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In this paper the subject of radiative equilibrium of a free-electron gas in a uniform magnetic field is
studied on the basis of Landau's quantized particle motion of the electrons and the "Golden Rule" of time-
dependent perturbation theory. The analysis presented here is somewhat analogous to the quantum theory
of blackbody radiation. It is shown that the radiative equilibrium between electrons and their radiation
Geld arises as a consequence of a balance between the two competing processes: photon emission (spon-
taneous plus induced or stimulated emission) and photon absorption. A coupled set of equations, one de-
scribing the time evolution of the photon distribution function and the other describing the time evolution
of the electron distribution function, is thus derived. A simple closed-form solution of the equation for the
time rate of change of the photon distribution function is presented for situations where absorption exceeeds
the stimulated emission. This solution yields equations for the steady-state photon number density and the
radiative relaxation time. It is shown that the steady-state photon number density is the familiar distribution
function corresponding to Bose-Einstein statistics for "complete thermodynamic equilibrium. " The con-
ditions for the existence of overstabilities near the cyclotron frequency and its harmonics are also discussed.
The equation for the time rate of change of the electron distribution function reduces, in the classical limit,
to a Fokk.er-planck equation in which there appear the usual "diffusion" and "dynamical friction" terms.
In the classical limit, it is shown that this coupled set of equations (one describing the time evolution of the
electromagnetic energy density and the other describing the time evolution of the electron distribution func-
tion) is self-consistent, by proving that the average rate of loss of s momentum of the electrons as predicted
by one equation is equal to the average rate of gain of s momentum of their radiation field as predicted by the
other equation. The s axis is chosen to be along the uniform magnetic field.

I. INTRODUCTION
' 'T is well known that a particle of charge q and mass
- - is when placed in a uniform magnetic Geld B=Bs,
performs a circular cyclotron motion in a plane per-
pendicular to the uniform magnetic fieM with a char-
acteristic fundamental frequency ceb ——(qB/pc). Such a
circular motion of the charged particIe is equivaIent to
that of an electrical harmonic oscillator. Thus, a free-
electron gas placed in a uniform magnetic field is
equivalent to a statistical system of a large number of
electrical harmonic oscillators possessing the same
fundamental frequency ~b. According to quantum
theory, these electrical harmonic oscillators will emit
and absorb electromagnetic radiations of frequencies
cok= /cob, where the harmonic number / may take any one
of the values 0, ~i, ~2, , ~~. The emission and
absorption at the zeroth harmonic of the electron
cyclotron frequency ccb (that is, when l=0) is essentially
due to Compton recoil. The positive values (that is,
l=+1, +2, , +~) and the negative values (that
is, l= —1, —2, , —~) of l correspond to emission
and absorption of circularly polarized plane electro-
rnagnetic waves (or photons) whose sense of rotation is
the same as and opposite to that of the gyrating elec-
trons, respectively. It is our aim in this paper to study
the approach to radiative equilibrium of such a coupled
system of electrons and their radiation 6eld in the light
of elementary nonrelativistic quantum mechanics.

This subject of radiative equilibrium of a free-electron
gas in a uniform magnetic field is, of course, somewhat
analogous to the quantum theory of blackbody radia-
tion. It may be recaHcd that, according to Planck
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and Einstein, '2 the blackbody radiation spectrum is

simply a Inanifestation of the radiative equilibrium be-
tween the material oscillators on the walls of the cavity
and their radiation field (that is, the equivalent radia-
tion-Geld oscillators). It is our aim in this paper to ex-
amine the radiative equilibrium between the material
oscillators (that is, the gyrating electrons) within a box
of volume I.' (say) and their radiation field inside the
box. It is therefore clear that there is a very close
physical similarity between a blackbody and a free-
electron gas placed in a uniform magnetic field. In this

paper we will use this physical similarity as a guide for
our mathematical discussions.

