14. Also, our considerations are more exhaustive. We finally mention that a calculation of strong coupling constants has been recently made by Dashen

et al. in an entirely different investigation of broken symmetry.15

Other related questions, particularly regarding the form factors $K_{12\alpha}(k^2)$, will be discussed elsewhere.

¹⁵ R. F. Dashen, Y. Dothan, S. C. Frautschi, and D. H. Sharp, Phys Rev. 143, 1185 (1966).

The author is grateful to Professor E. C. G. Sudarshan for comments and for reading through the manuscript; to Dr. S. Pakvasa for a detailed discussion of Cabibbo's theory and for information about recent data on leptonic decays; to Dr. Y. Hara for a discussion of the PV coupling; to Professor J. Leitner for comments on the experimental data on leptonic decays; and to Dr. N. Mukunda for calling our attention to Riazuddin's work.

PHYSICAL REVIEW

VOLUME 149, NUMBER 4

30 SEPTEMBER 1966

Combined Spin and G_2 Symmetry

C. R. GARIBOTTI* Palmer Laboratory, Princeton University, Princeton, New Jersey (Received 22 March 1966)

The algebra of the group D_5 is the most direct generalization of that of the direct product of G_2 with the ordinary spin group SU_2 . Furthermore it also contains that of R_7 times SU_2 . In this paper we analyze the particle classification provided by D_5 ; it is found that a 16-dimensional representation appears to contain the baryons and gives results for the magnetic moment and mass formula equivalent to those obtained with the nonbroken $G_2 \otimes SU_2$ group, but now the Λ particle is directly included. The 45-dimensional regular representation of D_5 provides an appropriate basis for the proposed $G_2 \otimes SU_2$ representations of the mesons and boson resonances.

I. INTRODUCTION

^HE idea of using the group SU_4 to classify nuclear states has been extended to the elementaryparticle case, using SU_3 as the internal symmetry group. This has led to the study of SU_6 .¹ There is another group that can be used to describe the particle internal symmetry, G_2 . It is more difficult to work out than SU_3 , but recent work² shows that its results are not less physical. In this paper we want, in analogy with SU_4 and SU₆, to consider a group whose Lie algebra embodies those of the direct product of G_2 with the ordinary spin group SU_2 .³ The simplest group that satisfies this condition is the unimodular orthogonal rotation group in ten dimensions, D_5 (Ref. 4); since G_2 is a subgroup of R_7 we can write the induction chain for the Lie algebras as

$$G_2 \otimes SU_2 \subset R_7 \otimes R_3 \subset R_{10} \equiv D_5. \tag{1}$$

Let us note that D_5 embodies $R_7 \otimes R_3$, which has been also proposed as an elementary-particle symmetry algebra.⁵ The representation of D_5 allows a classification of elementary particles, suggestive enough to be considered. We have studied here its representations and a possible assignment of particles. The 16-dimensional representation appears to contain the baryons, and such a possibility is strengthened by the results obtained for the magnetic moments. The bosons fit in a 45-dimensional representation and the possible splitting of this supermultiplet, under a G_2 -noninvariant interaction, in representations of $G_2 \otimes SU_2$ with definite A parity, makes 45 a very good candidate.

II. REPRESENTATIONS

 D_5 is a semisimple group, whose Lie algebra is described by 45 generators, and its representations are defined by five integers. The states that describe the

TABLE I. Some representations of $G_2 \otimes SU_2$.

on in $G_2 \otimes SU_2$
+(1,4)+(1,2)
(7,3)+2(7,1)+(1,3)+(1,1)
4)+(64,2) 7,2)+2(14,2)+3(7,2)+(1,2)
7

⁵ D. Peaslee, Phys. Rev. 117, 873 (1960).

^{*} Permanent address: Facultad de Ciencias Exactas, Universidad de Buenos Aires, Peru 222, Buenos Aires, Argentina.

¹ F. Gürsey and L. Radicati, Phys. Rev. Letters 13, 173 (1964);

 ¹ F. Gursey and D. Kancaci, 1195. Rev. Detects 10, 176 (1967),
 B. Sakita, Phys. Rev. 6, B1756 (1964).
 ² R. Behrends and L. Landovitz, Phys. Rev. Letters 11, 296 (1963); R. Behrends, L. Landovitz, and B. Tunkelang, Phys. Rev. 142, 1092 (1966); R. Behrends, *ibid.* 142, 1101 (1966); R. Behrends and A. Sirlin, ibid. 142, 1095 (1966).

³ There are similar structures about the relativistic validity of D_5 , as at SU_6 .

⁴ E. Dynkin, Am. Math. Soc. Transl. 2, 319 (1957).

elementary-particle multiplets will be the basis of an irreducible representation of D_5 . The effect of an interaction that breaks the D_5 symmetry but is invariant under the product group $G_2 \otimes SU_2$ (as a G_2 -spindependent interaction could) is to split the supermultiplets into irreducible representations of $G_2 \otimes SU_2$. The dimensions of the representations of D_5 are N=1, 10, 16, $\overline{16}$, 45, 54, 120, 126, 144, $\overline{144}$, 210, $\overline{210}$, 320, 560, \cdots ; in Table I we have written the contents of some of these in terms of the $G_2 \otimes SU_2$ representations, the numbers (m,n) are the G_2 and SU_2 multiplicity, respectively.

