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One-Graviton Exchange Interaction of Elementary Particles*
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The interaction of elementary particles of several different spins due to the exchange of a graviton is in-
vestigated. The exact one-graviton exchange potentials are obtained, and then simplified by making various
approximations. The gravitational interaction is found to be independent of the spins of the particles,
provided that the distance between them is large compared with their Compton wavelengths. It is pointed
out that the spin-dependent interaction terms, whose range is of the order of the Compton wavelength, may
be of interest in the theory of gravitational collapse. It is also shown that the gravitational particle-anti-
particle interaction differs from the corresponding particle-particle interaction only by contact interaction
terms.
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'"T is possible to interpret Einstein s theory of gravita-
tion as a Rat-space field theory, and then quantize

it in analogy with the electromagnetic field. ' It would
be interesting to apply the techniques of quantum field

theory to the gravitational interaction of particles of
various spins. It would also be instructive to see
whether the quantum theory leads to any diRerence in
the gravitational particle-particle and particle-anti-
particle interactions.

Because of the smallness of the gravitational coupling
constant, the one-graviton exchange contributions will

provide highly accurate results for our purpose, and we
need consider the coupling of the gravitational and
"matter" fields only in the linear approximation. Thus,
we express the gravitational interaction terms for
neutral particles of spin 0 as

and for photons as

H;„4= -, Ich„„:$F„rF„, 48„„FIr')—: +0(a') . (4)

The contraction for the gravitational field operator h„„,
appearing in the above interaction terms, is given by

h'„, (x)h'g, (x')
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where
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The gravitational interaction of elementary particles
can be investigated by the procedure, which was applied
earlier for the electromagnetic and mesonic interactions. '
However, in the present case even the one-graviton ex-
change contributions turn out to be quite complicated
in the exact form. We shall, therefore, derive the exact
results as well as discuss their significance under
various approximations.

We shall use the center-of-mass system throughout,
and denote the rest mass of a particle as ns, its rela-
tivistic mass as M, its momentum as P, and its energy
as E, so that

M =E/c'= (m'+P'/c')'", (7)

and, for a particle with the propagation four-vector p„,

P=hy, E=chPo, P„'=—X' „'A=mc/h

It should also be not;ed that the gravitational coupling
constant a is related to Newton's constant of gravita-
tion 6 as

a'= 16srG/c4.

s s. N. GuPta, NIIcl. Phys. 57, 19 (1964),
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for particles of spin —,
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P= 41~ P = 41, Pp =Pp, qp =qp,
k=P' —P= —(a' —a). (10)

The scattering matrix element for the one-graviton ex-
change contribution is then given by

S2——(—i/ci'2) (22r) 45 (p+ q
—p' —q')

&«*(P')~'(0') V(k)~(41)~(P), (11)

with
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2. INTERACTION OF. TWO PARTICLES
OF SPIN 0

Consider the gravitational scattering of two particles'
of spin 0 and masses mi and m2. Let the initial and
final propagation four-vectors for the particle of mass
22ll be P and P', and those of the particle with mass m2
be q and q', so that in the center-of-mass system

(a) In the nonrelativistic approximation

Gmim2- 3ezi 3m2 P'
V(r)= — 1+ 4+ +

r 21@2 2mi ski'm2c—

4mGPz'

+ &(r), (»)
c2

where we take ml2»P2/c2 and 22222»P2/c2, and retain
the 6rst- and second-order terms.

(b) In the large-mass approximation
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where we take ml»2222 and 4222»
~
P

~
/c.

(c) In the large-distance approximation
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can be obtained from (12), and expressed as
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~
+
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+ 1+ 8(r), (14)
c'

which evidently reduces to Newton's law in the static
approximation if we drop the contact term.

It is interesting to simplify (14) by making three
different approximations'.

g The one-graviton exchange interaction of two spinless particles
was first investigated by Corinaldesi to obtain the two-body
equations of motion. See E. Corinaldesi, Proc. Phys. Soc. (I,ondon)
A69, 189 (1956).

4 For the Fourier expansion of the field operators we have
dropped the volume factor of the box enclosing the field, which is
known to cancel in the final results.

