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A direct proof that SU(3)' singlets have lower energies
than states belonging to other representations of
SU(3)' runs as follows. First, we note that the inter-
action Hamiltonian

is non-negative. In a semiclassical theory, it vanishes
only if J " does, i.e., for SU(3)' singlets. In a quantized
theory, its expectation value can be written (dropping
indices)

where the last equation de6nes the "uncertainty" hJ.
For reasonably localized and well separated particles

(or aggregates of particles) AJ is of the order of the
overlap of the wavefunctions, and can be neglected.
Hence, once more the condition for lowest energy is
(J "a)=0, so that each well separated aggregate of
particles must be a SU(3)' singlet.

Note added irt proof. Other approaches to the satura-
tion problem have recently been discussed by 0. %.
Greenberg and D. Zwanziger (unpublished).
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Aspects of the possible dynamical extinction of a bound state (coincident zero in X and D) are discussed

within the single and multichannel ND ' framework. A surprising result is that, within any one-channel

calculation, the "mass" of the extinct bound state cannot be calculated. This may be rejected in the multi-

channel formulation by a particular sensitivity of the "mass" to the input.

I. INTRODUCTION

'N a recent paper, Chew' has conjectured, on the
- ~ .basis of theoretical and empirical arguments, that
the second-rank Pomeranchuk trajectory (P), and

perhaps the I' trajectory itself, crosses the J=O axis
at negative s (energy squared). This could give rise to
srsr-srsr (T=7=0) real parts of phase shifts at infinity
of —sr(P') or 2sr(I', I") [in—the absence of Castillejo-
Dalitz-Dyson (CDD) poles]. The crossing of the tra-
jectories in this region corresponds to zeros in the S-
wave D function which, if unmodified, would violate
unitarity in the cross channel. To preserve unitarity,
it is hoped that, at the crossing energy, the E function
develops a zero as well. In that such a bound state will

no longer be associated with a pole, we shall refer to
the state as an extinct bound state (EBS). The state
might alternatively be described as a scalar bound state
of space-like mass (presumably with velocity greater
than that of light) whose renormalized coupling back
into the theory has been dynamically damped to zero.
(Nevertheless, the EBS can affect phase shifts, etc.)

In this paper, the possibility of the dynamical genera-
tion of such an extinct bound state is considered within

*This work was supported in part by the Air Force Of6ce of
Scientilc Research, Grant No. AF—AFOSR-232-63.

' G. F. Chew, Phys. Rev. Letters 16, 60 (1966); Phys. Rev.
140, 81427 (1965).Squires and Watson have presented a two-pole
left-hand cut model of an extinct bound state LE. J. Squires and
P. Watson, Nuovo Cimento 42, 77 (1966)g.

the single and multi-channel lVD ' framework. In par-
ticular, we shall focus our attention on the question of
whether or not the location of the EBS can be deter-
mined from the ÃD ' equations.

In Sec. II, the general solution of the problem in the
one-channel case is found: Ke exhibit the complete
family of input left-hand cuts that will lead to coin-
cident zeros in E and D. Ke find the rather bizarre
circumstance that, assuming an EBS can be formed, it
is not possible (within the one-channel framework) to
determine its location. This happens because the solu-
tions X and D are not unique (in the presence of an
EBS), there being in fact a one-parameter family of
solutions, the parametrization of which corresponds to
the location of the EBS. The source of the nonunique-
ness resides in the fact that, in the presence of an EBS,
the associated homogeneous X/D equations always
admit one solution, a constant multiple of which can
be added to any particular solution. In spite of this
nonuniqueness, the ratio cV/D is unique, and the phase
shift goes to —sr at infinity (if there is only one EBS).

In Sec. III we consider the two-channel case. It is
found that the location of the EBS can sometimes be
determined dynamically and sometimes not. When the
location can be so determined, the equivalent one-
channel problems (including inelasticity) for the di-

' E. J. Squires, Nuovo Cimento 34, 1751 (1964); M. Bander,
P. W. Coulter, and G. L. Shaw, Phys. Rev. Letters 14, 270 (1965);
D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N. P.I
87, 77 (1966).
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agonal matrix elements break into two cases: (a) There
is no CDD pole and there is an EBS of undeterminable
position. (b) There is a CDD pole and the location of
the EBS can be determined only in terms of the CDD
parameters. The phase shifts at infinity for these two
cases are —m and 0, respectively.

