
PHYSICAL REVIEW VOLUME 149, NUM B ER 4 30 SEPT EM HER 1966

Diffraction Scattering and Form Factors*
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The asymptotic feature of diffraction scattering of hadrons is tentatively assumed to mean asymptotically
pure-imaginary partial waves. An essential requirement is then inferred to be the existence of an infinity of
reaction channels and asymptotically infinite inelasticity (assuming asymptotic vanishing of partial-wave
amplitudes). This view is supported by construction of a physically sensible inelastic model which has all
the above features. Finally, these assumptions are shown to imply asymptotic vanishing of form factors;
this resolves a puzzling feature of conventional dispersion-theory solutions for form factors,

QfTRODUCTION

tM UR first aim in this paper will be to briefly explore
the conjecture' that elastic partial-wave scattering

amplitudes become pure imaginary asymptotically (as
cm energy ps~co); we refer to this behavior as
diffraction scattering, henceforth DS. There are at
least two motivations for considering this situation:

(a) Present high-energy elastic-scattering data' seem
to imply that elastic forward total-scattering amplitudes
become predominantly imaginary at high energy.

(b) In the Regge description of high-energy scatter-
ing, elastic scattering is dominated by the Pomeranchuk
trajectory ("vacuon") exchange, which was constructed
so as to give a pure imaginary forward elastic-scattering
amplitude. (This provides a means for satisfying the
Pomeranchuk theorems, as discussed in Ref. 3.) As a
consequence of the above conditions and the general
structure of Regge exchange amplitudes, it turns out
that Pomeranchuk exchange gives partial-wave ampli-
tudes exhibiting DS.

It should be noted that DS is neither necessary nor
sufhcient for the existence of strong forward peaking of
scattering, or for the Pomeranchuk theorems, since both
these aspects of high-energy scattering depend on the
sum of all partial waves. For this reason, we do not
intend to relate s- and t-channel behavior in the present
discussion. We prefer to present heuristic arguments
that an infinity of inelastic channels (and associated
inelasticity in a one-channel 1V/D formalism) are essen-
tial features for DS from which DS could be inferred,
via s-channel unitarity, as a possible result. These argu-
ments are the contents of Sec. I. In Sec. II we exhibit
an E/D model which simulates an infinity of inelastic
channels, and results in asymptotic DS.

Another question we shall discuss is the asymptotic
behavior of a form factor, such as the pion electro-
magnetic form factor. In this example, it has been

+ This work was done under the auspices of the U. S. Atomic
Energy Commission.

' P. Qlesen and E.J. Squires, Nuovo Cimento 39, 956 (1956).
' See L. Van Hove, CERN lecture notes (1965), CERN Report

No. 65—22 (unpublished).
' E.J. Squires, ComP/ex Angular 3Eomentum and Particle Physics

(W. A. Benjamin, Inc., New York, 1963).
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noted4 that if only elastic mx scattering were possible,
and the P wave a-mplitude is expressible as X/D as
usual, then F=D(0)/D(s) satisfies the analyticity and
unitarity requirements of the pion form factor. How-
ever, if we accept the convention, motivated by poten-
tial theory, that it is possible to normalize D(~) —+
constant )to within a 1n(s) factor, sayj, then the above
form factor F does not vanishs asymptotically (again,
to within a ln(s) factor). This conclusion also applies
to a finite number of strong interaction channels coupled
to 7m. If we accept a possible ln(s) behavior of a typical
elastic D function (as in Sec. II), then for 1V channels
we might find that F '= (lns) ~. It is thus plausible that
for an inlnity of channels, Ii ' might have the form
ga (1ns)" which is a possible ln(s) series expansion of
s", so that Ii might indeed vanish asymptotically as a
power of s. In Sec. III we shall develop another argu-
ment to show that an infinity of inelastic channels
makes it possible for the D ' type of solution for F to
vanish asymptotically at least as fast as a power of s.

I. UNITARITY AND DS

We start by considering inelastic unitarity for an
elastic two-body partial-wave amplitude, omitting ir-
relevant indices throughout:

Imt= tz=Ri t~', —
where

( tineiastic (

R=1++— X (inelastic-channel phase space).