1126

If we introduce a purely spin-dependent interaction, D_5 will not decompose according to $G_2 \otimes SU_2$, but as representations of $R_7 \otimes SU_2$; thus we will have $16 \rightarrow (8,2)$ and $45 \rightarrow (21,1) + (7,3) + (1,3)$, where the first number of (m',n') is the dimension of the R_7 irreducible representation.

A difference between SU_6 and D_5 is that the D_5 supermultiplets have a high degree of degeneracy, which makes the group more flexible, but also the calculations more difficult.

The products between the representations of most interest to us are:

$$10 \otimes 10 = 54 \oplus 45 \oplus 1,$$

$$10 \otimes 16 = 144 \oplus \overline{16},$$

$$16 \otimes \overline{16} = 210 \oplus 45 \oplus 1,$$

$$16 \otimes 45 = 560 \oplus \overline{144} \oplus 16,$$

$$45 \otimes 45 = 975 \oplus 770 \oplus 210 \oplus 54 \oplus 45 \oplus 1.$$

(2)

The fact that there is no multiplicity of representations in the products shows a priori that we cannot obtain satisfactory results in first order, since only linear combinations of generators will appear in the physical operators and not quadratic invariants.⁶

The simplest possibility to accommodate the particles could be the barvons in the 16- and the bosons in the 10-dimensional representation, but this forces all the baryon resonances to be in 144, which has only seven particles with spin $\frac{3}{2}$, so this choice does not appear satisfactory. A more reasonable choice is to consider the

bosons as states of the 45 representation; in this way 45 under a symmetry-breaking interaction is split into the multiplets of G_2 with definite A parity proposed by Behrends, Landovitz, and Tunkelang,² that is, (with M_{JPA}^{N} :

$$(7,1) \equiv M_{0--7}; \pi, K; \quad (14,1) \equiv M_{0--14}; \eta \cdots; (7,3) \equiv M_{1-+7}; \rho, K^*; \quad (1,3) \equiv M_{1--1}; \omega.$$
(3)

We must assign negative parity to the 45 states. If we ask that the ϕ belong to M_{1-+}^{14} in G_2 , that is, a (14,3) subrepresentation, the lowest possible representation where it can be included will be 126. Then the baryonic resonances must belong to 560 and 144; the number of states with spin $\frac{3}{2}$ allows us to place the resonances $\mathcal{J}^P = \frac{3}{2}^+$ in the 560 representation and those $\mathcal{J}^P = \frac{3}{2}^-$ in the 144, i.e., N^{**} , V_1^{**} , and Ξ^{**} in the (7,4) and V_0^{**} in the (1,4) multiplet.⁷ The interpretation of the higher spin resonances, as for SU_6 , is limited, because in this case the spin and space variables are coupled by the spin-orbit forces which are constituents of the structure (or potential) that defines the particles, and since the angular momentum is not included in D_5 a more careful interpretation or extension of the group is required.

III. MAGNETIC MOMENT AND MASS SPLITTING

The next step is to consider whether with simple assumptions for the symmetry-breaking interaction we can derive some physical results for the mass and the magnetic moment. For that we must set up a scheme to interpret the quantum numbers as linear combinations of the commuting operators of D_5 . Denoting by C_{ii} $(i, j \equiv \pm 1, \dots, \pm 5)$ the generators of D_5 which satisfy the commutation rule⁸:

$$\begin{bmatrix} C_{ik}, C_{mn} \end{bmatrix} = \delta_{k, -m} C_{in} - \delta_{k, -n} C_{im} - \delta_{i, -m} C_{kn} + \delta_{i, -n} C_{km} \quad (4)$$

and using the reduction chain (1), the generators of the commuting G_2 and SU_2 groups can be written:

$$G_{2}: T_{3} = C_{3-3} - \frac{1}{2}(C_{2-2} + C_{1-1}), \qquad \mathcal{J} = C_{1-1} - C_{2-2},$$

$$E_{1} = \frac{1}{\sqrt{3}}(C_{34} + C_{3-4} + C_{-1-2}), \qquad E_{2} = C_{3-2},$$

$$E_{3} = \frac{1}{\sqrt{3}}(C_{-24} + C_{-2-4} + C_{31}), \qquad E_{4} = C_{1-2},$$

$$E_{5} = \frac{1}{\sqrt{3}}(C_{14} + C_{1-4} + C_{-2-3}), \qquad E_{6} = C_{-81};$$

$$SU_{2}: \qquad \mathcal{J}_{3} = C_{5-5}, \qquad \mathcal{J}_{+} = \frac{1}{\sqrt{2}}(C_{54} - C_{5-4}), \qquad \mathcal{J}_{-} = \frac{1}{\sqrt{2}}(C_{-54} - C_{-5-4}).$$
(5)

⁶ T. Ginibre, J. Math. Phys. 4, 720 (1963). ⁷ It is not clear, considering the $N_{5/2}^{**}-N_{1/2}^{**}$ experimental splitting, whether we must accept a privileged set of 8 baryons in 16, and not include all the particles with baryon number 1, positive parity and spin $\frac{1}{2}$ or $\frac{3}{2}$ in the single representation 144. ⁸ G. Racah, Institute for Advanced Study, Princeton, 1951 (unpublished).

