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Photon Statistics and Classical Fields*
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In view of the misunderstanding which surrounds the use of semiclassical methods in the treatment of
optical coherence problems, a simple analysis is given which illustrates the generality of these methods. In
particular, it is pointed out that, under commonly occurring circumstances, these methods apply at arbi-
trarily low light levels, and give correct results for the photoelectric counting of photons. The conclusions
are illustrated by treating the interference between laser light and thermal light to demonstrate that
this nontrivial case, recently treated by quantum held theory, is correctly described by semiclassical methods.

I. INTRODUCTION

S INCE the publication of the first papers on the quan-
turn theory of optical coherence, ' ' a substantial

amount of discussion' "has been devoted to the rela-
tionship between the quantum theory and the older
classical and semiclassical theories. Some of these dis-
cussions have brought out the fact that, in many situa-
tions commonly encountered in practice, the electro-
magnetic field can be treated in classical terms if the
interaction with the measurement apparatus is treated
quantum mechanically. This result has nothing to do
with the correspondence principle, but is connected with
the nature of the electromagnetic field and holds at
arbitrarily low light intensities. Of course there exist
situations in which the state of the field is not describa-
ble classically, except in a formal sense based on the
validity of a certain diagonalization theorem [given
by Eq. (5) below4). We cite a Fock state of the field as
an example.

The distinction between the two situations is fre-
quently misunderstood. It is a common (but mistaken)
belief that semiclassical methods always fail when the
light intensity is suKciently low, and that there are
statistical features of the field revealed by photoelectric
measurements which cannot be accounted for by a semi-
classical treatment. As an example we quote from the
opening paragraph of a recent publication, "in which a
field which can be treated in completely classical terms
(as we show below) —namely the field resulting from the
superposition of light beams from an "ideal" laser and
from a thermal source —is treated quantum mechani-
cally: ". . .Although much of the theoretical work
uses classical methods with little inhibition, citing the

usual argument (high field intensities equal classical
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limit), "some authors have attempted to formulate the
problem on its proper ground, namely on a microscopic
quantum mechanical level, with due respect for the
statistics underlying the electromagnetic field. . ."

In the following we will discuss the question of the
validity of the semiclassical method, and indicate why
the method leads to results identical with those ob-
tained from the quantized field theory in appropriate
cases, even at arbitrarily low intensities. As an example
we then show that the results obtained in Ref. 11 may
be derived more simply and directly by semiclassical
methods.

a. RELATrOW SETWEEN qv~mUM A~D
SEMICLASSICAL TREATMENTS

In quantum field theory the state of an isolated field
is described by a density operator" p, which is often
conveniently represented in the particular basis formed
by the eigenstates

I (v~))=II' I vi) of the annihilation
operators a)„

where X labels the modes and e), is any complex number.
From (1) it follows that, if we define a configuration
space annihilation operator A(x) (we use x for r, t) by
an expansion of the type'

A(x) = (1/I.s")p&, a ),gee&* (2)

and a complex vector wave amplitude V(x) by

V(x) = (1/I.'")Pi t ge) e'"&*

then
A(*) I (.,))=V(*)

I (.,)).
The states

I (vi}) have been examined in some detail
by Glauber, "who has called them coherent or classical
states and shown that they correspond to a classical
wave field of determinate complex wave amplitude
V(x). However, the term "classical state" has sometimes
tended to mislead. For there exists a classical descrip-
tion for a much wider class of states of the field, namely,
those corresponding not to a well-defined function V(x),
but to a statistical ensemble of such functions. The state

I (nq)) therefore represents a limiting situation, in which

"The italics are ours.
"We use the circumflex throughout to represent operators.
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the field is not merely describable classically but is also
determinate.

