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Baryon Mass Differences in a Model of Broken Unitary Symmetry*
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Proceeding from the assumption that the breaking of unitary symmetry within the baryon octet can be
described as a low-energy effect generated by the pseudoscalar-meson mass differences, a model is proposed
which relates the departure from full SU3 symmetry within these two octets. Although it is assumed that the
corrections to the low-energy behavior of the baryon two-point functions are dominated by the least massive
two-particle intermediate states, no condition is required on the strength of the baryon-meson coupling.
Using the experimentally observed mass differences, one can calculate within the framework of this model
the SU&-invariant baryon-meson coupling constants, the results being in reasonable agreement with currently
accepted values.

I. INTRODUCTION
' ~~URING the past several years, calculations of

symmetry-breaking effects have been of con-
siderable interest in the context of the proposed strong-
interaction symmetries such as SU3, SU6, etc, The
greater part of this work is based on the assumption
that the interaction Lagrangian can be split into 2

parts: a very strong (V.S.) interaction which is in-

variant under the group and a medium-strong (M.S.)
interaction which breaks the symmetry. In particular,
the problem of the determination of mass differences
induced among the members of a given irreducible
representation of SUB by the M.S. interactions has
been treated with appreciable success by the methods
of the tensor calculus. ' Thjs has led to the derivation
of the Gell —Mann —Okubo (GMO) mass relation which
is satisfied by the experimentally observed masses of
the lowest lying hadron states to a surprising degree
of accuracy. Since, however, the explicit structure of
the M.S. interaction is not yet known, these mass
formulas have made use only of the assumed tensor
transformation properties of the M.S. interaction and
consequently consist of expressions for the mass of
each member of a multiplet as a function of a finite
number of parameters related to the matrix elements
of the M.S. interaction. In this way, one gets non-
trivial mass relations only when the number of such
parameters is less than or equal to the nuInber of
particles in a multiplet which acquire different masses
as a consequence of the M.S. interactions. Because
these parameters cannot, by existing techniques, be
written in terms of experimentally observable quanti-
ties such as coupling constants, f/d ratio, etc. , this
approach unfortunately sheds little light on the explicit
mechanism for the breakdown of the symmetry in
question.

It is the intent of this paper to propose a model which
is soluble in some sense and for which the GMO mass
relations for the baryon octet may be understood in
terms of experimentally measurable parameters. One
such effort in this direction has been made recently by

*Research supported in part by the Atomic Energy Com-
mission.

' S. Qkubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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Pietschmann' who derives the GMO mass formula for
the pseudoscalar octet and the vector nonet of SU3 by
using ~—p mixing as the proposed symmetry —breaking
term. This work, as well as the present paper, uses an
SU3-invariant formulation of the Zachariasen model. '
Our motivation here is, however, considerably different
from that of Pietschmann inasmuch as we endeavor
to demonstrate that the mass splitting in the pseudo-
scalar-meson octet can induce the observed mass
splitting in the baryon octet even if one assumes the
latter to have a common bare mass and an SU~-
invariant coupling to the meson fields,

Although the usual divergences inherent in field-
theoretical calculations make it virtually impossible
to obtain reliable estimates of mass-renormalization
effects, the pro)lcm of the determination of mass
differences within a given multiplet seems considerably
less sensitive to the high-energy behavior of the two-

point functions. Thus it is not unreasonable to hope
(as in this paper) that the divergence problems of field

theory can be largely circumvented in a calculation of
mass differences. ' The reasonable agreement of the
coupling constan. t and f/d ratio obtained here with
the somewhat uncertain experimental results seems to
lend some support to this view.

II. THE MODEL

The usual Yukawa-type SU3-invariant interaction
between the baryon and pseudoscalar-meson octet can
be written in the form

2;~i= (1—f)gp TrttBpsBP+BypPB]
+fg p Tr[BppBP BpsPBj, (1)—

where the bare SU3 coupling constant go has been

' H. V. R. Pietschmann, Phys. Rev. D9, 8446 (1965).
3 I'. Zachariasen, Phys. Rev. 121, 1851 (1961). This model

consists of taking only a simple bubble diagram for the baryon
self-energy Z in the integral equation for the baryon two-point
function S:S=S0+SpZS.