The assumption that t + tz (DS) therefo—re implies that
fOr' S ~cia

q

$1——E.—'. (2)

Our usual idea that partial-wave amplitudes satisfy
unsubtracted dispersion relations implies that

t(s ~~) ~ 0.
Notice that if the total amplitude exhibits an energy-
independent forward peak ("nonshrinking"), then simple

' S. D. Drell and F. Zachariasen, Electromagnetic Structure of
nucleons (Oxford University Press, London, 1961).' G. F. Chew, Lawrence Radiation Laboratory (private
communication) .
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We now heuristically assume that all VE amplitudes
exhibit DS. It may be objected that there exist success-
ful models of inelastic channels which do not exhibit
DS; since these models deal with non-VE channels,
no contradiction is involved in our assumption. With
the further approximation that all t's are the same order
of magnitude we 6nally obtain

tr= 1/e (s), (5)

where m(s) is the number of open VE channels at energy
s. Therefore, because of Eq. (3),

~(s) —+m .

At this point one might question whether it was crucial
to our argument to assume all t's are of similar magni-
tude; that this assumption can be modified without
changing our conclusion can be seen as follows: We
shall subdivide the set of open VE channels into two
subsets: group (a), the set of channels with thresholds
"near" the energy of interest, and group (b), comprising
"lower energy threshold" channels.

For group (a) channels, the smallest allowed momentum
transfer is likely to be large. For example in the two-
particle process (mass tr+mass tr -+ mass M+mass M)
where 3f)&p, we find that near the inelastic threshold
s=4M', we have ~t~ ~&M', whereas for energies large

partial-wave projection shows that partial-wave ampli-
tudes tend to nonvanishing constants asymptotically.
We therefore infer from Eq. (3) that we are dealing
with an energy-dependent peak. The nature of the
energy dependence can be elucidated by using the con-
straint that total cross sections tend to constants
asymptotically; via the optical theorem this implies
that elastic forward amplitudes grow as s'. Examining
the partial-wave projection equations then reveals that
this latter condition implies a shrinking forward peak
when Eq. (3) holds.

It follows from Eqs. (2) and (3) that DS requires
that E.~~, which suggests that an infinity of reaction
channels is relevant.

We now develop a second heuristic argument in
support of the above assertion. We shall assume that
all channels for which Pomeranchuk. or "vacuum" ex-
change is possible (we henceforth refer to such channels
as VE channels) are a power of s larger than non-VE
channels, in each partial wave (as is the case for Regge
two-body scattering). We may therefore consider only
VE channels in the unitarity relations; if the contribu-
tion of non-VE cha,nnels is to become relevant, then in
view of the above assumption an infinite number of
non-VE channels would be necessary, proving our
contention.

For a set of VE channels,

ii —P (t i&&)2+ (t in)2

compared to the rest masses involved, the minimum
momentum transfer in the physical region approaches
zero. Empirically, large-momentum-transfer processes
seem to be very strongly suppressed, so that probably
group (a) channels are less important than group (b)
channels in our considerations of unitarity. This elec-
tively means that in Eq. (5), N(s) really counts the
group (b) channels; our conclusion that e(s),„„—+~ is
unaffected, however.

II. SUFFICIENT CONDITIONS FOR DS:
A MODEL

Thus far we have given only heuristic arguments
about conditions which are necessarily implied by DS.
In this section we shall employ N/D two-body partial-
wave equations to examine possible situations which
might sufFice to give DS.

We shall therefore examine the ratio

X= tr/tri= —IiiiD/ReD

pRN(s —a)
ds' . (7)„(s'—s) (s' —u)

Here we subtracted D at s=a; E as usual is the
inelasticity. We choose a pole-model force, with the
left-hand cut of t being a 6 function at s=a; we then
find that independent of E,

N =G/(s —a), (8)

where 6 is a constant. The simplest model we might
consider is that of a constant R, leading to

X= —RN (s)/[1 —RI (s)]. (~)

For large s (assuming that the integral does not tend
to zero as s —+~) we thus find that X does not increase
with increasing, large E..