We will begin by assuming Landau's quantized
particle motion of the electrons in a uniform magnetic
field and calculate the transition probabilities for emis-
sion (spontaneous plus the induced or stimulated emis-
sion) and absorption of a photon of momentum hk,
energy her&, and polarization vector a&, by an electron
in some initial quantum state by making use of the
Golden Rule of time-dependent perturbation theory.
From these, we will derive a coupled set of equations
for the time rate of change of the photon and electron
distribution functions. This pair of equations provides a
simple physical picture of the way radiative equilib-
rium is established between the electrons and their
radiation held. We will then solve the equation for the
time rate of change of the photon distribution function
and then show that this solution reduces to the familia, r

' P. K. Richtmyer and E. H. Kennard, Ietrodlctioe to 3IIodern
Physics (McGraw-Hill Book Company, Inc. , New York, 1947).

2 L. I. SchiG, Quanta 3fechumics (McGraw-HiH. Book Company,
Inc., New York, 195').
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distribution function corresponding to Bose-Einstein
statistics for "complete thermodynamic equilibrium";
and it yields the familiar two-stream instability for the
zeroth harmonic of the electron cyclotron frequency and
the familiar overstabilities near the cyclotron frequency
and its higher harmonics. We will also calculate the
radiative relaxation time of the system under study.
We will then examine the classical limit of this coupled
set of equations and show that this pair of equations is
self-consistent and that the classical limit of the equa-
tion for the time rate of change of the electron distribu-
tion function is a Fokker-Planck equation.

II. GENERAL THEORY

FIG. 1. Motion of an electron
in Cartesian coordinates.

where the vector potential A(R) for the radiation field

in a box of volume L' can be written in terms of the
usual creation and annihilation operators as

We consider the motion of a free electron of charge q (2srhc' 't'
and mass tt in a uniform magnetic field S=Bz,.

I
See A(R)=ZI, Z ab (ttb e' '"+as. e '"'

)~ (6)

Fig. 1j.Let
& ( I, Ceb e=t, z

R= xi,+yi„+si,= r+zi„
V=v,i,+v„s„+v,i,=v+v, i„
P peie+poie+peie p+peie

be the position, velocity, and canonical momentum
vectors of the electron. One can show that the energy-
level spectrum of the electron is given by' '

where k ab, =0 and Iab, l'=1. Each term in Eq. (6)
represents light quanta all having a inomentum hk,
energy %ok, and polarization vector sl„. According to
time-dependent perturbation theory, the transition
probability j(f;i) from an initial state

I i) of energy E;
to a final state

I f) of energy Ey is given by'

j(f z)=(2~/h) l(f1&' «ls) I'~(E~—«) (7)

E„„,= (ts+ ,') htob+ p-e'/2tt,

where n=0, 1, 2, ,~ and tob ——(qB/ttc) is the electron
cyclotron frequency. The nonzero matrix elements of
the perpendicular velocity and position operators v,
v„x, and y are given by4

v,„„,= —zv„„„,= ( htob/2 t)t"' t't'tet&"

v, =iv = (hto /2tt)'t'rt't e'4'" (3a)

Xo,n i———t'yn, n i= —
t( h/2 tete)b' 'tt't't—e 'e~,

x„ i,„=t'y„ t,„=i(h/2tttob)"'tt'"e'e", (3b)

The photon-electron interaction Hamiltonian that is re-
sponsible for transitions in which only one light quan-
tum is involved is given by"

' L. D. Landau and E. M. Lifshitzr Quantum 3Eechangcs
(Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1958).

4 V. Arunasalam, Princeton Plasma Physics Laboratory
Report No. MATT-439, 1966 (unpublished).

e W. Heitler, The Quantum Theory of RaAation (Clarendon
Press, Oxford, England, 1954).

where P„ is an arbitrary phase factor and the matrix
elements of e+'~" are given by

{N ks-I) Photons

( Nks+ I ) Photons

(Nks-i) photons

(Nks+ I) photons

lE(2o)

Fig. 2o.

JE(2b)

Fig. 2b.
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"

Pro. 2. Emission and absorption of a photon
by a "Landau electron. "

It is our aim in this paper to examine the way in
which radiative equilibrium is established as a con-
sequence of the photon-electron interaction

I
see Eq.

