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Proceeding from the assumption that the breaking of unitary symmetry within the baryon octet can be
described as a low-energy effect generated by the pseudoscalar-meson mass differences, a model is proposed
which relates the departure from full SU; symmetry within these two octets. Although it is assumed that the
corrections to the low-energy behavior of the baryon two-point functions are dominated by the least massive
two-particle intermediate states, no condition is required on the strength of the baryon-meson coupling.
Using the experimentally observed mass differences, one can calculate within the framework of this model
the SUs-invariant baryon-meson coupling constants, the results being in reasonable agreement with currently

accepted values.

I. INTRODUCTION

URING the past several years, calculations of

symmetry-breaking effects have been of con-
siderable interest in the context of the proposed strong-
interaction symmetries such as SUs, SUs, etc. The
greater part of this work is based on the assumption
that the interaction Lagrangian can be split into 2
parts: a very strong (V.S.) interaction which is in-
variant under the group and a medium-strong (M.S.)
interaction which breaks the symmetry. In particular,
the problem of the determination of mass differences
induced among the members of a given irreducible
representation of SU; by the M.S. interactions has
been treated with appreciable success by the methods
of the tensor calculus.! This has led to the derivation
of the Gell-Mann—-Okubo (GMO) mass relation which
is satisfied by the experimentally observed masses of
the lowest lying hadron states to a surprising degree
of accuracy. Since, however, the explicit structure of
the M.S. interaction is not yet known, these mass
formulas have made use only of the assumed tensor
transformation properties of the M.S. interaction and
consequently consist of expressions for the mass of
each member of a multiplet as a function of a finite
number of parameters related to the matrix elements
of the M.S. interaction. In this way, one gets non-
trivial mass relations only when the number of such
parameters is less than or equal to the number of
particles in a multiplet which acquire different masses
as a consequence of the M.S. interactions. Because
these parameters cannot, by existing techniques, be
written in terms of experimentally observable quanti-
ties such as coupling constants, f/d ratio, etc., this
approach unfortunately sheds little light on the explicit
mechanism for the breakdown of the symmetry in
question.

It is the intent of this paper to propose a model which
is soluble in some sense and for which the GMO mass
relations for the baryon octet may be understood in
terms of experimentally measurable parameters. One
such effort in this direction has been made recently by

* Research supported in part by the Atomic Energy Com-
mission.
18. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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Pietschmann? who derives the GMO mass formula for
the pseudoscalar octet and the vector nonet of SU3 by
using w— ¢ mixing as the proposed symmetry-breaking
term. This work, as well as the present paper, uses an
SUj-invariant formulation of the Zachariasen model.®
Our motivation here is, however, considerably different
from that of Pietschmann inasmuch as we endeavor
to demonstrate that the mass splitting in the pseudo-
scalar-meson octet can induce the observed mass
splitting in the baryon octet even if one assumes the
latter to have a common bare mass and an SUs-
invariant coupling to the meson fields.

Although the usual divergences inherent in field-
theoretical calculations make it virtually impossible
to obtain reliable estimates of mass-renormalization
effects, the problem of the determination of mass
differences within a given multiplet seems considerably
less sensitive to the high-energy behavior of the two-
point functions. Thus it is not unreasonable to hope
(as in this paper) that the divergence problems of field
theory can be largely circumvented in a calculation of
mass differences.* The reasonable agreement of the
coupling constant and f/d ratio obtained here with
the somewhat uncertain experimental results seems to
lend some support to this view.

II. THE MODEL

The usual Yukawa-type SUs-invariant interaction
between the baryon and pseudoscalar-meson octet can
be written in the form

Lins= (1= f)go Tr[BvsBP+Bv;PB]
+ fgo Tr[BysBP—BysPB], (1)

where the bare SU; coupling constant go has been

2 H. V. R. Pietschmann, Phys. Rev. 139, B446 (1965).

8 F. Zachariasen, Phys. Rev. 121, 1851 (1961). This model
consists of taking only a simple bubble diagram for the baryon
self-energy = in the integral equation for the baryon two-point
function S: S=S¢+S=S.

