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This at least prevents the occurrence of singularities using the identity
at inelastic thresholds as in Sec. II. As a result we
now have
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For c„~~ the individual terms at fixed s are 0(s/c„) For s —+~, ln( ) lns and therefore (A5) is of order
so that our previous choice of parameters still gives a lns also. Our conclusions of Sec. II are therefore
convergent result. Choosing A„=A, we sum the series unaffected.
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The set of coupled, inhomogeneous equations describing the scattering of a fermion by a system of identical
fermions, previously derived from the integral equation for scattering, is shown to follow directly from the
Schrodinger equation and the symmetry properties of the exact scattering wave function.

INTRODUCTION

'N a previous paper, ' we derived a set of coupled,
~ ~ inhomogeneous differential equations that described
the nonrelativistic scattering of a fermion (boson) by
a system composed of identical ferrnions (bosons). The
set of equations was obtained from the integral equation
satisfied by the total scattering wave function. Our
purpose in the present work is to give an alternative
ag.d simpler derivation of the main results of I. We use
the Schrodinger equation rather than the integral
equation to do this. This treatment enables us to avoid
completely the use of certain factors arising from the
re-arrangement collision nature of the scattering due to
the Pauli principle which wcere encountered in I and
which seem to have caused some confusion concerning
the validity of the results of I. The present derivation
is intended to clarify the situation, since these factors
do not enter the discussion. Only elastic and inelastic
scattering of single fermions is considered in the present
work.

GENERAL COMMENTS

We follow the notation introduced in I, to which the
reader is referred for details not given here. Let {y }be
a complete set of antisymmetrized states for the target,
and let 4'~ be the exact, antisymmetrized scattering

' F. S. Levin, Phys. Rev. 140, 81.099 (1965). We refer to this
work as I, and equations from it as (I-i), (I-2), etc. In both I and
the present work, we assume that the target is infinitely heavy.
This assumption is easily relaxed to include the case of recoil.

wave function. Our goal in I was to expand 0'~ via the
complete set {y } and then determine a set of coupled
equations for the coeKcients P —= (p ~

+~), with a
specihc labeling for the q 's. We used the expansion

'I'= &.~-L»')0-(»),

where Li]= (1 i 1, i+—1, .lY) and (i) denotes a
function of the coordinates of particle i only. By defini-
tion, iP yields the proper scattering amplitude f, which
is obtained from +~ by first projecting +~ onto the
state p and then requiring that (y ~%~) have the
asymptotic behavior (y ~+~) e'"'8 0+f e'""/r,
where a=0 denotes the ground state and k is the wave
number corresponding to excitation of the state q . We
have not specified a labeling in y since this is un-
necessary due to the identity of the particles: the co-
ordinate of any one of them may be in f, with the
remainder in p, we obtain the same scattering ampli-
tude from each P (i). By choosing the labeling $$],
we have f, (lV) = (q [sV] t&I ~), and thus the expansion
(1).

Equation (1) is a valid representation for %~ because
{&p }is complete, even though termwise (1) is not anti-
symmetric. This latter point is unimportant as long as
the proper boundary conditions are imposed on the P
in order to secure the correct amplitudes. Since +~ is
antisymmetric, we must have

I'~~ ~ p.-P']&-(&)= —2- ~-%34.Pv),

where I'~& is the two-body, transposition operator.
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where 0,' is an antisymmetrizer. Although this latter
form is explicitly antisymmetric, all iV terms of the
form P, p Lijg (i) simply add up to Eq. (1), which

we prefer to use.
Clearly the f are of a special nature, since they

reduce» ' P 6{q P ) to P &p [$]f (»). The advan-

tage of this choice of lt over the F from the familiar
expansion

(2)+~= 1V 'P. —
{f,( q .F ),

with the F undetermined (and ambiguous), is that the
coetinNNm exchawge contribNHoms are automatically in-

cluded in Eq. (1). These arise when one projects +~
onto y L!V$ using (2):

Because of this, it is clear that +~ could also be written
in the form

+~=» 'Q 0',(y„p ),

But then F =P—, and Eq. (2) is transformed' into Eq.
(1), which again leads' to coupled equations for the P .