4Another approach to this problem has been proposed by
J. Moffat, Phys. Rev. 145, 1177 (1966). This author assumes,
however, that the leading perturbative contributions to the mass
differences cancel despite the fact that they are logarithmically
divergent. The view taken in this paper is that these divergent
terms must give the dominant effect and can be consistently
calculated by a cutoff technique of the type discussed in Sec. III.
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chosen so that f+d=1. In Eq. (1), 8 is the usual
3)&3 matrix for the baryon octet and I' the correspond-
ing 3)(3 matrix for the pseudoscalar octet. ' Using
Eq. (1) and the expressions for 8 and I', one can write
down the baryon-meson coupling constants predicted
by SU3.' These are listed in Table I.

We make the assumption that the phenornenologically
determined coupling constants of broken SU3 at least
approximately satisfy the SU3 predictions of Table I
and that the mass splitting in the baryon octet due
to M.S. interactions can be understood to be primarily
a low-energy effect arising as a consequence of the
mass splitting of the pseudoscalar meson octet. This
latter set of states has been singled out by virtue of
its being the least massive multiplet to which the
baryons are strongly coupled, One thus writes

M;= M;(pi, pz,pz), (2)

where M; is the mass of the ith baryon in the baryon
octet and p~, p&, p, 3 are the masses of the pseudoscalar
octet (M;, i= 1, 2, 3, 4 stands for the E, Z, ", and A,
respectively; p, m= 1, 2, 3 stands for the vr, E, and p,
respectively). In the SUz limit where pi ——p, =pz ——p
the SU3-meson central mass, one clearly has the result.
3fj —M2 3f3—M4 =3E the 5U3-baryon central mass.
This suggests the utility of attempting to include the
effect of M.S. interactions on the physical masses of
the baryons by expanding M; in a Taylor series in the
p 's around p =p, and retaining terms to first order in
the meson mass splittings, i.e.,

relation for the inverse two-point function S '(p) of
the baryon octet

Im[S- (~ p= —m)j
S—'(p)=p p+Mo+-

1l.'7+ jL y p+m

Im[S—'(y p=+m) j—dm, (4)7'p™
where the unitary spin indices have been suppressed.
In order to have a particle of mass 3f in the spectrum,
one must have S '(y p= —M) =0. Imposing this
condition, Eq. (4) becomes

1 " Im[S—'(y p= —m)jM'= Mo+—

Im[S-'(y p=m)]
dm, (5)

m+M

which, using the shorthand notations rv. s.+(M,p, m)
= —(1/zr) Im[S '(p p= Wm) j, may be written in the
form

rv . +(M,p, m) -rv s (M,p, m). -.
dSS .

Although this expression includes only SU3-invariant
terms, one can immediately generalize this result to
include M.S. interaction effects to find

-BM, (pi . pz)
M;=M++ (p-' —p'). r+(M, ,p p,m)-

rn —M,

Since the meson mass differences transform as T~' in
unitary spin space, the validity of this approximation
receives strong support from the well-known success
of the first-order GMO mass formula.

To find an expression for the coeKcients [BM;/
Bp $„,~, we write down the SVz-invariant dispersion

TABLE I. The SU3 predictions for the baryon-meson
coupling constants.

r (M;,ps, m)
dm, (6)

where r+=rv s ++rM. s.+(r~, s.+ being the M.S. contri-
bution) and we have assumed a common bare mass Mo
for the entire baryon multiplet. The summation in
Eq. (6) is to include all intermediate states containing
M; and p~ which are coupled to M, . Applying 8/Bp '
gives

Coupling
constant

gK '/4w
gz, '/4vr
gg '/4
g„-. '/4x-
g~'/4m
gZK /4K
hg~'/kt-
ZzzK'/4
gK„'/4w
gg„'/4'
gg„'/kr
g-.„z/kn.

SU3 predictions

g'/4
'3 (& f)Y/4~—
4f'g'/4w
(& —2f)Y/4~
s (&+2f)Y/4~
(1—2f)'g'/4~
s (& 4f)Y/4—
g'/4n.
k(~ —4f)Y/4~
3 (~—f)Y/4~
3(1—f)Y/4~
s (~+2f )'g'/4

g, jz zg.+„, (m —M,)' (m+M, )' Bp '

clr+/Bp ' Br /Bp '-—
dm, (7)

m M, m+M;—
the contribution to the derivative from the lower limit
vanishing as a consequence of the threshold behavior
of the spectral function r+. Using the chain rule,
one writes

' S. Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961).' A. W. Martin and K. C. Wali, Phys. Rev. 130, 2466 (1963).

