A1
and the application of M (K)=1. This observation
makes possible an interpretation of the discrepancies
reported for the first preferred distance of separation of

#A. O. E. Animaluy, Cambridge University, Cavendish
Laboratory Technical Report No. 3 1965 (unpublished).

liquid indium in the recent investigations. A larger
value of 7,=3.30 A is expected in Orton’s work,? where
the use of CuKe radiation limits Kn.x to approxi-
mately 7.5 A-L. Although MoKa was used in the study
by Kim et al.,?? their application of a strong modification
function M (K), indicated by the extremely broad peaks
in the RDF, will again result in a shift of 7, to larger
value 71=3.30 A. The value of ,;=3.18 A at 280°C, ob-
tained in the present investigation, is in excellent agree-
ment with those obtained by Hendus* and Knosp.25

Any spurious ripples in the RDF which are clearly
detectable at »<<D can be removed following the pro-
cedure outlined by Kaplow et al.* As the Fourier trans-
form of the experimentally determined interference
function of liquid mercury yielded a RDF which was
almost completely free of ripples at small values of 7,
the refinement procedure was not applied to these data.
The absence of noise at <D indicates that both the
measured intensities and the theoretical atomic-scatter-
ing factors were determined to a high degree of accu-
racy. This conclusion is supported by applying
Rahman’s reliability criterion® to the measured x-ray
intensities of Hg. Good agreement was found between
the theoretical and experimental values.

The Fourier transformation of the indium data, how-
ever, yielded RDF’s characterized by ripples at »<D.

TaBLE V. The electrical resistivity and thermoelectric power of
liquid indium. pops refers to the experimental values of Roll and
Motz (Ref. 48). pth(1) and Qth are the predicted values obtained
using the experimentally determined interference functions.
pth(2) are the predicted values using the refined interference
functions. Qobs are the experimental values of Bradley (Ref. 50),
taken from his figure.

Thermoelectric
Resistivity power
Temp. (u2 cm) WV/°K)
(OC) Pobs Pth(l) Pth (2) Qobs ch
170 33.5 22.6 24.3 0.59
280 36.3 22.3 23.9 . 0.90
390 39.1 23.1 24.7 —1.0 1.12
500 419 24.0 25.7 —1.2 1.11
650 45.7 24.3 26.0 —2.0 1.14

3 A. Rahman, J. Chem. Phys. 42, 3540 (1965).
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The shape of these ripples was the same at all tempera-
tures, indicating that they arose from a systematic
error. Applying the refinement procedure to the indium
data obtained at 170°C indicated that the interference
function in the region of the first maximum should be
about 109, higher than that obtained from the direct
analysis of the data. The source of the discrepancy can
be readily identified if we realize that in addition to
RDF being equal to zero for »< D, a refined 7(K) for
indium must result for which 8(In)pe(In) =B (Hg)p.(Hg),
and the normalization constants determined by the two
methods must be equal, i.e., 8, =Bzrpr. These three con-
ditions are mutually satisfied only if the differences
between the initial and refined interference functions are
ascribed to the use of theoretical values of the atomic-
scattering factor of indium which are too high at small
values of K. In accordance with this conclusion, the
difference between 85 and Brpr could be resolved. The
belief that the discrepancy is not due to a systematic
error in the measurement of the scattered intensities is
based in part on our ability to accurately measure the
scattering from liquid mercury under identical experi-
mental conditions.

B. Atomic Scattering Factor of Indium

The calibration of the primary beam intensity from
the measurements of the x-ray scattering of liquid
mercury provides an alternate method for normalizing
the indium data. As shown above, the product Bpo=1/®
is independent of the sample [Eq. (14)]. Using this
value of the normalization constant, we obtain the scat-
tering intensity Je.,.*® per atom in electron umits. At
values of (sinf)/A>0.8 A~ the modulations in I,..%"
have died out, and 7..,*" should be equal to the disper-
sion-corrected f2 values. The experimental values of the

16
f.ley
15

1 1

08 05 10 1112 13
(sing)/A [A']

F1c. 4. High-angle atomic scattering factor of indium. The dots
with error bars represent the experimental values using the scat-
tering from liquid mercury as a standard. The theoretical scatter-
ing factors using the Thomas-Fermi-Dirac (TFD), Hartree (H),
Hartree-Fock-Slater (HFS), and Dirac-Slater (DS) models are
also given.
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atomic scattering factor of indium obtained by dividing
Iew.® by I(K) which yielded a ripple-free RDF are
compared with theoretical atomic-scattering factors
calculated from different atomic models in Fig. 4.
Cromer?® has shown that the Dirac-Slater (DS) model
of the atom leads to the most compact charge density
near the nucleus, thus resulting in the highest values of
f at larger values of (sinf)/A. The DS atom represents
the most sophisticated approach to the problem of the
calculation of atomic-charge densities. The experimental
values of the high-angle-scattering factor of indium, de-
termined from the x-ray scattering of the liquid, agree
with these theoretical calculations to within 19,