In each of the above approaches, ' the equations
derived for the P are homogeneous, while in our treat-
ment, the equations are inhomogeneous. Despite the
unfamiliarity of inhomogeneous equations, we pursue
the approach of I, since on the one hand it automatically
incorporates the continuum-exchange terms and on the
other hand employs only the Schrodinger equation and
the projection operators familiar from the case of a
distinguishable projectile to derive the results. Another
feature of our method is that the approximate ampli-
tudes obtained by truncating the set of coupled in-

homogeneous equations have a simple interpretation in
terms of direct and exchange contributions. However,
as with all such truncation procedures, we are unable
to assess the accuracy or validity of the truncation.

SCHRODINGER-EQUATION DERIVATION0-(») = (~.L»3 l~")=F-(»)—(»—1) Ze~eI »3
X(~.L»3I v»P —IjFe(» —1)). As we remarked in I, straightforward substitution of

Eq. (1) into the Schrodinger equation (E—H)%'"=0
plus imposition of the boundary conditions P Qsl p

+f (0) exp(ik r)/r merely leads to the set of coupled
equations for the case of E distinguishable. Obviously,
this approach fails to include the symmetry of the
problem. However, the symmetry can be introduced
in a simple manner. YVe do this by exploiting the
antisymmetry of %~ and its asymptotic form. The
boundary condition on 4'" implies that%'~ =I"+%so,
where C~ is an antisymmetric incident wave of the
formM

N
A g ( 1)N+ng&

with C»(n) = &ps$n]p&(m), and +so~ is an antisymmetric
function having only outgoing waves when any coordi-
nate is asymptotic. It is evident that+q~ must contain

:the amplitudes for the various two-body scattering
processes and hence 4'&&~ is the antisymmetric scat-
tered wave. Now the unknown portion of C~ is just
+g~~. %e may determine an equation for %gg~ by
solving not for +~ but for 4~—4 ~. Such a procedure is,
of course, familiar from the case of the scattering of a

6 For further discussion of the equations for the p in the e +II
case, see F. S. Levin, Phys. Rev. 142, 33 (1966).

Alternatively, we could substitute Eq. (2) into the Schrodinger
equation (E If)%'"=0, solve for the —F 's and then impose the
above condition. This would seem rather difBcult to do in practice.

8 An additional method for avoiding the continuum exchange
problem is given by J.S.Bell and E.J.Squires /Phys. Rev. Letters
3, 96 (1'959)g. However, these authors work with eigenstates of a
model Hamiltonian rather than with the true states of the target
(s }.We shall discuss their approach to the problem elsewhere.

9 Here, k is the reduced wave number corresponding to excita-
tion of state y, ko=—k.I The extra phase factor (—1)N is included in C~ so that the
component C»(N), which appears explicitly in P(N), enters with
positive sign. A normalization factor has been removed from C",
but this will cause no difBculty in calculating tbt: O,.Inplitudes. P
discussion of normalization is given in I,

Now, not only does F- give rise to an amplitude, say

g ((I) resulting from F Pg8 p+g (0) exp(ik r)/r Lhere

g~ = exp(ik r) j, but all continuum states ys will give an

additional contribution which must be added to g„ to
get the total amplitude. This latter contribution we

denote as the continuum exchange contribution. Jt does

not occur when Fq. (1) ss used.
Since the expansion (2) is a, formal one, and since

the Ii 's are not unique, it is always possible to choose

them so as to avoid the continuum-exchange problem.
Several methods for doing this have been discussed in

the literature, but they eventually lead to equations
for the P, or their equivalents. One method for doing

this has been given by Feshbach. ' In his procedure, a
projection operator 5' is constructed such that (P4'~

= 8( psztp), where us is to yield the entire elastic ampli-

tude. +~ is then of the form 0"=0%"+Q+~, with

{P Q= 0; Q+~ is to give no flux a,symptotically. If the
terms in Q+ are dropped in Feshbach's equation, s the

resulting truncated equation obeyed by 4'~ is the same

as the equation obeyed by a truncated version of Kq.
(2), and similarly for the case in which excited states

q, n&0, are included in O'. ' However, the exact
equation derived by Feshbach is for our Ps for for

P =s" p [»]P (») in the case of inelastic scattering'
as shown explicitly in his paper. ' A second method,
discussed by Castillejo, Percival, and Seaton' and Hahn,
O' Malley, and Spruch' for the case of e

—+H scattering,
is to require that P (q [»$~ qeL» —1jFe(» 1))=O. —

s H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962).
The opposite claim was made in I, but this is clearly false. The

equality follows, for example, from the equation ) yaLigl(s agij ) P
=

[ yogi))(rpogig ~, as shown by Feshbach (Ref. 2).
4L. Castillejo, I. Percival, and M. J. Seaton, Proc. Roy. Soc.