The next complication we can study is contained in
a system of e degenerate channels, with

N= f(s)G.
Here E and 6 are matrices, with G independent of s.
For simplicity we can look at an "average" ratio I;
we now find that

X=+ Imt"/Ret"

turns out to have the same value as for a single channel.
Thus, this model also fails to guarantee that I;;
=Imt, i/Ret, ; increases with the number of channels,
i.e., with the inelasticity.

We feel that these preliminary models lack an essen-
tial feature, namely, the existence of an iePeite number
of channels with thresholds above any given energy.
We shall therefore construct a model having these fea-
tures; this exercise is amusing in that it incorporates
all physically reasonable features and predicts DS
asymptotically.
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The main assumption of our model is the form of E:

Z—1=P A.S(s—c.).

N(s) =G/(s —ti) .

We also use the approximation

p= phase-space factor = 2p/gs= 1.

(12)

This is both convenient and accurate except when p —s 0.
From these specifications we now obtain, for s

p (CX)CN+1) )

The step functions admittedly introduce logarithmic
singularities at the thresholds, but we tolerate this
because the relevant features for our purposes are
retained in this approximation, which has the virtue
of giving simple expressions. We will disperse the ampli-
tude' t/p'=N/D, and take a one-pole model force so
that we have

With these parameters, each new channel provides
an equal increment to the inelasticity (which is con-
sonant with classical ideas of energy equipartition).
The channel spacing would be typical of multi-pion
channels, for instance, with sp ——m '. For s —&~, we
note that 8 gs, and also Rp'&&numerator "N func-
tion"=ps. According to Olesen and Squires, ' this
behavior can result in DS. Furthermore, in a once-
subtracted dispersion relation for D, the high-energy
integrand in our model is proportional to s '".Thus, in
spite of E(s ~~) i~, the low-energy phenomena in
this partial wave can still be dominated by long-range
forces (i.e., the lower energy range of the integral
for D).

The expressions of Eqs. (15) can be easily evaluated'
with the result

G s—sl s—sl sin(n (s/sp) i )F'=1—— 1— — ln +A ln-
sl S Sl sr(S/Sp) i

X (s) = (G P A )/I', (13a) $1
+A—'n' . (16)

sp
G S—Sl (Si ti) co Cn S

I'(s) =1—— 1+ 1n~
~

—P A„ln
S—8 'E S—S,l .=l C„ti—

+Q A, (13b)

where S1 is the first channel threshold and I' is just
Rea, with the above approximations used to simplify
the integral. Notice that for any finite number of chan-
nels $«t, l, we find

X(s ~~)=Ntotai/Ntotai&&ln(s) —+ 0.

However, a radically new feature can emerge if we let
E&,t,l~~. To illustrate this, we choose the following
parameters for simplicity:

a=0; c„=esp, A„=A for all e.

Consequently,

For s —+~ it follows that

X= — —+~,
lns

as pi omised.
Again, we wish to emphasize the "cancellation"

arising within the infinite series of channel contribu-
tions to I'. [Incidentally, if we took gc„=mth root of
a Bessel function, then in Eq. (16) the asymptotic
behavior would turn out to be unchanged. ]

Apparently the existence of channels opening up
above any arbitrary energy gives essential features
which cannot be obtained with any finite number of
channels. This need not be disconcerting, since it is
impossible to have one production channel without an
infinity of many-body inelastic channels.

For the interested reader, we sketch in the Appendix
the consequences of a choice of R with more appro-
priate threshold properties.

N

g A n=ANtotal open channels($),
1

(15a)
IIl. FORM FACTORS

00 c —s
Q A„ln

and

~(s/sp)'I') In this section we shall adopt a "truncated" inelastic=Aln gi1- unitarity relation to examine the asymptotic behaviorn~
of a form factor F. This relation is

~A„S1~
Slg —=A —Q li '.