It has been shown4 that the density operator p for
any free electromagnetic 6eld may always be expressed
in the form

0({»})I {»))(f»)I
d'f»)

@(f»})=II(I/ ~i) exp( —I»I'&~i), (6)

and
4(f»)) =~(~.—~.') lI ~(»),

respectively. In such cases, for the purposes of all com-
monly encountered measurements, the field may also
be described in completely classical terms by an ensemble
of classical wave amplitudes V(x) as in Eq. (3), in which
the ensemble distribution is given by the probability
functional p(f»)). In other words, the Geld may be rep-
resented by a random process V(x) to which we refer as
the fluctuating classical wave amplitude. Any state rep-
resented by a non-negative, nonsingular @(f»})may
therefore be regarded as a classical state, from the point
of view of the usual measurements. "

In. order to see the correspondence, we first recall that
practically all measurements in quantum optics are
based on the use of photoelectric detectors, and corre-
spond to expectation values of various normally ordered
products of creation and annihilation operators. ' '
Now the expectation value of any normally ordered
functional Lf{A(x)),{A"(x))j of the operators A(x)
and At(x), evaluated according to the usual rules of

provided the expansion and the real functional Q(f»))
are interpreted in a certain generalized sense which has
recently been made precise. '~'6 However, for a wide
class of commonly encountered fields, p(f»)) is a real,
non-negative, nonsingular functional (except possibly
for a 8-function type singularity), which is normalized
to unity and may be looked on as a probability func-
tional in the representation (5). The expansion (5) then
becomes a simple integral, which has also been referred
to as the I representation. ' ' Obvious examples of such
helds are the field due to a thermal source, possibly
modified by any linear filter, and a completely coherent
field (often referred to as the field due to an "ideal"
laser), for which

quantum mechanics, is identical with the expectation
value of the random process LffV(x)},{V*(x))), evalu-
ated with respect to the classical ensemble distribution
p({»)).' For, from (5)

(L[fA(x) },fA"(x))j)

~(f»))LL{A(x)),{A'(x))jl f») )({»)I
d'{»),

and in view of Eq. (4), together with its Hermitian
conjugate,

(LL{A(x)),fA'(x)) 3&

&(f»))LL{V(x)),fV*(x))j~'(»)

=(LL{(V(x)){V*(x)}j&

where we use the angular brackets to denote either the
quantum-mechanical expectation of an operator, or the
statistical expectation of a classical random process.
This shows that the functional P((»)) may be regarded
as either a quantum-mechanical object, namely a diago-
nal density matrix, or as a classical object, namely the
ensemble distribution of a classical wave field.

Actually, as has been pointed out, 4 because of the
universal scope of the general representation (5), a
mathematical correspondence between the two types of
representation of the field persists even when p({»})
is negative and singular. We will briefly return to this
point at the end.

As a further illustration that radiation fields for which
P(f»)) is non-negative and nonsingular may also be de-
scribed classically, for the purposes of the usual measure-
xnents, we will consider the superposition of two 6elds.
According to classical wave theory, when fields of com-
plex random wave amplitudes V'(x) and U"(x) are
superposed, the resultant random wave amplitude V(x)
is related to V'(x) and V"(x) by

V(x) =V'(x)+V"(x), (9)

and its statistical behavior is governed by the joint
probability density p({»'),{v")) for the two fields.
According to quantum field theory, the basis states for
the combined system are of the type I {»'))If»"}&,and
the density operator has the form

0(f~''), f»"))
I
{»')& I

{»")&(f»")
I
({»')

I
d'f»') d'{»"}

"J.R. K.lauder, J. McKenna, and D. G. Currie, J. Math. Phys. 6, 733 (1965)."C.L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 8274 (1965)."J.R. Klauder, Phys. Rev. Letters 16, 534 (1966).
~ Ke wish to emphasize that, when we speak of a Geld which can be described in classical terms we do not necessari]y imp]y

that the description is derivable from completely classical arguments alone. Thus, as is well known, attempts to derive the spectral
distribution of black-body radiation by classical arguments encounter serious difhculties. Nevertheless, once the spectral distribution
has been found, black. -body radiation may be represented in terms of an ensemble of classical wave amplitudes. With this under-
standjng, the term "classical representation" carries no implication about the presence or absence of Planck's constant.
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Now the "measurement operator" A(x) operates on the combined system, so that

A(*) I {»'}&I{»"}&=[V'(x)
I {»'}&jI{»"}&+

I
{»'}&[V"(x)

I {»"}&3
X X 8g Vg

From (10), (11) and its Hermitian conjugate it follows immediately that the expectation value of any normally
ordered operator L[{A(x)},{At(x)}]is

(L[{A(x)},{At(x)}j&=TrpL[{A(x)},{At(x)}]
@({., },{.,"})LL{v()+v"( )},{v*()+v-*(*)}jd{., }d {.,-}

= (L[{V'(x)+V"(x)},{V'*(x)+V"'(x)}j), (12)

which, according to Eq. (9), is just the result to be ex-
pected from the classical wave theory.