This approach does assume, however, that the atomic
scattering factor of mercury is accurately known,
especially at values of (sinf)/A>0.8 AL Liberman
et al.3® have shown that the eigenvalues computed for
Dirac-Slater (DS) wave functions are in better agree-
ment with experimental x-ray energy levels than are
any other scattering factors. For the case of mercury,
agreement between experimental and theoretical energy
levels for the inner shells, which are most significant in
determining the atomic-scattering factor at high angles,
is better than $9. The absence of ripples in the RDF
of mercury at <D provides other experimental evi-
dence of the accuracy of the DS model. Similar results
have been obtained for liquid T1.3

The error analysis, presented above, indicated that
the theoretical scattering factors below (sing)/A=0.8
A~ were too high. The ratio of the intensity 7,.,.%" per
atom and the refined interference function I (K), which
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F16. 5. Atomic scattering factors of indium. Curve (—+—+4—)
corresponds to the values of Cromer and Waber (Ref. 28); curve
) corresponds to the values deduced from x-ray scattering
from liquid indium.

8 D. T. Cromer, Acta Cryst. 18, 224 (1965).

36 D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.
137, A27 (1965).

37 N. C. Halder and C. N. J. Wagner, J. Chem. Phys. 45, 482
(1966).
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yielded ripple-free RDF, is equal to the square of the
dispersion-corrected scattering factor fexpt. The values
of fexpt are shown in Fig. 5 together with the Dirac-
Slater values of fo of Cromer and Waber.2® The devia-
tion between fexpt and fois about 59,. Similar deviations
between theoretically and experimentally determined
scattering factors have been observed in solid copper,
aluminum, and iron by Batterman ef @/.,%® and in solid
chromium by Cooper.?® On the other hand, experi-
mental studies of f, in rare gases by Chipman and
Jennings? give results which are in excellent agreement
with theoretical Hartree-Fock calculations. We therefore
conclude that the discrepancies noted in liquid and solid
metals are due to bonding effects.

C. Structure of Liquid Indium

The interatomic distance obtained from the RDF can
be used with the density data to calculate the packing
density of liquid indium just above the melting point.
The packing density represents the ratio of the total
volume occupied by the liquid to the volume occupied
by the atoms. The former quantity is given by vo=1/p
and the latter by v;==73/6, where r, is the atomic
diameter obtained from the RDF. The ratio vo/v; for
liquid indium at 170°C is 1.65, which is identical to the
value calculated by Furukawa® for a quasi-face-
centered-cubic lattice model of a liquid. The random
packing of spherical balls has been studied by Scott,*
who obtained packing densities in the range from 1.59
to 1.70. That indium exhibits “closest-packing” in the
liquid state can be taken as evidence that the partial
covalent bonding present in the solid state is destroyed
upon melting. Measurements of the transport properties
of indium in the liquid state also support this view. The
interatomic distance of indium can therefore be ob-
tained from the preferred distance of separation in the
liquid state after extrapolation to twelve-fold coordina-
tion. Such a procedure seems more reasonable than the
indirect approaches used to obtain the interatomic
distances of this element from solid-state measurements.
The value so obtained from the liquid-state measure-
ments is 3.20 A, which compares well with the values of
3.32,3.14, and 3.1 A, given by Pauling,*® Goldschmidt,*
and Slater,*® respectively.

With the assumption that liquid indium consists of

3 B. W. Batterman, D. R. Chipman, and J. J. DeMarco, Phys.
Rev. 122, 68 (1961).

3 M. J. Cooper, Phil. Mag. 7, 205¢ (1962).
(1;06?)‘ R. Chipman and L. D. Jennings, Phys. Rev. 132, 728

4 K. Furukawa, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 12,
368 (1960).

4 G. D. Scott, Nature 188, 908 (1960).

4 L. Pauling, Proc. Roy. Soc. (London) Al114, 181 (1927).

4V, M. Goldschmidt, Trans. Faraday Soc. 25, 253 (1929).

4% 7. C. Slater, Quantum Theory of Molecules and Solids
%I\/Ilc(graw-Hill Book Company, Inc., New York, N. Y., 1965),
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a relatively close packing of atoms of density po, we can
calculate the coordination number CN from values of
the interatomic distance 7;. As shown by Furukawa,*
the coordination number CN is given by

CN (calc)=6V2pors®. (16)

Values of CN(calc) using the above equation are shown
in Table IV. The agreement between the measured and
calculated values is remarkably good.