' Because of the presence of the function b(r) in the exact form
of V(r), it is sometimes clearer to make the desired approxima-
tions in V(k) and then obtain the corresponding V(r).

where u and a* denote the annihilation and creation
operators for spinless particles. 4

The gravitational potential

Transforming the Dirac spinors into the Pauli
spinors, we can express (18) as

S2——(—i/Cl2) (22r) 48 (P+q
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x *(41')0 * (P') v(k)P +(P) (~), (19)
with

where
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3. INTERACTION OF PARTICLES OF
SPIN ~ AND SPIN 0

Let us now consider the scattering of a particle of
spin —,

' and mass m~ with another particle of spin 0 and
mass m~. Let the initial and final propagation four-
vectors for the particle of spin —', be p and p', and those
for the particle of spin 0 be q and q'. Then, the scattering
matrix element for the one-graviton exchange contribu-
tion in the center-of-mass system is given by

s2 —— i(22r) 4b (P—+q P' q') (c—hl42/4—qpk2)

xLl, (l,'+2p q +2P' ——,'k )y-(P')p+(p)
x *(21') (21)—(po+qo) (2poqo+2P' —lk')

xy-(p')~ p+(p)~*(a')~(a) &. (»)
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The above general result can be simplified by making
various approximations, and we then obtain:

(a) In the nonrelativistic approximation

Gm, mo- ( 3ml 3mp P'
U(r) = — — —1+I 4+ +

r E 2mo 2m) mlmoc'

(c) In the large-distance approximation, V(r) agrees
with (17).

4. INTERACTION OF TWO PARTICLES
OF SPIN —,

'
The scattering matrix element for the one-graviton ex-

change interaction of two particles of spin 2 and masses
m& and m2 is given in the center-of-mass system by

So i(2——qr)48(p+q p' —q')—( 1'(c h/4 k')

XL(poqo+y' ——,'k'): (P (p')q„qP+(y)qp-(q')yA (q):
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—~1(pp+qp): 0 (y')0+(y)4 (q')V4'(q):

)lo(po+qo) P (P )74'+(y)P-(q')P+(q):j, (»)
where p and p' denote the initial and final propagation
four-vectors for the particle of mass m&, and q and q'

denote those for the particle of mass m2.
Transforming the Dirac spinors into the Pauli

spinors, we can express (25) as
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which contains a spin-orbit interaction term.
(b) In the large-mass approximation, V(r) agrees

with (16) for m»&mo and ml»! PI/c, while ~0= (—i/ch) (2 )'q)(p+q —P' —q')
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The exact one-graviton exchange potential can be derived from the above results. These results, however, can
be considerably simplified by making various approximations, and we then obtain:

(a) In the nonrelativistic approximation

3mz 3m1 h(e&"+0 "1) (r&&P) |'3mz 3m1 h(e"1—e"1) (rXP)
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which contains tensor and spin-orbit interaction terms.

(b) In the large-mass approximation, V(r) agrees with (24) for mo))mz and mo))
I
P

I
/c.

(c) In the large-distance approximation, V(r) again agrees with (17).

S. INTERACTION OF PHOTON AND PARTICLE OF SPIN 0

We next consider the one-graviton exchange interaction of a photon with a particle of spin 0 and mass m. De-
noting the initial and final propagation four-vectors for the photon as p and p, and those for the particle as q
and q', we obtain for the scattering matrix element in the center-of-mass system

IPchppqp
~ =z(2 )'~(p+q —p' —q') ~*(p')~ (p)~*(q')~(q)

2

po qo p po qo) k p
)( g,, 1+I 4+—+— —1+—+ I + + (k,k~/Poqo) L2+Po/qo+qo/Po], (35)

q, p, p,q, 2qo 2po&poqo po'qo'-

p,u, (p) =0, p, 'a,*(p') =0.
We express a, (p) and c;~(p') as

(36!

~*(p)=c'"'(p)~"'(p)+c'"'(p) ~"'(p),
~''(p') =c'"'(p') ~"'*(p')+c'"'(p')~"'*(p'), (37)

where e&'1(p) and e"1(p) are unit orthogonal polariza-
tion vectors for initial photon, while eo& (p') and e&'1 (p')
are those for the final photon. We also take

e"'(p) &«"'(p) =p/I p I, e"'(p') &«"'(p') =p'/I p'I

e'"(p) = e"'(p') = (p'&&p)/Ip'&&p I, (38)

where the photon annihilation and creation operators
a, (p) and a,*(p') satisfy the relations

and

~+(p) = 2 '"L~"'(p)—z~"'(p) j,
~-(p) = 2 '"i~"'(p)+z~"'(p) 3,

~+*(p') = 2 '"L~"'*(p')+z~"'*(p')J,
~-*(p') = 2 '"L~"'*(p')-z~"'*(p')3,

(39)

where a+(p! and a+"'(p') refer to photons with their
spin axes parallel to their directions of motion, while
a (p) and a ~(p') refer to those with their spin axes
antiparallel.