We emphasize that the classical description of the
field is here not to be regarded as an approximation to
the quantum-mechanical description. The ensemble dis-
tribution P({v"})governing thef'uctuations of the classical
wave amphtude carries neither more nor less information
than the density operator p.

Let us now turn to the question of the Quctuation of
counts registered by an illuminated photodetector.
This problem is often mistakenly claimed to lie outside
the scope of any treatment that does not start off with a
quantized Geld, particularly when the light intensities are
low. It has been shown by explicit quantum mechanical
calculation' ' that, when a radiation Geld with density
operator given by (5) (with P({vz})nonsingular) inter-
acts with a photodetector, the probability p(n; t, t+T)
that n counts are registered in the time interval (t, t+T)
is given by

p(n; t, t+T)

~"({»})
4({ }) e p[—~({v })ld'{v }, (13)

nature of the photoelectric mechanism that U({v"})
has the simple form

~({ })=t' V*(x,t') V(x, t')dt', (14)

where P is a constant characteristic of the detector, in-
volving the dipole matrix elements of the atomic states.
The counts registered by the detector are frequently
identified with the absorption of photons of the field,
since a distribution very similar to (13) can be written
down for the number of photons localized in a space-
time region of sufficiently large dimensions. ""

Nevertheless, when P({v~})is non-negative and non-
singular, the formula (13) can also be obtained from
semiclassical considerations, and indeed was so obtained
in the first place. ""' From a consideration of the inter-
action between a classical wave Geld described by the
ensemble distribution p({v"}) and the atoms of the
photodetector, we readily find for the differential
probability of photoelectric detection at time t within 5T,
under similar conditions to those applying to (13)
and (14),'

p(1; t, t+bT) =p(v*(x, t) V(x, t)&ST. (15)

when the number of detector atoms greatly exceeds e,
and certain other commonly encountered conditions are
satisfied. Under typical conditions, when the field has a
narrow spectral range and propagates normally to the
sensitive area of the photodetector, it can be shown with
the help of some reasonable assumption about the

The term (V*(x,t) V(x, t)) will be recognized as the ex-
pectation value of the classical intensity. The formula is
easily generalized to apply to a finite time interval T,
by subdivision of T into a large number of very short
intervals 8T and by the application of combinatorial
statistics. Thus we find"

T/8T T/8T

p(n;t, t+T)= lim p p —t'" V*(x, t+r~bT) V(x, t+r~bT) V*(x, t+r„bT) V(x, t+r„bT)
ST~0 F1=0 m=0 g, I

g [1—Pv'(x, t+sbT) V(x, t+sbT)bTj
s=i

g [1—Pv*(x, t+r, 8T) V(x, t+r, hT)bT j
(16)

'8 P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
' R. J. Glauber, Qzt, antlm Optics and Electronics, edited by C. de Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach,

Science Publishers, Inc., New York, 1965), p. 65."F.Ghielmetti, Phys. Letters 12, 210 (1964)."L.Mandel, Phys. Rev. 144, 1071 (1966)."L.Mandel, Proc. Phyp. Soc. (London) 72, 1037 (1958).
"See for example, L. Mandel, Progress in Optics, edited by E. Wolf (John Wiley R Sons, Inc. , New York, 1963) gaol II p ]81
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and, when the limit bT —+ 0 is evaluated, "we arrive at

p(n; h, h+ T)= &(II"({v&})/n!)expL —U({iz})]). (17)

This formula is seen to be identical with Eq. (13) when
we recall that p({w&,})is the ensemble distribution to be
used in the calculation of expectation values. Thus, as
long as p({vq}) is non-negative and nonsingular, the
results given by the semiclassical method are identical
with those given by quantum field theory. The semi-
classical method is therefore able to account for the
photoelectric counting of photons, even at arbitrarily
low light levels and for arbitrarily small e.