(5)). The fundamental emission (spontaneous plus in-

duced or stimulated emission) and absorption processes
that will drive the coupled electron-photon system to-
wards radiative equilibrium are illustrated in Fig. 2. The
two fundamental processes of emission js(2a) and absorp-
tion jz(2a) illustrated in Fig. 2(a) will determine the
time rate of change of the photon distribution function,
while the time rate of change of the electron distribu-
tion function will be determined by the four funda-
mental Processes of emission jz(2a), js(2b) and absorP-
tion jz(2a), j&(2b) illustrated in Fig. 2(a) and Fig. 2(b).

From Eqs. (1), (2), and (4)—(7) we get the following
transition probabilities for absorption jz and emission

js of a photon of momentum hk, energy htob=hkob

(where the harmonic number I may take any one of the
the values 0, &1, &2, ~, Woo), and polarization
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4v'g') ~ hk, ~
M+(m, n)=

I (mI vw i. I sb, e+'"'In&
I.ohoib j „'J (9)

and SI„represents the number of light quanta all having
a momentum hk, energy h~ob, and polarization vector
c&, To evaluate the matrix elements appearing in Eq.
(9) we will use the simplest form of the multipole
expansion

e+'"'= 1&i(k,x+k„y)—(1/2!)(k x+k„y) +
=1&i,(k+r +k r+)

—(1/2!)(k+r +k r+)'+, (10)
where

and
k =(1/V2)(k, +zk„), (11a)

"+= (1/~&) (&~6') (11b)

and the nonzero matrix elements of r+ and r are given
by

r+ ——(r )*=i{h/tioib)'t'n't'e'o" (12)

where the asterisk means the complex conjugate.
It is clear from the symmetry of the problem under

st:udy that the uniform magnetic fMld B=Bi, defines
the g, axis uniquely while the s and f„axes are not
uniquely defined. That is, the s, and z„axes can be
taken as any arbitrary pair of two mutually orthogonal
axes in a plane perpendicular to B=Bi,. We now average
Eqs. (Sa) and (Sb) over all such arbitrary pairs of axes
(i„i„)since it is not very meaningful to distinguish be-
tween any two of such arbitrary pairs of axes (i„i„)
and we will designate such an average by an angular
bracket around the appropriate quantity. It is relatively
easy to show that

(13a)

where i, j=x, y, and z. Further, one can show that

&('* sb )')= ((i.'b.)')= (l)L1—(i 'b.)'] (13b)

since eb, sb, =l. From Eqs. (9), (13a), and (13b) we
obtain

M(m, n) = M (n, ,m)= &M+(m, n)) = (M+(n, m)&
= (4v'q'/1. 'hoib) {-,'I 1—(i. sb,)']

XLI& I
""'I )I'+l&mI" ""I )I']

+(i, e)'(a h.kp/, )' (mIIe+"'I n) I
') (14)

vector e~, by an electron

j&(2u) =Nb, M+(n+l, n)8„„,+bb, g„
X 8Loib —lomb —k, (v,+hk, /2p, )],

je(2e) = (Nb, +1)M (n,n+l)8„
X8I bib —loob —k, (v,+hk, /2t )], (Sa)

jp(2b) =Nb, M+(n, n l)b„:—„,
X 8)cob lo—ib k—,(v, h—k,/2p)],

je(2b) = (lVb,+1)M (n 1)n—)8„-„
X 8(cob lomb

—k,(—v, hk,—/2p)], (Sb)
where

since the perpendicular velocity and position operators
v and r are Hermitian.

Let 1VoF(E„,v,) represent the number of electrons per
unit volume which are in the quantum state IE„,v, &.

That is, F(E„,v,) represents the probability that an
electron will have a transverse energy E„=(n+—,')hoob
in the (i„i„)plane and a longitudinal velocity v, along
the i, axis. We will assume that this probability func-
tion F(E„,v,) is normalized so that

dv, Q F(E„,v, ) =1.
n=O

(15)

aa—(Nb, /Jo)
I

= dv, p
l9t 1 i e=o

&«NoF «-+i»*')(j.(2~»—NoF(E-, v*)&j.(2~)&}

That is,

/gib
Z {I.iVoM(n, n+l)

Bt )i n~

X 8I cob lomb —kg(v—,+hk, /2tb)]

X L(N,.+1)F(E.+„v.+hk. /t )—N, ,F(E„».)]&, (16)

where &j) is the average value of j averaged over all
possible choices of axes i, and i„. From Eqs. (Sa),
(Sb), (14), and (15) we find that the time rate of change