4 Another approach to this problem has been proposed by
J. Moffat, Phys. Rev. 145, 1177 (1966). This author assumes,
however, that the leading perturbative contributions to the mass
differences cancel despite the fact that they are logarithmically
divergent. The view taken in this paper is that these divergent
terms must give the dominant effect and can be consistently
calculated by a cutoff technique of the type discussed in Sec. ITI.
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119 BARYON MASS
chosen so that f4-d=1. In Eq. (1), B is the usual
3X 3 matrix for the baryon octet and P the correspond-
ing 3X3 matrix for the pseudoscalar octet.> Using
Eq. (1) and the expressions for B and P, one can write
down the baryon-meson coupling constants predicted
by SU3.6 These are listed in Table I.

We make the assumption that the phenomenologically
determined coupling constants of broken SU; at least
approximately satisfy the SUj; predictions of Table I
and that the mass splitting in the baryon octet due
to M.S. interactions can be understood to be primarily
a low-energy effect arising as a consequence of the
mass splitting of the pseudoscalar meson octet. This
latter set of states has been singled out by virtue of
its being the least massive multiplet to which the
baryons are strongly coupled. One thus writes

Mi:Mi(ﬂbﬂ?)“'o‘) ) (2>

where M ; is the mass of the sth baryon in the baryon
octet and ui, us, us are the masses of the pseudoscalar
octet (M, 1=1, 2, 3, 4 stands for the NV, 2, &, and A,
respectively; pa, =1, 2, 3 stands for the =, K, and 7,
respectively). In the SU; limit where pi=ps=pus=pu
the SUjs-meson central mass, one clearly has the result
Mi=M,=M;3;=M,=M the SUs-baryon central mass.
This suggests the utility of attempting to include the
effect of M.S. interactions on the physical masses of
the baryons by expanding M ; in a Taylor series in the
He's around p.=p and retaining terms to first order in
the meson mass splittings, i.c.,

3 oM (i s
M=M+Y3 [——(i—wﬁljl (w’—=p?) . (3)
a=l1 aﬂa2 w,M
Since the meson mass differences transform as 7's® in
unitary spin space, the validity of this approximation
receives strong support from the well-known success
of the first-order GMO mass formula.

To find an expression for the coefficients [9M;/
Opa’ Ju, i, we write down the SUs-invariant dispersion

TasBLE I. The SU; predictions for the baryon-meson
coupling constants.

Coupling
constant SUs predictions
gns2/4m §*/4m
gan’/dm 3(1— /J g/ 4w
gza2/4m 4f22/4m
gz:/4m (1—2f)2?/dm
gax?/4m 31421 yg?/4r
gzx’/4m (1—2fyg*/4r
I L=41ye/n
2K g/4r
gni/4w 3(1—4fye/4n
gay'/4m §(1—f)gt/dn
g2 §(1—f)g/dm
gz F(A+21yg/4m

8 S. Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961).
6 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2466 (1963).
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relation for the inverse two-point function S™'(p) of
the baryon octet

1 2 (Im[S~(y-p=—m)]
sop=ypraret= [ ]
TJ Min v pt+m

S—1(y-p=
+Im[ (yp +7n)]ldm, W
Y p—m

where the unitary spin indices have been suppressed.
In order to have a particle of mass M in the spectrum,
one must have S7'(y:-p=-—M)=0. Imposing this
condition, Eq. (4) becomes

M=M0+1/w {Iln[S"1(7~p=~—1n)]
T J Mtp m——M
Im[ S~ (y-p=
s ey,
m—+M

which, using the shorthand notations ry.s. (M u,m)
=—(1/7) Im[S~(y- p=Fm)], may be written in the
form

> rrvst(Mum) rv.s”(Mum)
M=M,— / |: — dm .
Mp m—M m—+M
(5"

Although this expression includes only SUs-invariant
terms, one can immediately generalize this result to
include M.S. interaction effects to find

* [7’+(Mj,ﬂﬁ,m)

7'_(Mj,#ﬂ,m)

m~+M; :'dm, (©)

where r¥=ry g *+ry.s.E(rm,5.% being the M.S. contri-
bution) and we have assumed a common bare mass M
for the entire baryon multiplet. The summation in
Eq. (6) is to include all intermediate states containing
M; and pg which are coupled to M ;. Applying 9/0u.?
gives

oM ; *
—-%

Oua? 7.8

{[ rt r ‘]6M¢

(m—M) (mt-M. )2 ope

It/ dud  Ir) due?
+[ - }ldm )
m—M;, wm+M;

