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I4. Also, our considerations are more exhaustive.
We 6nally mention that a calculation of strong cou-

pling constants has been recently made by Dashen
et cl. in an entirely different investigation of broken
symmetry. '5

Other related questions, particularly regarding the
form factors Ets (k'), will be discussed elsewhere.

"R.F. Dashen, Y. Dothan, S. C. Frautschi, and D. H. Sharp,
Phys Rev. 143, 1185 (1966).
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The algebra of the group D5 is the most direct generalization of that of the direct product of 62 with the
ordinary spin group SU2. Furthermore it also contains that of Ev times SU2. In this paper we analyze the
particle classi6cation provided by D&, it is found that a 16-dimensional representation appears to contain the
baryons and gives results for the magnetic moment and mass formula equivalent to those obtained with the
nonbroken GxSUs group, but now the h particle is directly included. The 45-dimensional regular repre-
sentation of D5 provides an appropriate basis for the proposed G2SU2 representations of the mesons and
boson resonances.

I. INTRODUCTION

~ 'HE idea of using the group SU4 to classify nuclear
states has been extended to the elementary-

particle case, using SU3 as the internal symmetry
group. This has led to the study of SU6. ' There is another
group that can be used to describe the particle internal
symmetry, G2. It is more difFicult to work out than SU3,
but recent work' shows that its results are not less
physical. In this paper we want, in analogy with SU4
and SU6, to consider a group whose Lie algebra em-
bodies those of the direct product of G2 with the ordi-
nary spin group SU2. ' The simplest group that satisfies
this condition is the unimodular orthogonal rotation
group in ten dimensions, Do (Ref. 4); since Gs is a sub-

group of Eq we can write the induction chain for the
Lie algebras as

Gs &UsC %8~sC~io= Do. —

algebra. ' The representation of D~ allows a classifica-
tion of elementary particles, suggestive enough to
be considered. Ke have studied. here its representa-
tions and a possible assignment of particles. The
16-dimensional representation appears to contain the
baryons, and such a possibility is strengthened by the
results obtained for the magnetic moments. The bosons
fit in a 45-dimensional representation and the possible
splitting of this supermultiplet, under a G~-noninvariant
interaction, in representations of G~SU~ with definite
2 parity, makes 45 a very good candidate.

II. REPRESENTATIONS

D5 is a semisimple group, whose Lie algebra is de-
scribed by 45 generators, and its representations are
defined by five integers. The states that describe the

TABLE I. Some representations of GsQXSU2.

Let us note that D5 embodies Ryt3E3, which has been
also proposed as an elementary-particle symmetry

Dimension Decomposition in G2QxSUs

* Permanent address: Facultad de Ciencias Exactas, Universi-
dad de Buenos Aires, Peru 222, Buenos Aires, Argentina.

' F. Gursey and L. Radicati, Phys. Rev. Letters 13, 173 (1964);
B. Sakita, Phys. Rev. 6, 81756 (1964).

'R. Behrends and L. Landovitz, Phys. Rev. Letters 11, 296
(1963);R. Behrends, L. Landovitz, and B.Tunkelang, Phys. Rev.
142, 1092 (1966);R. Behrends, ibid. 142, 1101 (1966);R. Behrends
and A. Sirlin, ibid. 142, 1095 (1966).

'There are similar structures about the relativistic validity of
D5, as at SU6.

' K. Dynkin, Am. Math, Soc. Transl. 2, 319 (1957).

10 (7,1)+(1,3)
16 (7,2)+(1,2)
45 (14,1)+(7,3)+(7,1)+(1,3)
54 (27,1)+(7,3)+(1,5)+(1,1)

144 (27,2)+(14,2)+(7,4)+(7,2)+(1,4)+(1,2)
210 (27,3)+(14,3)+(27,1)+2(7,3)+2 (7,1)+(1,3)+ (1,1)
560 (27,4)+ (14,4)+2 (7,4)+ (1,4) +(64,2)

+2(27,2)+2(14,2)+3(7,2)+ (1,2)