We now consider the way in which radiative equilib-
rium is established. We will compute (&Nb, /R) and
$8F(E„,v,)/W], the time rate of change of the photon
and electron distribution functions, in consequence of
the photon-electron interaction

I
see Eq. (5)]. Using

Eqs. (Sa), (Sb), (14), and (15) we will now calculate
(KVb, /Bt)i and [BF(E„,v,)/Bt]i, corresponding to the
emission (spontaneous plus induced or stimulated emis-
sion) and absorption of photons of energy hb~b=hkob,
where the harmonic number l=o, ~1, ~2,
The absorption and emission at the zeroth harmonic of
the electron cyclotron frequency (that is, when l=0)
are essentially due to Compton recoil. The positive
values (that is, l=+1, +2, , + ao) and the negative
values (that is, l = —1, —2, ,

—~ ) of l correspond
to absorption and emission of circularly polarized
photons whose sense of rotation is the same as and
opposite to that of the gyrating electrons, respectively.

We recall that in the box of volume I.' we have iVI-„,

photons all having a momentum hk, energy herb, and
polarization vector e~,. Hence the photon number
density is Nb, /L'. By applying the principle of detailed
balance for the transition probabilties per unit volume of
emission and absorption, we obtain from Eqs. (Sa),
(14), and (15)
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of the electron distribution function may be written

t
~

BF(E„,v,) =r. 2 [F(E.+t,v.')(ta(2&)) —I (I-'. ,v.)(i ~(2tz))+I'(I-' t v")—(j~(2b))—I'(j-'- v*)(ja(2b))j
Bt t

([M(tz)n+/) jh[Mk /to—b k,—(v,+hk, /2tt) j[($)„+1)I~'(E„+t)v,.+hk, /tt) Nb,—F(E„)v,)j
k s=1,2

+[hf (n, n /) jh—[tob /tob —k, (v—, .hk, /—2tt) j[IVb.F(E„ t, v, hk,
—)/tt) —(tVb, +1)P(E„)ve) g) . (17)

Equation (17) may be called the "master equation"
in accordance with the terminology used in the con-
ventional transport theory. ' In Eq. (17), the summa-
tion over lz may be written

)—+ dk (density of points in k space)[

It is clear that the erst and second terms in square
brackets of Eq. (20) represent the contributions from
i.nduced or stimulated emission and absorption, re-
spectively, while the third term on the right-hand sid, e
of Eq. (20) represents the contribution from the spon-
taneous emission of photons. UsuaHy,

I 00

dQg 4'dk
2' p

j, (18a) It = dv, "a[rob /tob k,—(v,+—hk, /2tt)]

X [F(E„+,tv+ hk, /tt) —F(F„,v,)](0, (21)
where dQ~ is the element of solid angle. If the medium in
which the electrons are located has a static dielectric
constant Dp, then ago)g'=c'k'. Thus

k'dk= &( Doktob/c') demob= &(D 't'/c)'&ob'dtob. (19)

Using Eq. (19), Eq. (18a) becomes

dcobcob [ ]. (18b)

The coupled set of Eqs. (16) and (17) for the photon
and electron distribution functions provides a simple
physical picture of the way equilibrium is established
between the electrons (that is, the particle oscillators)
and their radiation field (that is, the field oscillators).
It may be noted that the first and third terms of Eq.
(17) represent the gain of electrons in the state ~n, v, )
as a result of emission (spontaneous plus induced or
stimulated emission) and absorption of photons of
energy h&=coh/ to(wbhere the harmonic number /=0,
~1, +2, , &~), while the second and last terms of
Eq. (17) represent the loss of electrons from this state

, n)vdue to photon absorption and emission. It is
therefore clear that the radiative equilibrium arises
as a consequence of a balance between the two compet-
ing processes: photon emission (spontaneous plus in-
duced or stimulated emission) and photon absorption.
This is hardly surprising since this is how Albert
Einstein gave the first systematic deduction of Planck's
radiation formula.