At the end of Sec. III, we will discuss the refiection
of the one-channel difficulties in the many-channel case,
and make it clear that there is nothing miraculous about
going to many channels: where the one-channel equa-
tions are singular (which results in inability to locate
an EBS), the multi-channel equations may be ill-
conditioned (resulting in a particular sensitivity of the
location to input).

If one assumes the existence of an SU'(3) nonet of
EBS's (a Pomeranchuk singlet and an octet, the
singlet member of which is the E')—which would be
the Regge recurrence of the 2+ nonet —then arguments
similar to those of Ref. 2 indicate that the real part
of the phase-shift for mw —+ mm scattering tends to —x
at infinite energy (this is also the case for EE~EE).'
This is in spite of the fact that both the I' and E' tra-
jectories are assumed to cross 7=0 in both systems. In
fact, under these assumptions, there is one CDD pole
in each of the equivalent one-channel amplitudes.

It should be mentioned that, although the I' and the
I" are presumably EBS's of negative mass squared,
all our considerations apply equally to EBS's of any
mass.

where zt(s) is a real-analytic function with a left-hand
cut, for which the "normalization" integral on the right,

QO

zt (s')p (s')ds'=—p, (2 5)

exists.
We exhibit the proof for the case of just one coinci-

dent simple zero, since this is of immediate physical
interest. ' This situation is ensured by requiring p/0
in (2.5). At the end of this section, we shall state the
further requirements on zt(s) (and the results) for
several coincidences and multiple zeros.

i S —So

D(s) =1—— p(")~("),
s s —s

(2.6)

These functions satisfy the X/D equations (2.2), with
the input (2.4). Moreover, since (2.6) can be rewritten

s—» "p(s')n(s'),
D(s) = —— ds', (2.7)

7tp & s —s

Proof

Ke prove the sufficiency explicitly. The necessity
follows essentially by reversing the order. Suppose that
a function zt(s) is given for which tz (in Eq. (2.5) does
not vanish. Construct

&'(s) =n(s) (s—»)/p,

G. ONE-CHANNEL SYSTEM

Suppose that the scattering amplitude satisfies

A =cV/D,
where

(2.1)

where we have used Eq. (2.5), it is clear that iV and D
each have a zero at s=so. Note however, that all the
dependence on so cancels out of the ratio X/D so that
the amplitude, as well as its imaginary part on the left,
is so independent.

1 ' n(s')D( )dss'

E(s) =
s —s/

1 "p(s')$(s')ds'
D(s) =1——

g s —s

(2.2)

"ds'p(s')n(s')
u(s) = —Imzt (s)

g s —s
(2 4)

' D. Atkinson aud M. B. Halpern, Phys. Rev. 149, 1133
(1966).

Here n(s) is the left-hand-cut discontinuity, p(s) is the
relativistic phase-space factor, and s is the normal
threshold.

We prove the following theorem: The necessary and
sufficient condition for At and D to have a set of ~z

coincident zeros (zeros of S and D of equal order), say

Ã(so) =Ã(si) =. =$(s„ i)
=D(so) =D(si) = .=D(s„ i) =0, (2.3)

is that the input should have the form (for —~ (s&0)
1 ' ds'cz(s')

Xg (s) = — Dzz(s'), —
vr ~ s —s

Dzz(s) =—1 "ds'p (s')
Erz(s'),

7l S —S

(2.8)

Discussion

The structure (2.4) is the most general input. capable
of generating an EBS. In particular, given some set of
input functions q, we can generate a corresponding set
of solutions (2.6). In that n is independent of so, we see
that for each o. there is an infinite set of solutions Ã
and D, parametrized by so. This set is given by Eq.
(2.6). Each pair (1V,D) possesses coincident zeros, but
the input does not contain the information necessary
to locate the coincidence. This may be paraphrased:
It is not possible, in a one channel E/D fram-ezoorh, to
calculate dynamically the location of an EBS.