Br~ (M, ,p p, m)

Bp~

Br+ Br+ BiV;
~as+

Bpp 83Ep Ops
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1++ + dm
(m —M, )2 (m+M, )' Bp '

~rM. s. '/~p/2' ~rM. s. /&pp'
6 p

M, „„~ (m —M, ) (m+M;)

(m —M,)

BrM.s.+/BM, BrM s /. r/M. l r/Ml
dm, (8)

(m+M, ) Bp/12

where we have used Brvs/Bp//2 Brv.s——./BM, =O. The quantity in brackets on the left side of Eq. (8) multiplying
BM;/Bp ' is seen to be equal to Z2, ', the wave-function renormalization for the ith baryon. Rewriting Eq. (8) gives

-8M;

—~Pa —p,I2

BrM. s.+/BP ' BrM s. /BP. '
= —Z2 p dm

/, // 4/~„(m—M) (m+M)

BrM s +/B.M. ; BrM s.-/B.M, r/M,
+P dm

21p ~++ I 8$3E m+M —Bp~ 24, p

(8')

where we have used the fact that Z2, becomes independent of i on letting III; ~ 3II.
Q~e divide the spectral function r+ into the contribution from the lowest two-particle state and the higher order

terms. The contribution from the simple bubble diagram can be calculated in second-order perturbation theory
to yield~

g,,S2 $»2 —(M+ps)2]'/2$»2 —(M, p//)2—]«2(»WM, p//)
—(»WM+ p//)

Z2,r+(M;,pp, m) = a;lp
327r2 7@3

where the indices refer to the diagram of Fig. 1 and a;jp is the isospin factor coming from the charge independence
of M.S. interactions Takin. g the indicated derivatives in (9) and inserting into Eq. (8 ) one gets

~1 ~ +ijagija ~2 ~ +ijpgjjp
BP~ —gg P, 167l j j1P BP~ ~ P

+BC; (10)

K,; representing the higher order contributions in rl.~. . The integrals 8~ and 8'2 come from the differentiation of
the intermediate state with respect to p and Mj, respectively, and are given by

dm m'+M4+ p,
'—2p'(m'+M') »M (m'+M' —p')—

(m M) I
»2 (M+p) 2]1/2L»2 (M p) 2]1/2

»'+ M'+ p' 2p'(rr'+ M')+—mM (ni'+ M' p')—
(myM)L»2 (M+.p)2]1/2$»2 (M p)2]1/l

4/M+» dm (m'+M' p' 2»—M) (—M' —m' —p')M+ (M—m) (rrl4+M4+p4 22r2p2 —2»2M2 —2M—2 2)

~+p fPZ (m M) Lm2 —{M+p)']'/'jm' —(M—p)']»'

(m'+M' p'+ 2»M) (M—' m' p')M+ (—M+—m) (m'+M'+ p' 2»'p' —2»'M—'—2M'p')

(»+ M) Ln
2—(M+p)2]«2L»2 —(M—„)2]1/2

(10a)

(10b)

We note that ~2 is logarithmically divergent and hence one must introduce a cutoA A., thereby increasing the
number of independent parameters in the model to three (g2,f,h). Using the shorthand notation Q;„=)8M,/Bp 2)„M,

FIG. 1. The second-order bubble diagram of the model.

' C. R. Hagen, Phys. Letters 13, 165 (1964).
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&,~ =P; a,;~g;,~', and R;;=Pp a,;tig;;p, Eq. (10) may be rewritten,

Q; = (P;. uP—R,,Q;.)+x, ,
16m 2

(10')

where a=8&/82. Thus Eq. (3) has the form

~'=~+2 ~'-(~-' —~')+E Q'-(~-' —~'),

or alternatively

cv, =M+se,+P Q,.(p.'—p') .