Let us now examine the terms of Eq. (16) in some
detail. In Eq. (16) we write

(tVb,+1)P(E„+t,v,+hk, /tt) Nb, F(E„,v,)—
=N b, [F(E„+t,v,+hk, /tz)

'—F(E„,v,) t

+F(E„+t,v,+hk, /tt) . (20)

C. Kittel, Elementary Statistical Physics (John Wiley & Sons,
Inc. , New York, 1958).

Nb, tot[1—e 'r«""&'j (22)
' T. H. Stix, The Theory of Plasma Waves (McGraw-Hiii Boolr

Company, Inc., New York, 1962).

, &~, and consequently the
absorption exceeds the induced or stimulated emission.
But if, under certain circumstances, the probability
function F(E„,v,.) exhibits an inverted population of
states such that I~)O, then the induced or stimulated
emission will exceed the absorption and consequently
the system of electrons will exhibit maser action for
photons of frequency co&=/tob (where the harmonic
number /=0, +1, +2, , +~). It will be seen
later that, for the zeroth harmonic of the electron
cyclotron frequency (that is, for /=0), the condition
Ip) 0 yields a two-stream instability for large electron
drift velocities, and for l/0 the condition I&)0 yields
the familiar overstabilities~ near the cyclotron frequency
and its harmonics for some values of Tll and T&. Here
T&& and T& are the kinetic temperatures of the electrons
in directions parallel and perpendicular, respectively,
to the uniform magnetic field B=Ib.. It is clear that
when conditions are such that It)0, (BVb, /Bt)t). 0
and consequently, according to Eqs. (16) and (17), there
is no possibility of radiative equilibrium. What may
happen is that the number of photons NI„will keep
increasing until limited by nonlinear effects in the set
of coupled equations (16) and (17), combined with the
effects of the higher order terms which have been
neglected in Eqs. (5) and (7) [that is, the effects of the
higher order terms which occur in the improved form
of Eq. (7) due to Heitler and Ma' and those arising
from the As term which have been neglected' in Eq.
(5)j.

If conditions are such that It(0, then Eq. (16) has
an equilibrium solution. If at time t=0 the number of
photons Nb, =0, then the solution of Eq. (16) for a
uniform homogeneous system is
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where

gy~ (0)—

fdv. g 3I(1z,s+l)8L(A —
luau

—ke(ve+hk, /2y))F(E"+t, vs+hke/p)
n=0

(23)

fdv, P M(e,e+l) 8fco.—%os—k, (v,+hk, /2p))LF(E„, v,)—F(E +i,v,+hk, /p))
n=o

is the number of photons at steady state (that is, when
0=81Vg,/Bt), and

pt(~~)= dve Q PLscVeM(e, n+l))
n=o

Xb/o) l(ae —k, ( —v+hk, /2p))

XLF(E....)-F(E.+', .+hk*/")). (24)
F&»(E- v, )—F,o&i(E„)F„(oi(v,) (26)

by assuming that F(E,v, )—F&"(E„,v,)=~F(E„,v,)
(&F"'(E„,v.), where F"'(E„,v, ) represents the proba;
bility function at thermodynamic equilibrium. For
simplicity we further assume that the system of elec-
trons under consideration is nondegenerate and thus
F"'(E„,v, ) is given by the canonical ensemble distribu-
tion function. "We write

Frpm Eq. (24) we pbtain the radiative equilibrium time F, & &(E„)=2sinh(h" b/2xT~)
or the radiative relaxation time tt(~e) for radiations of Xexpf —(e+ ', )h"e/aT, -) (27a)
frequency ~„=i"e (where the harmonic number l=0,
+1, +2, , +"),

it(co&) = 1/Yt(a&q). (25)
F„&o&(v,) =(1/Qvr)(1/v«) expL —(v» v&)'/v"'), (27b)

where

't is therefore clear from Eq. (22) that the number of
photons 1V„, of momentum hk, energy heep= hi"a, and
pplarization vector e", (in the box of volume L' under
consideration) will increase with time towards a steady-
state value of 2V&, "' as given by Eq. (23).