(London) A254, 259 (1960).
5 Y. Hahn, T. O' Malley, and L. Spruch, Phys. Rev. 128, 932

(1962); 134) 8397 (1964).



S. LEVlN

particle by a potential well. Since we shall only be 41„.(N) term from (5), giving
interested in the projection of 0'~ onto the channels

p LN ], we may detach the plane wave Cz(N) from 4
and solve instead for = Q (—1)"+"V(N)Cp(e). (6)

X—1

4.(N)++so'= +' 2—(—1)~+"4»(~) .
n=l

As long as there are no open three-body channels, then
4 ~(n), n&N, gives no flux when r~ ~~, if three-body
channels are open, then CI:(e) will contribute to the
Aux, but the contribution can always be treated in a
formal ~armer. Note that this would rot be a continuum-
exchange contribution.

It should be clear that the above method incorporates
the symmetry conditions into the problem. But, we can
show that, in effect, this is how they were also included
in I. This can be seen from Eq. (I-51), or equivalently,
from Eq. (10a). If in these equations, we assume that
the projection operator I' includes all states q, then I'
is electively unity, Q is zero, and the equation reduces
toll

This alternative form of the Schrodinger equation is
our starting point.

The set of coupled equations is easily obtained from
(6). We introduce the projection operators

P= P P.LN$,

and Q= 1 Pwit—h P L~~ J=
I p P J)&y LN j I

and y,
an arbitrary bound state. Evidently,

Regardless of the value of eo, we have (P+Q)% ~=4'~.
Using this latter relation, we may write (6) as

P(E—H) (P+Q) L+~+ (N —1)4»(N—1)j
=—(N —1)PV(N —1)4 I, (N —1) (7a)

(E—H) [4'"+(N —1)C»(N —1)j
= —(N —1)V(N —1)41,(N —1), (3) and

whi~h is jus«n eq«tion for e&+ (N—1)4»(N —1). Q(E H)(P+Q)~+~+(N
The term (N —1)4~(N—1) now appears rather than = —(N —1)QV(N —1)C» (N —1) (7b)

N—1

E (-)""4.( )
n=l

since all exchange terms are identical when projected
onto P, and there are a total of (N 1) of them. —If we

write H as H=H(e)+V(e) where V(n) is the inter-
action of particle n with all other particles, and note
that IE—H(m) ]CA. (N) =0, then (3) is easily shown to be
an alternative form for (E H)%"=0. Thus—we see
that Eq. (I—51), and others in I, are equations that
incorporate the symmetry conditions in the way
described above; we rederive (I-51) below as Eq. (10a).

%e proceed as follows. Using

(E—H)4"= —Q„(—1)~+"V(m)4 (m)

and subtracting Eq. (4) from (E H)4~=0, we obtai—n

(E—H)l @&—4»1= p (—1)&+&V(~)4»(N). (5)
n=l

Now as mentioned above, rather than solve for
+so~=%'~ —4", we wish to determine 4'a(N)+4sc~,
which is the function of interest as long as only two-

body channels are considered. Thus, we remove the

"In Kq. (3), and also Eq. (10), we have dropped an irrelevant
. normalization factor of S '~' that multiplies each CI, (n) in

Kq. C,
'I-5&).

which is the desired result.
%e first derive the equation for

PL% ~+ (N-1)4, (N-1)-J,

assuming, as we have done, that I' contains only two-
body bound states. To obtain the requisite equation, we
must eliminate the terms QL%'~+ (N —1)C q(N —1)j
from (7a). This may be done by solving (7b) for
QL%'~+ (N —1)4 I (N —1) j, although some care is needed
in carrying this out. A rearrangement of (7b) leads to

Q(E—H)QI + +(N —1)4»(N —1)J
=QHPI % ~+ (N —1)C»(N —1)3

—(N —1)QV(N —1)4g(N —1) . (8)

On the right-hand side of (8), we may write QHP
= Q V (N) P. However, we may not use H =H (N) +V (N)
on the left-hand side of (8) to differentiate term by
term and write out a set of coupled equations. The
reason for this is that we may not interchange the orders
of summation (or integration) and differentiation in
H(N)QCI, (N —1):H(N)QCg(N —1)WQH(N)CI, (N —1),
even though the states in Q are eigenstates of H(N).
The simplest example that shows this is the case of two
noninteracting particles, where it is easily proved that
for any continuum state p [N),

LE—H(N)]l ~.[Nj)&~.LNJIC. (N —1))
~ I ~-LN3&~. l N1I V(N-1) l~.(N-1) &
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because of the surface terms that arise when the
Schrodinger equation is used to evaluate (~p [Nj~
X V(N —1)

~
C»(N —1))."A solution to (8) can only be

obtained by treating Q(E—H) 'Q as a formal operator
and inverting.