1 C~ Sp 1
(15c)

where

ImF—=Fr——rt*F,

We are taking a P-wave amplitude as an example; this case
typifies most extant calculations, and typically exhibits D(s ~cc)
=lns. This asymptotic behavior is in no way crucial to the model,
however. For S-wave pole models, D(s ~~) —+ constant, and we
find that the same model again gives DS.

r —( Q 31n Pal)/$11 Pll j
all n

7 P. M. Morse and H. Feshbach, 3Eethods of Theoretica/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 385.
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In particular, for X(s)=ps asymptotically, the fol-
lowing behavior of Ii is possible:

here r can generally be a complex number. If we define

pei8

g~' —Pe&x
7

t= 7-e'", 8, X, co functions of s,

(19) (a) F(s) does not vanish asymptotically but oscil-
lates for s -+ +eo;

(b) F(s) vanishes as exp) —g~ s~ j for s ~ —~.
then Eq. (18) can be written

5 sinX= 7.pFe'('+x "'.
We emphasize the important consequence

LThe reader may convince himself that this is possible
(18') by noting the following identity, " relevant for evalu-

ating Eq. (20a):

rt*=e 'x sinX. (18")

As long as the "inelasticity" r is finite, our usual
assumptions about t(s ~~) lead to the conclusion that
X —& 0 as s —+eo. However, if (and only if) r is asymp-
totically infinite, the possibility arises that rt~ does not
vanish asymptotically, and therefore X —+a nonzero
constant as s —+~. To see the relevance of this, we
additionally assume that F satisfies a dispersion rela-
tion (possibly once subtracted). The solution to Eq.
(18) is then given, e.g., in Goldberger and Watson, ' by

p
" gs'ds'

= isi 'ts, s(0, =0, s)0,
s s —s

and F(s)=exp(its) everywhere. )
Currently, we do not have a good model for the form-

factor inelasticity r (which probably will not be asymp-
totically the same as R). Nevertheless, the presence of
asymptotically infinite "inelasticity" enables us to see
how a form factor vanishes asymptotically, in principle,
when calculated via present dispersion techniques. "

that is,

—s "ds'4 (s')—
F(s) =F(0) exp

Re (r*t)

(s' —s)s'

tanC = = tanX,
1—Im(r*t)

(20a)

(20b)
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Equation (20a) has the asymptotic behavior

F(~s~~~) =F(0) ~s~
— """e' "'P1+O(lns) ]. (21)

If r remains finite, then our above discussion implies
that F(~)WO. However, if r(s ~~) ~~, then it is
possible to have X(~)&0, which implies an asymp-
totically vanishing form factor )barring the possibility
of X(~)(0, not reasonable physically).

An example, which is not necessarily realistic, is
furnished by assuming that asymptotically r=E. In
this case, DS implies that X ~ sr/2, so that asymptoti-
cally F=1/Qs. Asymptotic Regge behavior with
Pomeranchuk trajectory exchange provides an example
for such DS, giving rise to partial waves' of the form

—g——lns
lns 2

Note that once we concede the possibility of rt*-I+ 0,
we also encounter the possibility of rF=e'x sinX oscil-
lating, with X(s) increasing steadily as s —+eo. Again,
this is a feature not expected with a finite number of
channels, but unfortunately we are now unlikely to be
able to infer such behavior solely from our sparse
knowledge of "t„;."

' M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley 8z Sons, Inc. , New York, 1964).' E. I. Squires, Nuovo Cimento 34, 1277 (1964).

(Ps '
E=P A

~

—8.(s—c.). (A1)

To provide easily integrable expressions we could
approximate

t'2pt'l Pr' /P
' (2P )l P ' P '

by, (A2)
l W)s' —alps l W Js' —a s' —a

"Bateman Manuscript Project, Tables of Integral Transforms
(McGraw-Hill Book Company, Inc. , New York, 1954}, Vol. II,
p. 249, Entry 28.

» Af'ter this work was done, the author received an unpublished
report by D. H. Lythe, University of Birmingham (1965) which
covers much of the relevant material from a more mathematical ap-
proach. (He does not discuss form factors, however. ) He notes
that the features of DS as presently known experimentally are
also consistent with the following assumptions:

(a) t ~ia, a&0, but =~ for "complete absorption"
(b) R constant, =1/a for one-channel case.