It is instructive and physically interesting to examine
Eqs. (23) and (24) when the system of electrons is
very near thermodynamic equilibrium. We may do this

v„= (2aT„/p)'". (28)

Here J and!! refer to directions perpendicular and
parallel, respectively, to the uniform magnetic field
8=Bf„Tis the kinetic temperature of the electrons;
and Ir: is the Boltzmann constant. By replacing F by
F&'& in the right-hand side of Eqs. (23) and (24), we
obtain

and

1
(o)—

exp(lhu&b/ T )aexipLh(~e —icos —k.vs)/aT-) —1J
(23')

Lsg, 2sinh(hcob/2aTi)
~,(~„)= (1—exp( —lho&s/aT. ) expL —h(~~ —l~s —k.vd)/xT»))

vr"'vg&! k, !

Xexp—
(op —kos —k, (ve+hk. /2y) s

f Q 3I(1$.n+l) expL —(rs+s)hcu&/aT~)). (24')

to Bose-Einstein statistics. ' ' ' This result is hardly
surprising since the problem under study (that is, the
subject of radiative equilibrium of a free-electron gas in
a uniform magnetic field) is, of course, somewhat
analogous to the quantum theory of blackbody radia-

(nz)
1

Les~"t'v 1)
'K. Huang, Statistical mechanics Qohn Wiley k Sons, inc. ,

New York, 1963).
L. D. Landau and E. M. Liishita, Statistica/Physics (Addison-

Wesley Publishing Company, Inc', Reading, Massachusetts,
1958).

(29)

This is the familiar distribution function corresponding

Equations(22), (23'), and (24') represent the linearized
solution of Eq. (16). For "complete thermodynamic
equilibrium, " F(E,v*)=F&'&(E„v,) and Ti—Tii=T—
(say) and v"=0, then Eqs. (23) and (23') yield
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= 4+
exp(ko~ o/xT, )—1

e xp(ho& o/~ T,)+1 )
, I, (34)

[exp(hoio/xT, ) 1—]'j

(35)~,'= (4~ Voq'/p)

is the plasma frequency of the free-electron gas under
study. From Eq. (34) one finds that for ho»«xT, ,
((++or)'), = (zTi/hooo)'. Thus, we find that the classical
limit of Eq. (33) becomes

lkoio A(CA —looo —kg'Ud)

+ (0.
KTg KT|I

That is,

tion. It may be recalled that, according to Planck and where
Einstein, the blackbody radiation spectrum is simply 00

a manifestation of the radiative equilibrium between ((i'd+2) )av= g (ii+o)~J"i (E )
the material oscillators on the walls of the cavity and
their radiation field (that is, the equivalent radiation-
field oscillators). But Eq. (23') is simply a statement
of the radiative equilibrium between the material
oscillators (that is, the gyrating electrons) within the
box of volume L' under consideration and their radia-
tion field. Thus, there is a very close physical similarity
between a blackbody and a free-electron gas placed in a
uniform magnetic field. and

I.et us now take a look at the condition Ii)0 [see
Eq. (21)].It is relatively easy to see that Ii)0 implies
that

(oo—k,vg(lotto(1 —Tii/Ti) . (30)

It is clear that Eq. (30) represents the necessary condi-
tion for a two-stream instability for l=O, and for
l/0 this equation represents the necessary condition
for overstabilities near the cyclotron frequency and its
harmonics. r Under these conditions Eqs. (23') and (24')
are invalid and Eqs. (16) and (17) do not possess any
equilibrium solution.

Let us now examine specific cases corresponding to
the values of the harmonic number l equal to 0, ~1,
and ~2 in some detail.

III. DETAILED CALCULATIONS FOR A FEW
VALUES OF THE HARMONIC NUMBER l

A. Harmonic Number /=0

7I TilCTiki (d~ oiy —k~Vd)

&iiIk. I

(oia ks~ct
Xexp —

I [1—(f, ek,)']. (36)

hg, =."Vp,

harp�.

(37)

This is the radiative relaxation frequency (that is,
the reciprocal of the radiative relaxation time) of a
classical plasma in a uniform magnetic field for the
case corresponding to l=0.

If 8&, represents the energy in the electromagnetic
wave of wave vector k and polarization vector si„ then

For the zeroth harmonic of the electron cyclotron
frequency, we obtain from Eqs. (3a), (10), (12), and (14) Then the classical limit of Fq (2g) becomes

Xexp—
o~i, —k.(ed+ hk. /2 p)

(33)

x'q'h
M(e, m) = (-:[4(~+l)'+1]k.'[I—('. ".)']