A formal solution to (8) can be written down as soon
as the boundary conditions are specified. If we exclude
the state qo[Ng, then the boundary condition on 4"
when projected onto the remaining channels q [Nj,
0./0, is that it have only outgoing waves for r —+~.
The requisite solution of (8) would then seem to be

Q[e"+ (N —1)C,(N —1))=Q(E+—H)-'
XQ(v(N)Pf+"+ (N —1)Cp(N —1)$

—(N —1)V(N —1)Cp(N —1)}, (9)

where E+=E+i.p, c~ 0, which guarantees the
outgoing-wave boundary condition. That this is indeed
the proper form also follows from the integral equation
for 4~, which may be shown to be (see I)

@~=C~+ (E+ H) 'P (——1)~+—V(ii)C»(e) .

Operating on both sides of this equation with Q, we find

Q[+~+ (N —1)C»(N —1)]
=Q(E+—H) 'Q (—1)~+"V(N)Cp(l),

which suffices to show that (9) does in fact have the
proper form. The ingoing waves are contained in I'C ~

only.
On substituting Eq. (9) into Eq. (7a) we find

P[E—H (N) —U'jP[+"+ (N —1)Cp (N —1))
= —(N 1)PUC p (N —1) (10a)—

and

E%~=Pu (N —1)PC p(N——1)
—(N 1)PGP UC p (—N 1), (10b)—

where

U= V(N)+V(N)Q(E+ H) iQV(N—)-
U= V(N 1)+V(N)Q(E+—H—) 'Qv(N 1), —

PGP=P[E+—H(N) Ug 'P—-
Apart from three differences, Eqs. (10a) and (10b)

are identical to Eqs. (I-51) and (I-52). These differences
are: (1) the normalization of ~~, (2) appearance of
Q(E+—H) 'Q rather than [E+—H(N) —Qv(N)$ 'Q as
the propagator in U and U, and (3) the interpretation
of the projection operators. Point (1) is trivial, as
discussed in I. Point (2) is also trivial, since the presence
of the operator P in (10a) and (10b) guarantees the
equivalence of the two forms of propagator. Point (3),
though not trivial, is easily disposed of. The operators
P and Q can be regarded as diagonal ni&+2 by Np+2

"The author is indebted to C. F. Clement for pointing out the
noninterchangability of the processes of differentiation and
integration in this case.

matrices, with P containing the elements P [Nj,
n=0 Np in the first np+1 places and 0 in the last
place, while Q is everywhere zero except for the last
diagonal element, which is

P P[N$
n=no+1

If 4'~ is written as an (iip+2)-row column vector with
the first Ni&+1 rows containing ~p [NQ (N) and the
last row containing

2 v-[Nj4-(N)
a=n p+1

and
T "=( &

—
&(N)i V(N)iC (N)) (12a)

T'"= (epp& &(N)
~
V(N —1) ~Ck(N —1))y (12b)

where 0 p p&
& (N) is the ingoing-wave solution of

(E—H)%p p&
—

& (N) =0 generated by a plane wave 4p p(N)
in which E is assumed to be distinguishable. It is clear
by inspection that Eq. (6) also yields the same set of
amplitudes T~" and T', thus providing a further
justification for (6) as the starting point of our analysis.

In practice, of course, it is not possible to solve the
above equations for the wave functions or the aInpli-
tudes and approximations must be employed. The
approximation we consider here is that of truncating
the set of coupled equations given by Eqs. (7a) and
(7b). We assume that the set of states in P are those to
be considered, and accordingly, we ignore the states
in Q by setting Q= 0. This leads to the following set of

then the preceding derivation goes through exactly as
above. [Ci, is now also to be considered as a column
vector whose only nonzero element is pp[N Jpp(iV) in
the first row. ) For this reason, the set of coupled
equations given by (10a) is in fact identical to those of
(I-51), which establishes the equivalence we wished to
prove. The meaning of I'I, ECI„etc., is now precisely
as given in I. Thus I'I, the solution to the homogeneous
portion of Eq. (10a) asymptotic to PC»(N) plus out-
going waves, is also the scattering-wave-function vector
for distinguishable particle scattering. We follow this
matrix notation in the remainder of this work.