Since we are assuming throughout that the baryon mass differences are essentially a low-energy effect, we ignore
variations in BC; and consistently replace it by some suitable average X. This leads to the form

3E,=37o+Q Q, (p '—y'),

where we have defined M0 ——M+BC. One can now consider Eq. (10') as a matrix equation and write the formal
solution

Q= (1+bR) '(di/16'')P, (10")

where we have set b= gaia/16m'= 82/16~'. In order to carry out the indicated inversion of the matrix 1+bR we
use the SV3 predictions for the coupling constants g;; so that one can write 8 and Pin terms of the two parameters

f and g'

'3(8f' 4f+&)—
, 2(4f' 4f+1)-R=g

'(4f'+4f+-1)

3 (4f' 4f+1) — 0
'(7f' 2f+-1)—

3 3 (20f' —16f+5)
4(f' 2f+ 1) —l (16f'—8f+ 1)

', (4f'+4f-+1)
s(f' —2f+1)

3(16f'—8f+1)
-', (f'—2f+1) .

(12a)

3 —', (20f'—16f+5)
p 2 3(7f'—2f+1) 4(2f' —2f+1)' ' 3(4f 4f+1) -—:(8f-4f+5).4(f' 2f+1) ——;(10f'—2f+1)

-', (16f'—8f+1)'
3(f'—2f+1)

3 (4f'+4f+ 1)
-'(f' —2f+1) ~

(12b)

It is convenient to take the GMO mass formula for the meson octet in the form'

I '=~'+CP. I" I(I+1)3, — (13)

so that p„'=p'.In this case only p, '—p' and pzP —p2 contribute to the sum in Eq. (11) and one need not calculate
the four terms Q,3. Having chosen p, we 6nd that (p,

'—p')/(pir' —p,') =4 from Eq. (13); this is considerably
smaller than the physical value of 5.3 and for reasons which will later become clear, we must choose the physical
value 5.3.

Inverting the matrix 1+bE of Eq. (10")and inserting the expression for Q into Eq. (11),one gets the following

expression for the baryon massess (we have indicated the mass ot a particle by its symbol):

dgCg'
E=Mo (40f' 32 f+—57 88)+—32' ( 188.0 96f4+ 22—63.04f'+. 720f'+846 4f+337.24).

48m'D

2 8
+~'(—

109558 f'+ 245161f' 193290f'+460—20f'+ 17682f' —10141f+238.4)+~'(246651f'—240691f'
9 27

300157f +485—783f' 250840f'+199—14f'+27696f' —5251f—600), (14a)

' It is to be noted that any attempt to neglect the terms bR in Eq. (10") leads to a negative value for g'. This is not surprising as
g' and we cannot expect to be able to consistently neglect terms of order g' in a strong coupling theory.
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&&Cg'—
Z =3fp

— 4 (43 24.f' 1—6 64.f+8 32.)+ 'y —(4501 1f.' 4—597 1f.'+1964 2f.'+334 4f. 8—3 6).
48m'D

2
+~'(6914 6f' . 23—048f"+12065f'+14566f' —22525f'+11330f—1888.4)+—y'( —442982f'—155812f~

9 27

+671969f' 49—1458f' 20—9679f4+485530f' —319258f'j102144f—12768), (14b)

8 Cg'
=3II p

—(207 52f' . 199—52 f+. 57 88)+. 'y (4—149 8f' . 577—7 9f'+. 3735 4f' . 185—1.5f+337.2)
48m'D

2 8
+~'( 505—91 f'+175473f' 2468—97f'+180036f' 6942—8f'+ 7280 6f+ 2.38 4)+~. '(21504f' 3050—19f~

9 27

+230546f'+308882f' 5322—74f4+357634f' 1130—21f'+14851f—600), (14c)

8 gCg'
A=3IIp — . 4(25 96f' .33 92—f+.16 96)+ '. y( 1-56.8—f'—895.36f'+2442. 2f' —1994.6f+488.69)

48~'D

4
+~'( 57321—f'+146711f' 14977—9f'+70046f' 95395f—' 4783 2—f+797.2)+ y.'(450—294f' 771932f'—

27

where

—192983f'+1222226f' —1109652f'+482458f' —80410f') (14d)

2
D=1+p4y(22f' 14f+7)+—y'(544f4 4—48f'+45—6f' 232f+58)—+ y'( 9088—f'+2—2656f' 29184f'—

9 27

+20096f' —7824f'+1680f—280)+~'(43008f' —159744f'+26880f'+183552f' —228288f'+ 136320f'
81

45120f'+—9600f 1200). —(14e)