~ D. Peaslee, Phys. Rev. 117, 873 (1960).
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elementary-particle multiplets will be the basis of an
irreducible representation of D5. The e8ect of an inter-
action that breaks the D& symmetry but is invariant
under the product group G28SU2 (as a G2-spin-
dependent interaction could) is to split the supermulti-
plets into irreducible representations of G2SU2. The
dimensions of the representations of D„. are %=1, 10,
16, 16, 45, 54, 120, 126, 144, 144, 210, 210, 320, 560,
in Table I we have written the contents of some of these
in terms of the G2SU2 representations, the numbers

(m, n) are the G2 and SU2 multiplicity, respectively.
If we introduce a purely spin-dependent interaction,

D5 will not decompose according to G2SV~, but as
representations of 8;3SU2, thus we will have16 —& (8,2)
and 45 —+ (21,1)+(7,3)+(1,3), where the first number
of (2'', 24') is the dimension of the E7 irreducible
representation.

A difference between SU6 and D5 is that the D5
supermultiplets have a high degree of degeneracy, which
makes the group more flexible, but also the calculations
more dificult.

The products between the representations of most
interest to us are:

10@10=54Qy45Q+1,

10I316=144Q+16,
16@16=210Q+45Q+1, (2)
16m 45= 560Q+144Qy16,

45@45 =975Q+770Q+210Q+54Q+45Q+1.

The fact that there is no multiplicity of representations
in the products shows a priori that we cannot obtain
satisfactory results in first order, since only linear
combinations of generators will appear in the physical
operators and not quadratic invariants. '

The simplest possibility to accommodate the particles
could be the baryons in the 16- and the bosons in the
10-dimensional representation, but this forces all the
baryon resonances to be in 144, which has only seven
particles with spin -„so this choice does not appear
satisfactory. A more reasonable choice is to consider the

bosons as states of the 45 representation; in this way 45
under a symmetry-breaking interaction is split into the
rnultiplets of G2 with definite A parity proposed by
Behrends, I.andovitz, and Tunkelang, ' that is, (with
MJPA ) ~

(7,1)—=Mp '. 7r,A. ; (14,1)=—Mp

(7,3)=—Mi +'. p, E*; (1,3)—=Mi (3)

We must assign negative parity to the 45 states. If we
ask that the Q belong to Mi ~"in G2, that is, a (14,3)
subrepresentation, the lowest possible representation
where it can be included will be 126. Then the baryonic
resonances must belong to 560 and 144; the number of
states with spin —,.' allows us to place the resonances
&P=2+ in the 560 representation a,nd those QP=2 in
the 144, i.e. , X**,Fi**, and **in the (7,4) and I'p**
in the (1,4) multiplet. The interpretation of the higher
spin resonances, as for SU6, is limited, because in this
case the spin and space variables are coupled by the
spin-orbit forces which are constituents of the structure
(or potential) that defines the particles, and since the
angular momentum is not included in D5 a more care-
ful interpretation or extension of the group is required.

III. MAGNETIC MOMENT AND MASS
SPLITTING

The next step is to consider whether with simple
assumptions for the symmetry-breaking interaction we
can derive some physical results for the mass and the
magnetic moment. For that we must set up a scheme to
interpret the quantum numbers as linear combinations
of the commuting operators of D5. Denoting by C;,
(i, j—=&I, , &5) the generators of D; which satisfy
the commutation rule':

]=4, C' 4, C'— —

Ci„+6,, „Ci, (4)

and using the reduction chain (1), the generators of the
commuting G2 and SV2 groups can be written:

G2.. Tp ——Cp 2
—-', (C2 2+Ci 4))

1
Ei (C24+Cp 4+C———i 2),

v3

Ci—1 C2—2y

&"2=C3 ~,

Ep ———(C 24+C 2 4+Cpi),
&3

1
Ep (Ci4+Ci 4+C —

2——3), —

&4=C1 ~,

I-'6=C 3~,

(5)

1
gp=C.- 2, g+=—(C24—Cp 4), g =—(C 24

—C 4 4).
&2 v2

' T. Ginibre, J. Math. Phys. 4, 720 (1963).' It is not clear, considering the %5~2**—X&12**experimental. splitting, whether we must accept a privileged set of 8 baryons in 16,
and not include all the particles with baryon number 1, positive parity and spin ~ or —, in the single representation 144.' G. Racah, Institute for Advanced Study, Princeton, 1951 (unpublished).
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With this reduction we can label the particle states.
First we will calculate the magnetic moment of the