As indicated in I, the amplitude TI,~~ for scattering
leaving the target in state yp is found from (10) to be

Tkpk=(»kp' '~PUP~C»(N))
—(N —1)(Ppppp& &iPUPiC p(N 1))—

—Tdir (N 1)Te~

Here, E'NI, ~&
~ is an ingoing-wave scattering function

analogous to PN of Eq. (10) containing a plane wave of
momentum kp (the wave number corresponding to
excitation of state yp) in channel P only. We showed
in I that the expressions for Tp" and T' of Eq. (11) are
identical to the following more familiar forms:
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equations for the approximate functions P4~= P[% ~

+(n—1)Cs(X-1)$:

P[E HJ—~"=—(»r —1)PV(»r —1)C»($—1), (13)

which is the analog of the truncation procedure used in
ordinary scattering. " The states PC»(1V 1)—can be
ignored since they give no Aux.

@y defining P '—= (p [Ã]~+~&, and taking the scalar
product of both sides of Eq. (13) with p [»T ], we find

n0

[E e- T—(»')—l4-'(»f) EV—.& 9')6'(»')
P=O

= —(»r —1)V.g(X), n=0, . , no (14)

and

V-~(»') = (~-[»'3
I
V(»t)

I v ~[»"0&,

Also, e is the energy of state q and T(»T) is the kinetic-
energy operator for particle ~V. Comparing with the
derivation of I, we see that Eqs. (14) and (I-55) are
identical. Thus, although Eq. (I-55) is derived from
Eq. (9) by dropping the terms in U and U containing

Q, unlike the derivation of (14) from (7), we see that
the two methods lead to identical results. Either method
yields a set of equations which treat the set of states
in P exactly.

I.et us consider now the solution to Eq. (13). We
easily find that

P4'~ =Pu.~ (n 1)PQP V—(i—V 1)C g (»T—1),—

where Pu satisfies P(E—H)PN =0 and is the analog
of the function PN of Eq. (10), and PgP= P(E+ H) 'P— —
is the full outgoing-wave Green's function in the space
of the states retained in P. The amplitude TI,~~~ for

'' See, for example, N. F. Mott and H. S. W. Massey, Theory of
Atomic Colksions %Oxford University Press, London, 1949).

exciting state qp is, in this approximation,

Ti„g= (Pnso~i V(»r) AC), (»)&
—(X—1)(Pro~ ~

V (iV 1—) ~
C a (1V—1)), (15)

where PNI, ~~ is the counterpart of the state PNI, ~&
'

introduced in Eq. (11).Comparing Eqs. (11) and (15),
we see that (15) is an approximation to (11) obtained
by the replacement PNI, ~~ '~ PNI, ~~. In other words,
the accuracy of the solution to the homogeneous equa-
tion (the distinguishable projectile solution) alone deter-
mines the over-all accuracy of the amplitude. The
calculation of the exchange amplitude only involves the
assumption that PN&~~ ~=PI&~~, and it is as accurately
determined as the direct amplitude.

Hence by using the inhomogeneous equation, we
obtain an approximation to the amplitude T~~I, in which
the functions Ni„& ' of Eqs. (12a) and (12b) may be
calculated as accurately as possible. Thus, while on the
one hand we have given up the explicit antisymmetry
of an approximate wave function by choosing to work
with Eqs. (13) or (14), rather than a truncated version
of Eq. (1), on the other hand we obtain an approximate
amplitude TI,&I,

~ that includes continuum-exchange con-
tributions and whose relation to Ti,oi, of Eq. (11) is
manifest. Our method therefore provides an amplitude
in which the direct and exchange terms are treated on
an equal footing, and further, in which the exact ampli-
tude TI„& is more closely approximated simply by
increasing the number of states in P, thereby making
PNi, o a better approximation to +A,, o&

l of Eq. (12). But
as noted in the Introduction, we do not have a means
for determining the validity of any particular trunca-
tion. The establishing of such a criterion would be a
major step in understanding the accuracy of the
truncation approximation, both for our approach and
for any other.
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