Another way of understanding the multiplicity of
solutions of the 3~ and D equations, with inputs of the
form (2.4), is to note that the homogeneous version of
Eq. (2.2), namely
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The most general 3~ and D functions are

tV($) = 1/1CP($ $—1) ($—$2)'g (S)+Xi(S—$1)2t($)

+X2(s—s2)rt (s)),

D($) =
I (S $1) (S $2)+Xl($ $1)+X2($ $2))

introduce a matrix rt(s), with a (matrix) left-hand cut,
and construct the S matrix in terms of it:

1V;;(s)= (s—sp)lt, ;(s) . (3.6)

The D matrix is constructed in terms of E by Eq.
(3.5). It will be convenient to define

1 "ds'p (s')rt (s')
X—,(2.»)

s —s

00

ds'p;;(s') lt;k (s') (3.7)

where Xl and X2 are arbitrary. (There are now two solu-
tions of the homogeneous equations. ) The ratio Ã/D
and, in particular, the input n(s) are independent of
s~, s~, and z. Thus, again, the location of the zeros is
not dynamically determinable.

In the case of e EBS's, the first n-i moments of qp
must be set to zero, and the ~zth moment must not
vanish. In general one concludes that, ie the one-charlet
case, coincident seros (independently of their order or

mptltip/icity) cannot be determined dynamically.

1 ' ds'
N;k(s) = n;;(s')D;k—($'),

~S —S

1 ds

(3 4)

D;k(s) =8'k— 't(')& ('),
S —S

(3.5)

where p;, (s) =8,,L(s—s;)/s J 2, and g, is the jth threshold.
Following our approach in th. c one-channel case, we

III. MANY-CHANNEL CALCULATION

While the one-channel discussion was complete, no
attempt at generality will be made in the many-channeL
case. We shall be satished to show that, although there
are situations in which the coincident zero location
cannot be dynamically determined in a two-channel
problem, there are also instances in which it can be so
determined.

The decomposition of a many-channel amplitude 3;A,.

is defined by

A, k
——(iVD ');k iV;,h, k/detD

(summation convention), (3.1)

where 6 is the adjoint of the matrix D, and detD is its
determinant. The condition for a coincident zero re-
lating to, say, 2», is

lV»(sp)6, 1(sp) =0 ancl detD(sp)=0. (3.2)

Clearly, it is not necessary for any particular &V,, (sp)
or D,;(sp) to vanish. However, a subclass of Eq. (3.2)
will certainly be given by

1V;,(sp)=0 for alii, j, and detD(sp)=0. (3.3)

In order to simplify the manipulations, we shall limit
our discussion entirely to the subclass (3.3).

The many-channel equations are

so that

Dik (Sp)

beak

'gik ~ (3.8)

If we specialize to the two-channel case, the condition
detD(sp) =0 becomes

(1 'Oil) (1 rt22) '912'921

Time-reversal invariance,

A;, (s) =A, ,(s),

(3.9)

(3.10)

is guaranteed if we choose for q the form

lt1 1 rt 12)

g„i
(3.11)

Then Eq. (3.9) reduces to

g12 ~ (1 811) ~ (3.12)

If q» ——1, so that g~~
——0, then each matrix element

D;k(sp) vanishes separately. An analysis similar to that
for the one-channel case shows that all so dependence
factors out of the inputs, and thus the coincident zero
location cannot be determined from the two-channel
equations. This is completely analogous to the one-
channel case.

However, if ltll/1, so that j,2/0, then D;k(sp)&0,
and it can be shown easily that the coincident zero of
S;I,h» and of detD does not factor out in a trivial way.
In particular„ the inputs (the discontinuities across the
left-hand cuts) remain sp-dependent. Thus the loca-
tion of the EBS can be determined from the two-channel
equations.