We then obtain from (35)

Sz——(—z%h) (2zr)'b(p+q —p' —q') a"(q') a(q)
&&I:~+*(p')~+(p)+~-*(p')~-(p) jV(k), (40)
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where

cohopoqozo 4po 2poo
V(k) = — 2+ +

4k' qo qo'

pp qp k—
i
1+ + . (41)

2qo 2p poqo-

The above result shows that the photon preserves its
spin orientation with respect to its direction of motion
when it is scattered by a particle of spin 0, and the re-
sulting gravitational potential is'

GpM i 4p 2p, ')
V(r) = —

I
2+—+

4orGh'( y M
+ I

1+ +—l&(r), (42)
c' E 2M 2@~

vrhere p denotes the relativistic mass of the photon.
In the large-mass approximation, we obtain by

taking M))p, and ignoring the 8(r) term,

V(r) = —2GpM/r, (43)

which agrees with the well-known result that light is
deflected by a heavy object by twice the amount
predicted by the Newtonian theory.

In the large-distance approximation, (42) reduces to

GpM( 4p 2p
12+—+

which agrees with (17) when Mq ——
~

P
~

/c= p and
&2=31.

6. INTERACTION OF PHOTON AND
PARTICLE OF SPIN ~~

The treatment of the preceding section can be ex-
tended to the one-graviton exchange interaction of a
photon with a particle of spin 2 and mass ez, and we
obtain for the scattering matrix element in the center-
of-mass system

~p= ~(2~)'~(P+q P' q—') ("—~&/4Pok') ~'*(P')~ (P)
X (Lb,, (-,'k' —2po' —2poqo)+ p,p 3P-(q')~~+(q)
+(Pp'+P pqo) 4 (q')~(pn ~+p~'V')0'(q)

-l Ll~.;k'+~V 3e-(q')~ (q)), (45)

where p and p' denote the initial and anal propagation
four-vectors for the photon, and q and q' denote those
for the particle.

Transforming the Dirac spinors into the Pauli
spinors, and introducing the polarization vectors and
the annihilation and creation operators for the photons
in the same way as in Sec. 5, we can express (45) as

5&——(—i%A) (2n.)45 (p+ q
—p' —q')

XIt i* (q') r.V+(k) ~+'(p') +(p)
+V-(k) — (p ) -(p) j4' +(q) (46)

with

V (k)= V(k)+U(k), V (k)= V(k) —U(k), (47)

where

V(k) =—p ~ poqo ( po) f qo
—X fqo+X) ( qo+X k ) ( 2P —k ie k+P )11+—

I I 1+ —
I I+I 1+ —

~l + I, (4g)
4k k qp) 5 pp 4pp E qp / E pp 4pp 3 E2qp(qp+X) qp(qp+X)J

2$2K2 i 1
U(k) = —+—[~ (P'+P)].

Po qo
(49)

The result (46) shows that in the present case also the
photon preserves its spin orientation with respect to
its direction of motion during scattering.

After ignoring the contact terms we obtain for the
gravitational potential

GpM t 4p 2p')
V (r)=V (r)= —

i
2+—+

( p p )ho (rXP)
+Gi 1+— 1+ i, (50)

M M+ m) c'r'

' The contact term in (42) appears to have an infrared catas-
trophe for the photon, but we have verified that the scattering
cross section for the process under consideration remains finite
when the photon energy tends to zero.

which reduces to (44) in the large-distance approxi-
mation.

'7. INTERACTION OF PARTICLES AND
ANTIPARTICLES

So far we have considered the interaction of two
different particles. Ke shall now discuss the gravita-
tional interaction of two identical particles and that
of a particle and its antiparticle by considering, for
instance, the ~+-m-+, x+-m=, and m'-m' interactions.