L Goya

+4k.'(z, si„)'), (31)
where

k '=k o+k„'=k' —k, '=k'[1 —(2, k) ]. (32)

Here k=k/k is the unit vector along the photon rno-
mentum hk. In Eq. (31) we have retained only the
leading terms in the multipole expansion. Using
Eq. (31) in Eq. (24') we obtain

x'~'o)„'h
Vo(~~) = (o [4((~+o)')-+1]

4oiip'vier
I
k,

I

Xk '[1—(i, si, )']+4k '(0, sk )'}
X f 1—exp[ —h(&ei, k,od)/xT~~])—

f ~a
lim h„,i"= lim iV„,"'hoo"=(xT'~)

I
. (38)

5 —+0 fi -+0 (GJp —k,od

Equation (38) gives the steady-state emission of elec-
tromagnetic waves of wave vector k and polarization
vector e~, near the zeroth harmonic of the electron
cyclotron frequency by a classical plasma placed in a
uniform magnetic field. As seen from Eq. (21), Eq.
(38) is valid only if k,vz (o». It is clear that
lim~ 0 8&,")—+ large values as k,v& —+ co& and the
system of electrons tends towards the conditions ap-
propriate to that of two-stream instability or inverse
Landau damping. If the medium in which the electrons
are located has a large value for its static dielectric
constant Do, then one may be able to achieve the condi-
tion k,og) a&i, ——(ck/Do"') in practice.

Let us now examine the classical limit of the coupled
set of Eqs. (16) and (17). We may do this with the aid
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of the following relations:

F. =(e+-,')ho)i, ~ E,,= ,'pv'-

E~'(E„,v,) —& F(E&,v,),

0

dE,[ ],

8 hk, 8 8 IIkz 8
F(E„~(,v,.+hk, /p) ~ 1+ hie)b + +-', hl~g +

BEiI P 8Vz l3El P Q'V z

Akz

BENT P, 8Vz

hk, 8 1 Itk, 8 Ak, 8 '

b[idi, i&et, —k,(v—,a hk, /21J)] ~ 1a +— + 6[a&i,—leis —k,v, ],
2p BVz 2 2p O'Vz 2p,

where E& is the kinetic energy of the electrons in a, plane perpendicular to the uniform magnetic field 8=Bi,.
On making use of Eqs. (31), (35), (37), (39), and (18b) one finds, after a certain amount of algebra, that the

classical limits of the coupled set of equations (16) and (17) for l= 0 become

2Mb P(
BBI„ vne, 'k, '[1 (i, ek—,)']

diaz PEj A'I SP '8 O)lc & ~ PI EI)mz 8 a)Ic k-V 1 EI)TI ) 4O

~t o M/c

and

L MIcP Ggb

BF(Ei,v, ) 27r'il'k '[1—(i, e~,)']
Ei2 —Si, Qo[8((u)„.—k,v, )QOF(E„v,)]+Qo[8((oi—k.,v, )F(J'„v,)]

it p My

q2D 3/2 00

dpi, g
47I IM GObC s=1,2

X[~( .—k..,)Q.F(E,...)]+Qo[~( .—k, .)F(E.. .)], (41)

respectively, where the linear diRerential operator Qo is tion is equal to the average rate of gain of the s momen-
tum of the radiation field inside the box.

(42) The average rate of gain of particle s momentum

The first term of Eq. (40) represents the rate of damping

(that is, the so-called Landau damping, the rate of

absorption minus the rate of stimula, ted emission) of

the electromagnetic waves, while the second term of

this equation gives the appropriate classical rate of

spontaneous emission of the electromagnetic waves.

It is seen that Eq. (41) is a Fokker-Planck equation

whose 6rst and second terms represent a "diffusion" and

"dynamical friction, " respectively, in the usual sense.
It is interesting and physically instructive to examine

the self-consistency of the coupled set of Fqs. (40)
and (41). We may do this by examining this coupled

set of equations for conservation laws of z momentum.