16 supermultiplet. We ask the magnetic current to
transform as a tensor of the product group (14,3)
multiplet, and furthermore it must be a bilinear com-
bination of the 16 and 16 representations; thus it must
belong to 210. The electric current will transform as a
tensor of the subrepresentation (14,1) of the regular
representation 45. Thus we choose the magnetic moment
as a tensor of 210, which transforms as the product
Q g3 in G~SSU2 (Ref. 9); we get then

»=piQ~
where p~ is the proton magnetic moment and Q is the
charge of the baryon. This result is similar to those ob-
tained in G2 with the additional relation ii(A) =0, and
leads us to believe that the electromagnetic properties of
the baryons in D5 will have similar difficulties to those
in G2. ' A way of getting a solution to these poor results
in G2 is to mix diferent representations'; in the D5
case, if we assign the baryons to a higher representation
(144) and define the quantum numbers in the frame-
work of D& independently of the reduction chain (1),
such a mixture could be automatic. Another possi-
bility is first to break the symmetry. "

Now we will consider the baryon mass splitting. There
are different possibilities for breaking the symmetry.
We can choose an interaction Hamiltonian so that it:
(a) breaks the D5 symmetry but not R;SU2, (b) breaks
the D5 symmetry but not G&SU2, (c) has an R7-
noninvariant part, (d) has a Gq-noninvariant part. We
have chosen a G2-noninvariant symmetry-breaking
Hamiltonian, and as usual we have assumed that it
transforms like a T= Y=g=O member of the regular
representation, so it will belong to the subrepresentation
(14,1) of 45. The bases of this supermultiplet are anti-
symmetric second-rank tensors in the 10-dimensional
vector space. In first order we obtain

Mii= a+bY.

The unique contribution in second order comes from the
210-dimensional representation and there, because of
the condition T=J= Y=O, the single contribution

'I et us recall that we have supposed that we are dealing with
the static limit of a relativistic theory.

"N. Mukunda, A. J. Macfarlane, and E. C. G. Sudarshan,
Phys. Rev. 138, 3665 (1965); 133, 3475 (1964)."R.Behrends, Ref. 2.

comes from the center of (27,1).This tensor is a fourth-
rank one, totally antisymmetric, and can be constructed
from the basis of 45; then we get:

Mii ——a+bK3+ CK(K+1), (6)

ACKNOWLEDGMENTS

It is a pleasure to thank Professor L. Landovitz for.
suggesting this investigation and for many stimulating
discussions, and to thank Professor R. Behrends for
very useful suggestions.

where K3 Y/2 ——is the third component of the hyper-
charge rotation subgroup of G2, defined by E.' Un-
fortunately, there is no splitting between Z and A..

Let us turn now to the meson representation. By the
symmetry of the weight diagram we have no 6rst-
order breaking; in second order, because 4545
= 975'?70Qy210Q+. 54Qy45l, there are contributions
from many centers but, since we are dealing with bosons,
it is not necessary to consider the antisymmetric repre-
sentations. We have calculated only the contribution
from a symmetry-breaking term which transforms like a
center of 54 (traceless symmetric second-rank tensor);
for that it must belong to the multiplet (27,1). For the
dif'ferent subrepresentations of 45, this term gives the
following mass expression:

&M'(14, 1)= —3nLT(T+1)—9K(K+1)j,
d,M'(7, 1)= 34nT(T+1),
6M'(7, 3)= 3nLM(K+1) —3T(T+1)],
AM'(1 „3)= —4n.

It is possible to write the mass equation in closed form,
but for that it is necessary to obtain the 5 invariant
operators of D;. In Eq. (7) we only show the splitting
pattern. These relations do not give good agreement with
the experimental masses (all the states with E = 2i in 45
have the same mass correction, so E, E*, and 8 remain
degenerate), nor do they corroborate the suggestions
for the masses of the (14,1) multiplet in Ref. 2; but
we must recall that they represent only a part of and
not the full second-order contribution to the meson
representation.

We must conclude that D5 provides a highly reason-
able classification for the particles, but at first sight the
physical properties seem to have similar difFiculties to
those of G2.