Mj+nrg

the contribution to the derivative from the lower limit
vanishing as a consequence of the threshold behavior
of the spectral function r*. Using the chain rule,
one writes

ar(Mjugm) OrE Ir: M ;
=—bapF+——
e’ ug? OM; dua®
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and Eq. (7) becomes

i rt r oM i = * érM,s_" /auf 61’1\4_5_ '/ay.gz
B el G e T O | b
78 I Mjpug Lm—M )2 (m~+M;) el 38 J Mg (m—M,) (m+M,)

an_s_+/an an_s.—/an']an

}dm, ®)

where we have used drvs/dug*= drv.s./dM;=0. The quantity in brackets on the left side of Eq. (8) multiplying
M ;/ due? is seen to be equal to Z»;, the wave-function renormalization for the ith baryon. Rewriting Eq. (8) gives

oM, *© Irm.sF/0ua®  Or.s”/Oudd
,: :] =—7, { > / dml: ]
Opa® Ay, i 38 J arp (m—M) (m+M)

+2

7.8

*© dml:arM.s,'*'/an arM,s,_/an-lan , (8’)
MAp

m—M m+M Jop2] ar,

where we have used the fact that Z,; becomes independent of 7 on letting M; — M.

We divide the spectral function 7+ into the contribution from the lowest two-particle state and the higher order
terms. The contribution from the simple bubble diagram can be calculated in second-order perturbation theory
to yield”

giig® [m*— (M j+p)*12[m? — (M j— pg)* 112 (mF M j— pg) (m=F M j+ i)
Zair® (M j,up,m) = aiia ’ )

w2 m?

where the indices refer to the diagram of Fig. 1 and a.;s is the isospin factor® coming from the charge independence
of M.S. interactions. Taking the indicated derivatives in (9) and inserting into Eq. (8’) one gets

OM; 1 oM,
[ :l = { 912 Qijagija— 922 aijﬁgijﬂgl: :I } +3Cia (10
M,p 2 M,u

Oueldar,, 16m2 i 0B e

3, representing the higher order contributions in ry.s.*. The integrals 9; and 9, come from the differentiation of
the intermediate state with respect to u.? and M, respectively, and are given by

= dm (mi+ M pt— 20 (mP+ M) —mM (P M*—p?)
g’zf —l (n— M0t~ (M4 2L — (M — )2
ik M= 22 (i M2+ M (- M~ )
M= (PR (M )]

AL din ( (=M= = 2 M) (M= — ) M - (M —m) (= M it 24— 22 M2 — 2 M%)

gzsz __{ (m— M)t — (M 4T 2L (M — )]
(m2+- M 2 2m M) (M = ) M~ (M A ) (- M-y — 2o — 2 M2 — 2 %)

- (D) D — (M4 2L — (M — 2]

M+ m?

} , (10a)

}. (10b)

We note that 4, is logarithmically divergent and hence one must introduce a cutoff A, thereby increasing the
number of independent parametersin the model to three (g, f,A). Using the shorthand notation Qo= [0M:/dua? s, 11,

___,A_/’\_’— F'16. 1. The second-order bubble diagram of the model.
~

7 C. R. Hagen, Phys. Letters 13, 165 (1964).



149 BARYON MASS DIFFERENCES 1141

Piu=3"; ijagisad, and R;;=3 g a:;pg:i6% Eq. (10) may be rewritten.

91

Qia= o (Pia—a XJ: RijQia)+%ia, (10"
where a=91/9,. Thus Eq. (3) has the form
MFM-I-Za: 5Cia<ﬂa2__”2)+§ Qia(ua’—u?) (11)
or alternatively
(117)

M¢=M+GCI+Z Qia(/-"az_l‘2> .

Since we are assuming throughout that the baryon mass differences are essentially a low-energy effect, we ignore
variations in JC; and consistently replace it by some suitable average 3C. This leads to the form

Mi=M0+Z Qia(.uaz_ﬂ2); (11”)

where we have defined Mo=M-+3C. One can now consider Eq. (10) as a matrix equation and write the formal
solution

Q= (1+bR)"(9,/167%) P, (10"
where we have set b=g,a/16n2=9,/1672. In order to carry out the indicated inversion of the matrix 1+5R we

use the SU; predictions for the coupling constants g;;.? so that one can write R and Pin terms of the two parameters
fand g*