If a pseudo-one-channel calculation were to be set
up in this case, in the sense that the same input nil(s),
and an equivalent inelasticity, defined by

A 12 S $2)
R($) =1+

A 11 S—Sll
(3.13)

were used, then, in order to reproduce A~~ it would be
necessary in some cases to introduce a CDD pole.
Detailed conditions under which this would, or would
not be necessary can be found in Ref. 2. We shall
consider only two of the possible two-channel phase-
shifts at infinity:

(1) Rebll(~) = —pr
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The equivalent one channel «Y and D can be con-
structed in terms of

s "ds' Rein(s') .

J3yy($) = exp
s'(s' —s)

(3.14)

according to
Di(s) = (s—$0) X)u(s)

&Vy($) = ($—$0) %11($)4ll($) ~

(3.15)

s—sp
Dl ($) +11

s sc

$—Sp
«71 ($) $11311

s sc

(3.16)

where there is a coincident zero at sp and a CDD pole
at s,. The EBS position can be calculated, since the
CDD pole prevents the disappearance of the factor
(s—so) from the ratio «7/D. However, the two CDD
parameters need to be specified in addition to n» and
E. An alternative X/D decomposition exists in this case
with no coincident zero, nor a CDD pole, namely

Dg'(s) = nag(s)

IVY'(s) = X)„(s)3„(s).
(3.17)

Needless to say, the coincident zero cannot be calcu-
lated from 1V'/D', since it has disappeared without
trace. Note that, in all the cases (3.15), (3.16), (3.17),
the localized EBS of the two-channel problem has been
"folded" into the iV function of the one-channel prob-
lem, in that A» is a factor of iV~. In this sense then the
location of the double zero in the one-channel problem
(if any) is disconnected from the location of the co-
incidence in the two-channel calculation.

IV. SUMMAMZING DISCUSSION

It might seem that there is a fundamental difference
between the one-channel case, in which the EBS loca-
tion cannot be calculated, and the two-channel case,
in which it can often be calculated. However, we shall

There is no one-channel CDD pole, but there is a co-
incident zero (at so). However, its position is arbitrary:
It need not coincide with the location derived from the
two-channel calculation. None the less, the ratio «V/D
agrees with A».

(2) Rein(~)=0
In this case, a particular one-channel decomposition is

see that, when the second channel is very weak, the
determination is poor, in the sense that the computed
location is very sensitive to any small perturbation of
the inputs. In this sense, there is nothing miraculous
about the many-channel formulation —the difFiculties of
the one-channel case are strongly rejected in the many-
channel case.

To understand this, we recall that the one-channel
iY~ integral equation is singular, i.e., the kernel K(x,x )
has eigenvalue unity. In the two-channel equations the
kernel is a matrix E;,(x,x'), with Au(x, x') —=E(x,x').
This matrix integral equation can be reduced to a new
single integral equation by a standard procedure" in
which the norm of the new kernel is the sum of the
norms of the matrix elements E,,(x,x'). ff the left-hand
discontinuities nq~(x), n2q(x), and n~2(x) are small com-
pared with nu(x), i.e., the norms of E~~, E~~, E~~ are
small compared with that of E», then it follows easily
that the new kernel has an eigenvalue close to unity.
In other words, the two-channel equations are ill-
conditioned, in the mathematical sense. (That is, the
solution will be very sensitive to small perturbations
of the inputs —because the Fredholm resolvent kernel
has a nearby pole in the eigenparameter plane. ) Evi-
dently, this sensitivity is a strong dependence of the
EBS location on the inputs.

In summary then, we have learned that the location
of an EBS cannot be determined dynamically within
a one-channel calculation (because the equations are
singular), and that this is reflected in a possible sensi-
tivity of the location of the EBS to small changes of
input in a many-channel calculation (because the many-
channel equations are in general ill-conditioned). Imag-
ine for example that a m-x input could be found of the
form (2.4), and an attempt were made to fix the loca, -

tion of the resulting EBS by the addition of a weak
channel (i.e., some channel which has little to do with
the binding of the EBS).Then one could not trust the
resulting location unless the inputs for both strong and
weak. channels were very accurately given. On the
other hand, of course, one hopes that the physically
relevant multichannel equations will not be badly
ill-conditioned, and that the resulting loca, tion of the
EBS will be relatively accurate.
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