As an illustration we may evaluate the distribution
(17) explicitly for a thermal radiation field described by
Eq. (6), under the condition that the counting interval
T is very short compared with the reciprocal frequency
spread of the light. We then find that, ' "for polarized
light,

P(n h, h+T) = 1/t 1+&n)jt 1+1/(n)$", (18)

which is a well-known occupation number distribution
for photons in a thermal field.

III. AN ILLUSTRATIVE EXAMPLE

In order to illustrate some of the foregoing remarks,
we will examine the problem of the superposition of a

light beam from an "ideal" single-mode laser and a beam
from a thermal source, which was recently treated by
the method of quantum field theory. ""We shall see
that identical results are obtainable more simply and
directly by a semiclassical treatment. The two fields in
question are both classical fields in the sense here de-
fined and are described by Eqs. (7) and (6), respectively.
If Vi(h) and V2(h) are the complex wave amplitudes cor-
responding to the laser and the thermal beams (both
assumed to be polarized) at the detector, the resultant
wave amplitude V (h) is given by

V(h) = V,(h)+ V, (h) . (19)

and, if we make use of the moment theorem for the
Gaussian random process, ""

&I,(h)I, (h+ r))= (I,)2(1+
~
q»(r)

~
2j, (21)

we arrive at the result

Recalling that V&(h) and V2(h) are statistically inde-

pendent random processes with zero means, we find
from (14), (19), (7), and (6), that

(20)

(U2({p)}))—p2((Ii)+(I2))2T2+p2(I2)2
0 0

~

q„(h" h') t 'dh'Ch"—

+2p'(Ii)(I2) Re vii(h" —h')v22*(h" —h')dh'dh". (22)

&(~n)') = &n)+((~II({»}))'),
and with the help of (20) and (22) this becomes

2
2 T T

&(Sn)') = (n)+ ~q»(h" —h')
~

'Ch'dh"

0 0

(24)

2(ni)(n2)
+ Re

T2 0 0

q»(h" —h') q»*(h"—h')Ch'Ch",

'4 Actually, bT should be long compared with a typical period
of the light, so that, strictly speaking, we are not entitled to
proceed to the mathematical limit BT~ 0. However, since typical
periods of a light beam are far beyond the limit of resolution of
available detectors, small values of BT correspond to a very good
approximation to the limit BT~ 0, provided the light intensity
is not excessively high.

Here &Ii) and (I2) and yii(r) and yg2(r) are the mean
intensities and the normalized autocorrelation func-
tions' associated with Vi(h) and Vm(h). Now from (17),'

( )=&~({ })) (23)
alld

which is the formula obtained by Morawitz"" Lhis
Eqs. (22) and (23)j from quantum field theory.

The example once again shows explicitly what we have
stated at the beginning. When the functional p({pq})
representing the density operator of the field is non-
negative and nonsingular, the electromagnetic field may
be described in a classical way for the purpose of de-
scribing the usual measurements, and the results of
semiclassical calculations will be identical with those
obtained by quantum field theory.

Finally, let us briefly consider the situation when
p({wq}) is not necessarily restricted to be non-negative
definite and nonsingular, but represents an arbitrary
field. In that case we can no longer construct a physically
realizable ensemble of complex classical Fourier ampli-
tudes {vz} whose probability distribution is p({e&,}).
Moreover, the mathematical significance of the various

» For another discussion of this problem, see also G. Lachs,
Phys. Rev. 138, 81012 (1965).