(3(8f*—4f+5) 3(4f*—4f+1) 0 3@ 4141
Reg| AP 47D O P—2741) 2 3(P—2f+1) (120)
0 3 3(20*—16/+5) 3(16f2—8f+1)
JAPHAHD) A(P-2fHD) FA6P-8THD  H(F-2/FD)
[ 3 2(20/2—16f+5) 3(16f*—8f+1)
po | SOP=27H1) 4@QP-2f+1)  H(F—2f+D) (120)
S13Up—4f+1)  3@P—4/+5)  AEPHHD
LAP—2fHD) $A0P=2/4D)  $(P-2f41)
It is convenient to take the GMO mass formula for the meson octet in the form!
pa=p+C[3 V2 —I1(I+1)], (13)

so that u,2=pu?. In this case only u,2—u? and ux®—u? contribute to the sum in Eq. (11) and one need not calculate
the four terms Q3. Having chosen u, we find that (u.?—p?)/(ux?—p?)=4 from Eq. (13); this is considerably
smaller than the physical value of 5.3 and for reasons which will later become clear, we must choose the physical
value 5.3.

Inverting the matrix 14-5R of Eq. (10”) and inserting the expression for Q into Eq. (11), one gets the following
expression for the baryon masses? (we have indicated the mass of a particle by its symbol):

glch
N=M0—
4872D

[(40 12— 32 f+57.88)+ 2y (— 1880.96 f4+-2263.04 f3-+720 2+ 846.4 f+337.24)

2 8
+§'y2(— 109558 /54245161 f5— 193290 f++46020 3417682 f2— 10141 f+ 238.4)—{—5;73 (246651 f3— 240691 f7
— 300157 /64485783 f5— 250840 f4- 19914 f34-27696 f2— 5251 f— 60()):| . (14a)

8Tt is to be noted that any attempt to neglect the terms bR in Eq. (10”) leads to anegative value for g2 This is not surprising as
bR~g? and we cannot expect to be able to consistently neglect terms of order g2 in a strong coupling theory.



1142 S. L. COHEN AND C. R. HAGEN 149

_ 91ng

[4 (43.24 12— 16.64 f48.32)+ 2y (4501.1 f4— 45971 3+ 1964.2 24 334.4 f— 83.6)

82
4 2
+572(6914.6f6~ 23048 f>+12065 4414566 f*— 22525 f24-11330 f— 1888.4)—]—;7-73(—442982]'8— 1558127

+671960 f5— 491458 f5— 200679 44485530 f3— 319258 >+ 102144 f— 12768)] , (14b)

§1Cg2

E=I,— [(207.52 12—199.52 f457.88)+ 2 (4149.8 f4— 5777.9 f*+3735.4 f2— 1851.5 f4-337.2)

487D

2 8
+—y2(— 50391 f64+ 175473 f5— 246897 4+ 180036 f3— 69428 f2-+7280.6 f4-238.4) —I--2—7—'y3 (21504 18— 305019 17
9

+230546 f54 308882 f°— 532274 f44-357634 3 — 113021 f24-14851 f— 600)] , (140

o

_ 9Cg
A= Tyt [4(25.96]‘2—33492f+16.96)—{—%7(——156.8f4—895.36f3+2442.2 12—1994.6 f4-488.69)

487D

4 4
+—2(— 57321 fo+ 146711 f5— 149779 2470046 f*— 95395 f2—4783.2 [+ 797.2)+27,3 (450204 f8— 771932 f7
9

— 192983 /541222226 f5— 1109652 f+ 482458 f3— 80410 fz)} , (14d)

where
v=g%, C=p'—uxc’,

and

2 4
D=1+4y(22/2— 14+ 7)+§72 (544 f*— 448 34456 f2— 232 f+58)+57y3(—9088 f04-22656 f°— 29184 4

4
420096 f3— 7824 1241680 f — 280) +§1—'y4(43008f3— 159744 7426880 /6183552 f°— 228288 f44-136320
—45120/24-9600f—1200). (14e)
These lead to the expressions

9.Cg?
S—N=— 17r2D|: (132.96 f2— 34.56 f— 24.60)+ 2 (6382.1 f*— 6860.1 3+ 244.2 >+ 1180.8 f— 420.8)
48

2 8
+y2(123387 f6— 291257 f5+217420 f*— 16888 f3— 62732 2432801 f— 4015.2)—!—2—773(—357396 18
9

+201738 74468149 5— 608648 {5+ 198420 f4+101468 f3— 107510 /2430787 f— 2592)] , (15a)