These lead to the expressions

&&Cg'
2—1V= — (132.96f'—34.56f—24.60)+—'y (6382.1f'—6860.1f'+244.2f'+1180.8f—420.8)

48m'D

2 8
+ y'(123387-f' 291257f—'+217420f —16888f' 62732f'+3—2801f 4015 2)+ —p'( 3. 5739—6f'—

9 27

+201738f +468149f'—608648f'+198420f'+101468f' —107510f'+3078'7f—2592), (15a)

u~Cg'—
(167.52f' —167 52f)+2y(6030 8. f' 8040 9f'+.3015—4f'+.1005.1f)

48m'D

2 8
+~'(58967f'—69688f'—53607f'+134016f'—87110f'+17421 6f)+~'( 2251.47f' 64328—f—

9 27

+530703f' 1'76901f' 28—1434f +3377—20f' 140717f'+2010—2f), (15b)
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81Cg'—
ch—N =. — (63 84.f' —103 7f.+9 96.)+ ', y-(, 1724 2f.4 3—158 8f.'+1722 2f.'—1148.2f+161.4)

48m'D

2 8
+~'( 50—84f'+48261 f' 10—6268f'+94072f' 3—6761f'+574 6f+. 1356)+~'( 2—1504f' 14—5275f'

9 27

+203666f'+125330f' —303986f'+ 221315f'—67902f'+5251f+600), (15c)

for the mass differences.

Inserting the experimental values of these masses, one can solve Eqs. (15) for the three unknowns g', f, ancl y.
In this connection, it was noted that if one uses (p' —p, ')/(p' —p&') = 4, as predicted by Eq. (13), the expressions
for the baryon masses given by Eq. (14) identically satisfy the GMO relation for all g, f, and 7 thereby providing
an important check. on the detailed algebra. This, however, leaves us with only two independent mass diGerences
in Eqs. [15(a)—15(c)]which are consequently insufTicient to obtain the three parameters of the model, a situation
which does not occur in the case (p' —p ')/(p, '—px') A4. Although there are many solutions to Eqs. (15), we find
only one which gives g positive and f real. Taking M and p to be the A and g masses respectively, and calculating
di to be —0.551, one has that g'/47r=7. 31, f=0.185, and y= —0.504. From these results, the cutoff for the di-
vergent integral 82 is found to be A. = 2.8.

III. DISCUSSION AND RESULTS

In order to determine the effect of the parameter 6= (p' —p ')/(ii' —iirr2) on the solution, the calculation was

repeated using 6=5.0 and 6=4.0 (in the latter case, the cutoff for the 5.0 case was used in order to calculate 8,
thus leaving only the two independent parameters fand g'). The results are shown in Table II. We see that g' is not

greatly dependent on 6 and all values of f are within acceptable limits. The cutoff is furthermore small enough

to be qualitatively consistent with our assumption that the mass differences are essentially a low-energy effect.

To assess the computed value of g' it is useful to prepare a table of the SU3 predictions for the coupling together
with some of the experimental data presently available. With the exception of Ref. 9, these values of gii& /4~
and gqx'/4m in Table 1119 " were calculated from the same photoproduction experiment, the numbers given.

depending upon which intermediate states the authors used in their analysis. Ke thus see that the calculated
value of g' gives a reasonably good fit to g~x2/47r and gi, x'/4~ although it gives a vr—N coupling constant too small

by a factor of two. This is qualitatively what one would expect, however, as the fact that all the observed coupling
constants except g„~/4~ are smaller than those predicted by unitary symmetry is an effect which tends to lower

the calculated value of g'."There is also a calculation by Jarlskog and Pilkuhn" in which they find gzzP/gzz' ——5,+'.
This would seem to be rather larger than that indicated by the results given in Table III."

The value of fwe have calculated here is well within the limits given in Ref. 6. On the other hand, it has been
argued by Lee and Sakurai" that the f/d ratio in V.S. interactions should be equal to (f/d)z, the f/d ratio of the

TABLE III. Comparison of coupling constants calculated from
Table I with experimental value.

TABLE II. Variation of A, g'/47t, and f with
di8erent values of D.

Coupling
constant

(Table I)
SUB Experimental values

5.3
5.0
4.0

2.8
2.7
2.7

g'/4m.