Allowing t(e&) WO deviates from conventional assumptions in the
literature of dynamical calculations; this results in the possibility

rP'
~
~„re0.

Thus, it is again possible for y(~) /0, with the consequences

P(s ~~ ) ~ 0.

APPENDIX: AN INELASTIC N/D MODEL

We brieRy sketch the consequences of choosing an R
which more appropriately preserves inelastic-threshold
analyticity. For all P-wave channels an appropriate
choice would be
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This at least prevents the occurrence of singularities using the identity
at inelastic thresholds as in Sec. II. As a result we
now have

ds ln 1——= (s—c„)in' 1——
i

—s (A4)
c. k c.iReD —1

to obtai11
s

Re Q A„1— 1——ln 1—— . (A3)
s c~

1 8

ReD —1 = ——— ds ln
7l S

sin(n. (s/so)'i') "
7r (s/so) ' i'

(A5)

For c„~~the individual terms at fixed s are 0(s/c„) For s —+~, ln( ) lns and therefore (A5) is of order
so that our previous choice of parameters still gives a lns also. Our conclusions of Sec. II are therefore
convergent result. Choosing A„=A,we sum the series unaffected.
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The set of coupled, inhomogeneous equations describing the scattering of a fermion by a system of identical
fermions, previously derived from the integral equation for scattering, is shown to follow directly from the
Schrodinger equation and the symmetry properties of the exact scattering wave function.

INTRODUCTION

'N a previous paper, ' we derived a set of coupled,
~ ~ inhomogeneous differential equations that described
the nonrelativistic scattering of a fermion (boson) by
a system composed of identical ferrnions (bosons). The
set of equations was obtained from the integral equation
satisfied by the total scattering wave function. Our
purpose in the present work is to give an alternative
ag.d simpler derivation of the main results of I. We use
the Schrodinger equation rather than the integral
equation to do this. This treatment enables us to avoid
completely the use of certain factors arising from the
re-arrangement collision nature of the scattering due to
the Pauli principle which wcere encountered in I and
which seem to have caused some confusion concerning
the validity of the results of I. The present derivation
is intended to clarify the situation, since these factors
do not enter the discussion. Only elastic and inelastic
scattering of single fermions is considered in the present
work.

GENERAL COMMENTS

We follow the notation introduced in I, to which the
reader is referred for details not given here. Let {y }be
a complete set of antisymmetrized states for the target,
and let 4'~ be the exact, antisymmetrized scattering

' F. S. Levin, Phys. Rev. 140, 81.099 (1965). We refer to this
work as I, and equations from it as (I-i), (I-2), etc. In both I and
the present work, we assume that the target is infinitely heavy.
This assumption is easily relaxed to include the case of recoil.

wave function. Our goal in I was to expand 0'~ via the
complete set {y } and then determine a set of coupled
equations for the coeKcients P —= (p ~

+~), with a
specihc labeling for the q 's. We used the expansion

'I'= &.~-L»')0-(»),

where Li]= (1 i 1, i+—1, .lY) and (i) denotes a
function of the coordinates of particle i only. By defini-
tion, iP yields the proper scattering amplitude f, which
is obtained from +~ by first projecting +~ onto the
state p and then requiring that (y ~%~) have the
asymptotic behavior (y ~+~) e'"'8 0+f e'""/r,
where a=0 denotes the ground state and k is the wave
number corresponding to excitation of the state q . We
have not specified a labeling in y since this is un-
necessary due to the identity of the particles: the co-
ordinate of any one of them may be in f, with the
remainder in p, we obtain the same scattering ampli-
tude from each P (i). By choosing the labeling $$],
we have f, (lV) = (q [sV] t&I ~), and thus the expansion
(1).

Equation (1) is a valid representation for %~ because
{&p }is complete, even though termwise (1) is not anti-
symmetric. This latter point is unimportant as long as
the proper boundary conditions are imposed on the P
in order to secure the correct amplitudes. Since +~ is
antisymmetric, we must have

I'~~ ~ p.-P']&-(&)= —2- ~-%34.Pv),

where I'~& is the two-body, transposition operator.