1Cg2

I: (167.522—167.52 f)+2v(6030.8 f£+— 8040.9 3+ 3015.4 /24 1005.1 1)

2 8
—i—;y2 (58967 16— 69688 f°— 53607 f*+4-134016 f*— 87110 f24-17421.6 ) —}-2—7—73 (—225147 f8— 64328 f7

+530703 f6— 176901 f5— 281434 f44-337720 f3— 140717 f24-20102 f):,, (15b)
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9,Cg?
A—N=—481 fD[(Gs.sw_ 103.7 /49.96)+ 2y (1724.2 f+—3158.8 f*+1722.2 /2 1148.2 /- 161.4)
T

2 8
+gy2(——5084 15448261 f5— 106268 f4--94072 f*— 36761 f2+574.6 f+ 1356)—{——773(— 21504 f5— 145275 f7
2

+203666 -+ 125330 f5— 303986 44221315 f*— 67902 f2-5251 f+600):| , (150

for the mass differences.

Inserting the experimental values of these masses, one can solve Egs. (15) for the three unknowns g% f, and .
In this connection, it was noted that if one uses (u>—pu.2)/(u?—ux?) =4, as predicted by Eq. (13), the expressions
for the baryon masses given by Eq. (14) identically satisfy the GMO relation for all g%, f, and v thereby providing
an important check on the detailed algebra. This, however, leaves us with only two independent mass differences
in Egs. [15(a)-15(c)] which are consequently insufficient to obtain the three parameters of the model, a situation
which does not occur in the case (u2—u,2)/ (W2—ux?)%4. Although there are many solutions to Egs. (15), we find
only one which gives g2 positive and f real. Taking M and u to be the A and » masses respectively, and calculating
91 to be —0.551, one has that g2/4r=7.31, f=0.185, and vy= —0.504. From these results, the cutoff for the di-
vergent integral 9, is found to be A=2.8.

III. DISCUSSION AND RESULTS

In order to determine the effect of the parameter A= (u?—u.?)/ (u*—ux?) on the solution, the calculation was
repeated using A=35.0 and A=4.0 (in the latter case, the cutoff for the 5.0 case was used in order to calculate 9,
thus leaving only the two independent parameters fand g?). The results are shown in Table II. We see that g2 is not
greatly dependent on A and all values of f are within acceptable limits. The cutoff is furthermore small enough
to be qualitatively consistent with our assumption that the mass differences are essentially a low-energy effect.

To assess the computed value of g2it is useful to prepare a table of the SU3 predictions for the coupling together
with some of the experimental data presently available. With the exception of Ref. 9, these values of gax?/4w
and gzx?/4w in Table IIT* were calculated from the same photoproduction experiment, the numbers given
depending upon which intermediate states the authors used in their analysis. We thus see that the calculated
value of g? gives a reasonably good fit to gax?/4w and gzx*/4m although it gives a 7—N coupling constant too small
by a factor of two. This is qualitatively what one would expect, however, as the fact that all the observed coupling
constants except gu.2/4m are smaller than those predicted by unitary symmetry is an effect which tends to lower
the calculated value of g2.!5 There is also a calculation by Jarlskog and Pilkuhn' in which they find gax?/gsx®= 55T
This would seem to be rather larger than that indicated by the results given in Table ITI.}

The value of f we have calculated here is well within the limits given in Ref. 6. On the other hand, it has been
argued by Lee and Sakurai'® that the f/d ratio in V.S. interactions should be equal to (f/d)4, the f/d ratio of the

TasLE I11. Comparison of coupling constants calculated from
Table I with experimental value.

TasLE II. Vz}riation of A, g?/4r, and f with Coupling  (Table I)
different values of A. constant SUs Experimental values
gkt /Am 7.31 13.5-15
A A g/4r f gAR?/ArT 4.57 4,00 5-6b 5.8 1.44
2/4 2.90 4.5¢ 1.5-3f
5.3 2.8 7.31 0.185 gag?/dm
5.0 27 057 0.200 gui/Am 164 12
4.0 2.7 9.42 0.106
a See Ref. 10. ¢ See Ref. 12. e See Ref. 14.
bSee Ref. 11, d See Ref. 13. f See Ref. 9.
9 Fayyazuddin and Riazuddin, Phys. Rev. 129, 2337 (1963). 14T, K. Kuo, Phys. Rev. 130, 1537 (1963).
1 T. K. Kuo, Phys. Rev. 129, 2264 (1963). 15 K. Kikkawa, Progr. Theoret. Phys. (Kyoto) 30, 636 (1963).