'6 See C. L. Mehta, Lectures in Theoretical Physics, edited by
W. K. Brittin (University of Colorado Press, Boulder, Colorado,
1965), Vol. 7(c), p. 345.
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expressions involving p({sz)) obviously has to be inter-
preted with some care when&(fs&, )) is singular. The pre-
cise sense in which the expressions are then to be under-
stood has recently been found. '4—"However, with this
understanding the various relations we have obtained
Lsuch as Eqs. (8), (12), (17), (23), (24)$ all remain valid.
In other words, even when P((s"}) is negative and
singular, we may continue to use the formalims of the

semiclassical method of calculation as though g((v"))
were u probability, and obtain the correct result. Once
this is understood, it becomes clear that the semiclassical
method is of very great generality.
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The amount of matter traversed in space by the primary cosmic-ray nuclei of energy 50-150, 200—500,
500-1QQQ, and &1500 MeV/nucleon are obtained as 5.5%1.4, 9.1~0.9, 5.3~0.5, and 3.1~0.4 g cm~ of
hydrogen, respectively, using recent measurements of spallation cross sections with proton beams from
accelerators and Li/M ratios of cosmic-ray nuclei (where M denotes nuclei with 6&~Z&~9). These results
and other evidence seem to suggest the hypothesis of two distinct sources (or propagation paths) of cosmic-
ray nuclei, one responsible for nuclei of energy roughly 50—150 MeV/nucleon and the other of energies
greater than this.

'HK amount of matter traversed by primary
cosmic-ray nuclei can be deduced from a determi-

nation of the ratio' L/M or L/5 assuming that the
I nuclei are absent in the source and that they are
produced by fragmentations of heavier nuclei in
collisions with hydrogen in space during their propa-
gation. Such data available at kinetic energy It )1.5
BeV/nucleon show that the matter traversed is 2—3

gem ' of hydrogen. ' ' At lower energies, statistically
significant results on the energy dependence of L/M
have been obtained only recently'; these are sum-
marized in Fig. 1(a). From this figure it is seen that
L/M has a maximum value of 0.5 at 200-500 MeV/

' Heavy nuclei of the primary cosmic rays are generally classided
into the following groups: L: 3 ~&Z ~& 5; 3f: 6 &Z ~& 9; III .
10&Z&~14; H2.. 15~&Z&19; H3. 20&Z~&28; and S:Z 6. Al is
chosen as representative of (H~+Hs) groups and Fe of Hs groups.' G. D. Badhwar, R. R. Daniel, and B.Vijayalakshmi, Progr.
Theoret. Phys. (Kyoto) 30, 615 (1963).

%. R. Vfebber, in Handbmch der Physiv edited by S. Flugge
(Springer-Verlag, Berlin, 1966), 46/2.
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of the International Conference on Cosmic Rays, London, I96$
(The Institute of Physics and the Physical Society, London, 1966),
Vol. 1, p. 383.

~ V. K. Balasubrahmanyan, D. E. Hagge, G. H. Ludwig, and
F. B.McDonald, J. Geophys. Res. 71, 1771 (1966).
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Society, London, 1966), Vol. 1, p. 400.
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nucleon which drops to 0.3 at 50-150 MeV/nucleon
and to 0.25 at E)1.5 BeV/nucleon. It has not been
known so far whether this effect is due to the variation
of cross sections with energy or to the variation of the
amount of matter traversed with energy. The object of
this work is to determine the amount of matter tra-
versed by the low-energy cosmic-ray nuclei as a function
of energy, using the recently available cross-section
data and the experimentally measured ratios of the
cosmic-ray nuclei.

The evaluation of the production rate of I. nuclei is
dificult at present because we need cross sections for
the production of a large number of isotopes, both
radioactive and stable, of I i, Be, and B for a number of
targets, each bombarded by protons of various energies.
These data are not available at present. To circumvent
this difhculty we make use of the experimental Li/M
ratios )Fig. 1(b)j and the recent data on the cross
sections for the production of l,i isotopes. ' "

CROSS-SECTION DATA

The cross sections used by us are given in Table I.
The values of o for C"(p,x)Li', C"(p,x)Li", 0"(p,x)Li',
and 0"(p,x)Lir have been obtained from recent meas-
urements"o; these are shown in Fig. 2. o for N" (P,x)Li'
and N" (P,x)Lir are estimated from the measured cross
section" of 3 pb at 150 MeV for N"(p,x)Li' and by

'R. Bernas, M. Epherre, E. Gradsztajn, R. Klapisch, and F.
Yiou, Phys. Letters lS, 147 (1965).

MR. Bernas, E. Gradsztajn, H. Reeves, and E. Schatzman
(unpublished) ."M. Lefort (private communication).