7.31
9.57
9.42

0.185
0.200
0.106

g~.'/4~
ghK /4~
gzx'/4~
a-'/4

7.31
4.57
2.90
.164

4.0a
45e
1—2'

13.5—15
5—6b
1.5 —3'

1 4'

a See Ref. 10.
b See Ref. 11.

e See Ref. 12.
d See Ref. 13.

e See Ref. 14.
f See Ref. 9.

~ Fayyazuddin and Riazuddin, Phys. Rev. 129, 2337 (1963),"T.K. Kuo, Phys. Rev. 129, 2264 (1963)."J.Dufour, Nuovo Cimento 34, 645 (1964)."N. A. Beauchamp and W. B.Holladay, Phys. Rev. 131, 2719
(1963).

'B S. A. Hatsukade and H. J. Schnitzer, Phys. Rev. 132, 1301
(1963).

"T.K. Kuo, Phys. Rev. 130, 1537 (1963)."K. Kikkawa, Progr. Theoret. Phys. (Kyoto) 30, 636 (1963).
'6 C. Jarlskog and H. Pilkuhn, Phys. Letters 20, 438 (1966).
"Cf. also K. Raman, Phys. Rev. 149, 1122 (1966), for a cal-

culation of some ratios of coupling constants using the hypothesis
of partially conserved axial-vector current.
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axial-vector current of weak interactions. The value of (f/d)~ has been measured by Willis, iz using the leptonic
decays of the Z, to be 0.58 and by Brene, 2O also using hyperon decays, to be 0.50. If one accepts the arguments of
Ref. 18, one therefore sees that the discrepancy in our f/d ratio is roughly of the same order as that encountered
in the calculation of the pion-nucleon coupling constant.

One can estimate the effects of deviations of X,; from X by noticing that such terms would tend to change the
effective values of the mass differences in Eqs. (15) Le.g. , Z —X=0.252 —(Ki—K3), etc.].Hence by calculating
the variations in the mass differences with respect to g, f, and y, one can estimate how much our results might
be changed by these deviations. One thus writes

AM BM Agz BM Af BM hy
+ +

M BgzM Bf M Bp M

where we choose to look at the particular mass difference M=X —lV. In the neighborhood of the set of values

f=0.185, g'/4zr = '/. 31, y= —0.504 one finds that M behaves like

M ~ g2f3.8~3.4

One sees that, holding two of the variables on the right constant, a 10% change in M implies a 10% change in
in g, a 3.6% change in f or a 2.9% change in y. Thus one can say that the substitution of K for the K; seems
admissible here if the resultant change in M induced by higher order terms is of the order of 10% or less.

Finally-, we consider the expression for Z2,

Zz, ——1—Q
~v.s.+ ~v. s.

—+ — dm+
(m —M,)' (m+M;)'

rMs+ rMS
+ dm,

(m —M;)' (m+M, )'
(18)

where r+ =Zz r+. Defining the function 33'+ by Lc.f. Eq. (9)j

one can write Eq. (18) as

~~~@'~e
~v, s. , ~M. s.

327r2

~vague '

~M. S.+,
32 2

g' " a v s +(M,z,m) -~v s. . (M,I,m)-
Z3, =1—(14f'—10t+5) dm +-

24zr'. M+„(m M)' — (m+M, )'

2
~s~'Pl si P

i, p 32m'

w3z, s+(M'Zzpm) wM. s. (M'Zzpm)—+
(m —M, )3 (m+M, )3

dm 1 5 v. s. p M. s. (18)

If the computed values of g', f, and A. are used together with Eq. (9), one finds S,vs=+1.95 which would seem
to imply a negative value for Z2, . However, the cutoG which has been calculated here is a consequence of M.S.
interactions alone, having originated in the differentiation of rMg+. Hence, it cannot be used in integrals involving
V.S. as well as M.S. effects (the cutoff for V.S. integrals is unknown inasmuch as Brvs+/zlzz '=0). One can conse-
quently only apply the cutoff A. to the integral 52; which we cannot estimate unless the physical values of the
g;;pz are known )physical values because M.S. renormalization effects must be taken into account; c.f. Ref. 15j
and the cutoff we have calculated is taken to be the same for all integrals. Crudely speaking, however, the assump-
tion that M.S. interactions are considerably weaker that V.S. interactions (e.g., as evidenced by the success of
first order perturbation theory in deriving the GMO relations) lends credence to the hope that 53;I would indeed
be smaller than 1 as required.
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