The x+-m.+ scattering matrix element contains a
direct term and an exchange term. However, the effect
of the exchange term is usually taken into account by
symmetrization of the wave function, and therefore for
the derivation of the gravitational potential we need
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The one-graviton exchange potential V +, — for the
++-z— interaction can be obtained by the earlier
methods' and expressed as

U.+.-(r) = U +, +(r)+U'(r), (52)

where V'(r) represents the contribution due to the
annihilation process involving the creation of a virtual
graviton. ' The scattering matrix element for the annihi-
lation process is given in the center-of-mass system by

s '=(—!h)(2 )'~(p+0 p' —0')—
Xa'(p') a'*(~') V'(I )a'(tl)a(p), (53)

where
2p~ p4—2p2$2+ ~~ Q4)V(i)=- 3- — '

~, (54)
po' po'

which contains only contact interaction terms. In
particular, in the nonrelativistic approximation

V'(r) = —(3v Gh'/c') b(r), (55)

which represents an attractive contact interaction.
The x'-x' interaction involves two particles, which

are not only identical but also behave as antiparticles
of each other. In this case the one-graviton exchange
potential is given by

U-o, -o(r) = U-, - (r)+2 U'(r) (56)

provided that a symmetrized wave function is used
for the x'-x' system.

Similarly, the e -e gravitational potential can be
obtained from the results of Sec. 4 by equalizing the
two masses, while the e -e+ gravitational potential
contains only additional contact terms. '

8. CONCLUSION

By investigating the gravitational interaction of
particles of several different spins, we find that in each
case the one-graviton exchange potential can be
expressed as

V(r) = Ve(r)+ V, (r), (57)

where the short-range potential Ve(r) is different in

' The annihilation of two spinless particles with the creation
of a virtual graviton is possible, because the quantization pro-
cedure of Ref. 1 allows the appearance bf virtual spinless gravitons.

'The equivalence of the particle-particle and particle-anti-
particle gravitational potentials, apart from the contact terms, is
essentially a consequence of the invariance of the Lagrangian
density of the matter Geld under particle-antiparticle conjugation.

consider only the direct term. Hence, the one-graviton
exchange potential V +, + for the m+-m+ interaction
can be obtained by putting vs~ ——m2=m in the results
of Sec. 2, which gives us

GM't 6P' P4
V.+,.+(r) = —

~
&+ +

r k M2c' M4c4

4vGh' P'
~b(.). (5I)

c' k M'c'j

each case and vanishes when the distance between
interacting particles is large compared with their
Compton wavelengths, while the long-range potential
VL, (r) has the same form in each case and is given by

P2
X + — . (5&)

~S'~2'~4

The short-range potential Ve(r) contains spin effects,
which have been determined in several different cases
in this paper. The spin-dependent terms can be attrac-
tive or repulsive depending on spin orientations. We
also And that when one of the masses is taken as very
large compared with the other one, the gravitational
interaction between them becomes independent of the
spin of the large mass but depends on the spin of the
small mass. It should be remarked that a phenomeno-
logical investigation of the spin-dependent gravitational
interaction and its possible experimental detection has
been discussed by several authors. ' "According to our
results, the spin-dependent terms become comparable
to the spin-independent interaction only at distances
of the order of the Compton wavelengths of the inter-
acting particles. This may be of interest in the theory
of gravitational collapse. "

Some idea of the long-range potential Vl, (r) can be
obtained by comparing it with Newton s law, which
for the present purpose may be stated in terms of the
relativistic masses as

VN, „g,„(r)= GMgM2(r—

We then observe that:
(59)

9 J. Leitner and S. Okubo, Phys. Rev. 136, B1542 (1964).'0 J. W. T. Dabbs, J. A. Harvey, D. Paya, and H. Horstmann,
Phys. Rev. 139, B756 (1965).

"For a comprehensive account of the theory and problems of
gravitational collapse, see B. K. Harrison, K. S. Thorne, M.
Wakano, and J. A. Wheeler, Gravitation Theory and Gravitational
Collapse (University of Chicago Press, Chicago, 1965).

(1) In the static limit, (58) and (59) agree with each
other.

(2) In the extreme relativistic limit, (5g) is g times
larger than (59).

(3) For the scattering of a photon by a heavy mass,
(58) is twice as large as (59).

Moreover, since Vt. (r) has the same form for particles
of different spins, we conclude within the scope of the
present investigation: The gravitational interaction of
elementary particles is independent of their spins, pro
vided that the distance between them is large compared
with their Compton wavelengths.

Finally, we have shown that the gravitational par-
ticle-antiparticle potential diGers from the correspond-
ing particle-particle potential only by contact interac-
tion terms, and therefore the speculation that matter
and antimatter might repel each other is erroneous.