11 J. Dufour, Nuovo Cimento 34, 645 (1964). 16 C lsk . h
2N, A B h d W. B. Holladay, Phys. Rev. 131, 2719 . Jarlskog and H. Pilkuhn, Phys. Letters 20, 438 (1966).
(1963). cauchamp and W ofaday, Fhys. Bev 7 Cf. also K. Raman, Phys. Rev. 149, 1122 (1966), for a cal-

13§, A. Hatsukade and H. J. Schnitzer, Phys. Rev. 132, 1301  culation of some ratios of coupling constants using the hypothesis
(1963). of partially conserved axial-vector current.
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axial-vector current of weak interactions. The value of (f/d)4 has been measured by Willis,'® using the leptonic
decays of the Z, to be 0.58 and by Brene,? also using hyperon decays, to be 0.50. If one accepts the arguments of
Ref. 18, one therefore sees that the discrepancy in our f/d ratio is roughly of the same order as that encountered
in the calculation of the pion-nucleon coupling constant.

One can estimate the effects of deviations of 3¢; from JC by noticing that such terms would tend to change the
effective values of the mass differences in Egs. (15) [e.g., Z—N=0.252— (3C;—3C;), etc.]. Hence by calculating
the variations in the mass differences with respect to g%, f, and +, one can estimate how much our results might
be changed by these deviations. One thus writes

AM_OM Ag aMAf 8l Ay
M e M of M oy M

(16)

where we choose to look at the particular mass difference M =2—N. In the neighborhood of the set of values
f=0.185, ¢¢/4x=17.31, y=—0.504 one finds that M behaves like

MochfZ.S,YZ%A. (17)

One sees that, holding two of the variables on the right constant, a 109 change in M implies a 109, change in
in g% a 3.69, change in f or a 2.99 change in v. Thus one can say that the substitution of 3C for the 3C; seems
admissible here if the resultant change in M induced by higher order terms is of the order of 109, or less.

Finally, we consider the expression for Z;

° fy.st Tv.s.” * Fm.st s
Zoi=1=2_ [ + dm—{—/ [ + :ldm , (18)
18 J wrjpug L(m—M)?  (m+M ;) Mjtug L(m—M ) (m+M,)?
where 7£= 7, r£. Defining the function w* by [c.f. Eq. (9)]
@ijaise” | @ijpgiis” |
wv‘s.iz[ = J Tv.s.*, WM.s.i=|j i :' fast, (19)
3272 3272

one can write Eq. (18) as

g e wy.s (M pm) wy.s (M u,m)
Zz,;=1—(14f2—‘10]+5>——/ dm[ —+ ]
247r2 Mip (M"M)z (m+M,:)2

@ijpgiis” f"" {:’wM.s.+ (M j,u/s,m)i wa.s.” (M j,up,m)
T
78 32 Mjtpp (M—M,)Z (’WL+M1)2

:|dm___. 1— 32V.S._ 321,1\1,5. i (18')

If the computed values of g, f, and A are used together with Eq. (9), one finds 3,Y%=-+1.95 which would seem
to imply a negative value for Z,;,. However, the cutoff which has been calculated here is a consequence of M.S.
interactions alone, having originated in the differentiation of fys®. Hence, it cannot be used in integrals involving
V.S. as well as M.S. effects (the cutoff for V.S. integrals is unknown inasmuch as d7vst/du.2=0). One can conse-
quently only apply the cutoff A to the integral &,,-5- which we cannot estimate unless the physical values of the
giig® are known [physical values because M.S. renormalization effects must be taken into account; c.f. Ref. 15]
and the cutoff we have calculated is taken to be the same for all integrals. Crudely speaking, however, the assump-
tion that M.S. interactions are considerably weaker that V.S. interactions (e.g., as evidenced by the success of
first order perturbation theory in deriving the GMO relations) lends credence to the hope that ;-8 would indeed
be smaller than 1 as required.

18B. W. Lee, Phys. Rev. Letters 12, 83 (1964); ] J. Sakurai, 7bid. 12, 79 (1964).
B W. Willis et al., Phys. Rev. Letters 13, 291 (19
20N. Brene, B. Helleson and M. Roos, Phys Letters 11, 344 (1964).