With this reduction we can label the particle states.

First we will calculate the magnetic moment of the 16 supermultiplet. We ask the magnetic current to transform as a tensor of the product group (14,3) multiplet, and furthermore it must be a bilinear combination of the 16 and $\overline{16}$ representations; thus it must belong to 210. The electric current will transform as a tensor of the subrepresentation (14,1) of the regular representation 45. Thus we choose the magnetic moment as a tensor of 210, which transforms as the product $Q \cdot \mathfrak{g}_3$ in $G_2 \otimes SU_2$ (Ref. 9); we get then

 $\mu_B = \mu_p Q,$

where μ_p is the proton magnetic moment and Q is the charge of the baryon. This result is similar to those obtained in G_2 with the additional relation $\mu(\Lambda) = 0$, and leads us to believe that the electromagnetic properties of the baryons in D_5 will have similar difficulties to those in G_{2} .¹⁰ A way of getting a solution to these poor results in G_2 is to mix different representations¹⁰; in the D_5 case, if we assign the baryons to a higher representation (144) and define the quantum numbers in the framework of D_5 independently of the reduction chain (1), such a mixture could be automatic. Another possibility is first to break the symmetry.¹¹

Now we will consider the baryon mass splitting. There are different possibilities for breaking the symmetry. We can choose an interaction Hamiltonian so that it: (a) breaks the D_5 symmetry but not $R_1 \otimes SU_2$, (b) breaks the D_5 symmetry but not $G_2 \otimes SU_2$, (c) has an R_7 noninvariant part, (d) has a G_2 -noninvariant part. We have chosen a G_2 -noninvariant symmetry-breaking Hamiltonian, and as usual we have assumed that it transforms like a $T = Y = \mathcal{J} = 0$ member of the regular representation, so it will belong to the subrepresentation (14.1) of 45. The bases of this supermultiplet are antisymmetric second-rank tensors in the 10-dimensional vector space. In first order we obtain

 $M_B = a + bY$.

The unique contribution in second order comes from the 210-dimensional representation and there, because of the condition $T = \mathcal{J} = Y = 0$, the single contribution

comes from the center of (27,1). This tensor is a fourthrank one, totally antisymmetric, and can be constructed from the basis of 45; then we get:

$$M_B = a + bK_3 + CK(K+1), (6)$$

where $K_3 = Y/2$ is the third component of the hypercharge rotation subgroup of G_2 , defined by $K.^1$ Unfortunately, there is no splitting between Σ and Λ .

Let us turn now to the meson representation. By the symmetry of the weight diagram we have no firstorder breaking; in second order, because $45 \otimes 45$ $=975 \oplus 770 \oplus 210 \oplus 54 \oplus 45 \oplus 1$, there are contributions from many centers but, since we are dealing with bosons. it is not necessary to consider the antisymmetric representations. We have calculated only the contribution from a symmetry-breaking term which transforms like a center of 54 (traceless symmetric second-rank tensor); for that it must belong to the multiplet (27,1). For the different subrepresentations of 45, this term gives the following mass expression:

$$\Delta M^{2}(14,1) = -\frac{1}{3} \alpha [T(T+1) - 9K(K+1)],$$

$$\Delta M^{2}(7,1) = \frac{4}{3} \alpha T(T+1),$$

$$\Delta M^{2}(7,3) = \frac{2}{3} \alpha [5K(K+1) - 3T(T+1)],$$

$$\Delta M^{2}(1,3) = -4\alpha.$$
(7)

It is possible to write the mass equation in closed form. but for that it is necessary to obtain the 5 invariant operators of D_5 . In Eq. (7) we only show the splitting pattern. These relations do not give good agreement with the experimental masses (all the states with $K = \frac{1}{2}$ in 45 have the same mass correction, so K, K^* , and δ remain degenerate), nor do they corroborate the suggestions for the masses of the (14,1) multiplet in Ref. 2; but we must recall that they represent only a part of and not the full second-order contribution to the meson representation.

We must conclude that D_5 provides a highly reasonable classification for the particles, but at first sight the physical properties seem to have similar difficulties to those of G_2 .

ACKNOWLEDGMENTS

It is a pleasure to thank Professor L. Landovitz for suggesting this investigation and for many stimulating discussions, and to thank Professor R. Behrends for very useful suggestions.

⁹ Let us recall that we have supposed that we are dealing with

¹⁰ N. Mukunda, A. J. Macfarlane, and E. C. G. Sudarshan, Phys. Rev. 138, 3665 (1965); 133, 3475 (1964).
¹¹ R. Behrends, Ref. 2.