A comparison of the measured interference function
I(K) for In at 170°C with that obtained from the hard-
sphere model® using a packing parameter n=mpo[?/6
=0.45 shows that the two curves coincide reasonably
well with each other for K <2kp. The value of n=0.45
corresponds to D=2.86 A. The closest packing of
spheres would yield a value of 7,=0.74. Therefore, the
ratio of n./n is equal to 1.65 and identical to the value
calculated by Furukawa® for a quasi-face-centered-
cubic lattice model of the liquid. The hard-sphere
diameter D=2.86 A is very close to the first distance 7
of the ripple-free RDF where p(7)=p,. Calculations by
Paskin and Rahman’ indicate that the hard-sphere
model does not yield a theoretical RDF for liquid Na
near the melting point which would agree with the ex-
perimentally observed RDF. Application of long-range
oscillatory potentials, however, improved the agreement
considerably.

The somewhat surprising result that the preferred
distance of separation decreases with increasing tem-
perature can be readily explained. Following the
approach used by Simmons and Balluffi*® to calculate
the vacancy concentration in solids, we can calculate
the change in interatomic distance by subtracting from
the macroscopic thermal expansion a, the effects due
to the generation of free volume ay:

Ary= (7’1/3) (AVm/Vm—AVf/Vf)=1’1(am—af)AT. (17)

The first term can be calculated from the temperature
dependence of the density and the second from the
decrease of the coordination number with temperature:

ay=(—1/3)(1/CN)(ACN/AT). (18)

The two expansivities a» and ay are shown in Fig. 6
together with their sum; the crosses mark the values of
the preferred distances of separation determined
directly from the RDF’s. Both experimental and pre-
dicted results indicate a decreasing first-preferred dis-
tance of separation with temperature. The observations
can be summarized by stating that the contraction of
the atoms in the liquid due to the decrease in coordina-
tion number plays a more important role than the
thermal expansion in determining the interatomic dis-
tance. A decreasing interatomic distance with increasing
temperature is also predicted for the hard-sphere model
of a liquid.

46 R. D. Simmons and R. W. Balluffi, Phys. Rev. 125, 862
(1962).
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Fi1G. 6. The change Ar; in interatomic distance 7; with tempera-
ture. (A71)m=anAT is the change calculated from the macro-
scopic expansivity. (Ar1)s=ayAT is the change due to the genera-
tion of free volume. Az, is the sum of the two preceding terms, i.e.,
Ary= (am—as) AT = (Ar1)m~+ (Ar1)s. The crosses represent the ex-
perimental change Ar; obtained from position of the first peak
maximum in the RDF.

D. Electron Transport Properties of Liquid Metals

The pseudopotential approach provides a means for
computing the electronic-transport properties of liquid
metals. Rather than solving the Schrodinger equation
with the true ion potential, the orthogonality condition
that the solution of the conduction states of an electron
must be orthogonal to the core states can be made to
look like a potential. This net effective ion-electron po-
tential or pseudopotential is quite small, enabling it to
be treated by standard perturbation theory.

Using Animalu’s values®#7 of the Fourier transforms
of the pseudopotential U(K), the resistivity and ther-
moelectric power calculated from the pseudopotential
formulation are significantly different from the ex-
perimentally determined values. Just above the melting
point the resistivity is about 50% lower than that ob-

4 A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
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served by Roll and Motz*® and Scala and Robertson.?
The theory also considerably underestimates the tem-
perature coefficient of the resistivity. The predicted
value is 0.7540.10X 102 uQ cm/°K, whereas the ex-
perimental value is 2.55X107% uQ cm/°K. The pre-
dicted values of the thermoelectric power are small
and positive, whereas the measured values are small
but negative.5

Similar discrepancies between theoretical and experi-
mental values of the transport properties of liquid
metals were observed previously in an extensive study
by Sundstrém.®® Any difference between theory and
experiment was there attributed to errors in the pub-
lished values of the interference functions used in the
calculations. Wiser® has shown, however, that the re-
sistivity is extremely dependent upon the precise values
chosen for U(K). The small errors present in pseudo-
potential calculations were shown to lead to significant
errors (as large as a factor of 2) in the predicted value
of the resistivity. Of greater significance, therefore, is
the discrepancy of a factor of three in the resistivity co-
efficient of liquid indium, a quantity which is quite
independent of the choice of potential. On the basis of
a similar marked discrepancy for the temperature co-
efficient of liquid sodium, Greenfield®* concludes that
the Born approximation breaks down in liquid metals.
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