That is, we now wish to show from Eqs. (40) and (41)
that the average rate of loss of the s momentum of the

L"Vp electrons in the box of volume L' under considera-

BF(E,,v, )
QFL dVz1 VpPVz

o

J 3~ 2D 3t2

dE., dv, —

X dQy Q [1—(i, .e„)']
s=1,2

(43)

where

Xo= ([(~s/~ ~) &~,]P(~g—k,v.)Q&(E„v,)]
+P(~~—k,v,)F(E,,v,)]) . (44)

In obtaining Eq. (43) from Eq. (41) we have carried
out an integration by parts and the second term result—
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ing from the integration by parts vanishes at v, =+. where

Since the photon s momentum= hk, = ha&b(k, /a&b), we

obtain: ((n+2))-= k+
exp(bee/e?', )—1) (48)

I.~,2DO

dEI d'V

Tg(Mb&N b
—kevin)

X &1

The average rate of gain of the s momentum of the prom pq. (48) one finds that for
radiation field

ACdb((KTz, ((n+2)) =(aTg/~b) .

Thus, we find that the classical limit of Eq. (47) becomes

(45)
Z' '

GO& G)g

iim e*,(,)= — L& —(e. ee.)'j)
2Mbv !k

X dQb p [1—(~,, eb, )']
s=I,2

dII~~ ~z~~ xo

In obtaining Eq. (45) from Eq. (40) we have made use
of Eq. (18b). Thus, from Eqs. (43) and (45) it is clear
that the average rate of loss of the particle s Inomentum
as predicted by Eq. (41) is exactly equal to the average
rate of gain of the s momentum of the radiation field

as predicted by Eq. (40). This result is hardly surprising
and is simply a manifestation of the s-momentum con-
servation relations implied by the Kronecker 8's of

Eqs. (Sa) and (Sb). The Dirac 8 functions of Eqs. (Sa)
and (8b) indicate the conservation of total energy.

(ob&M b kv—g)
Xexp—

) (49)

y+q(~b) and y ~(cob) are the radiative relaxation fre-
quencies of a classical plasma in a uniform magnetic
field for radiations of frequencies co&=co& and ao&= —cob,

respectively [that is, y+q(&ob) and y q(~b) are the radia-
tive relaxation frequencies appropriate to circularly
polarized plane electromagnetic waves whose sense of
rotation is the same as and opposite to that of the
gyrating electrons, respectively). Using Eq. (37), the
classical limit of Eq. (23') may be written

B. Harmonic Numbers /=+1 and I= —1

When the harmonic number l take the values +1
and —1, we obtain from Eqs. (3a), (10), (12), and (14),

M(ee+1)= ( )
hk. 2

X [1—(f, vb, )']+ ki'(z, cb,)', (46)
@GO g

where the term

means that (n+1) belongs to M(n, n+1) and n be-

longs to M(n, n 1). In Eq. (46) we ha—ve retained only
the leading terms in the multipole expansion. Using

Eq. (46) in Eq. (24') we obtain

V+i(~.) = L1—(i. eb.)']
2&bv&)! ke!

( lim Sb,)) yg= (KT=&() . (50)
fi -bo (db —kevet&tdb(1 —T~~/Tz)

Equation (50) gives the steady-state emission of cir-
cularly polarized plane electromagnetic waves of wave
vector k near the electron cyclotron frequency by a
classical plasma placed in a uniform magnetic field.
(l= +1 and l= —1 correspond to radiations whose sense
of rotation is the same as and opposite to that of the
gyrating electrons, respectively. ) For the case of
l=+1, it is clear from Eq. (21) that Eq. (50) is valid
only if rub —k,vz)cob(1 —T»/T, ); and when cob —k,vz

(cob(1—T„/T&) the system under consideration is
unstable in this linearized theory and such a state is
usually referred to as the condition of cyclotron over-
stability. Similarly for the case of l= —1, Eq. (50) is
valid only if cob —k,vz) —rub(1 —T»/T&), and when

Mb k vg( Mb(1 —T&&/T&) the system under study is
unstable.

On making use of Eqs. (46), (35), (37), and (39) one
finds, after a certain amount of algebra, that the clas-
sical limits of the coupled set of equations (16) and (17)
for l=+1 and l= —1 become

X (1—exp(W ~b/x Ti) exp[—k(~ba~b —k.v~)/&T i i]}
(07 b

XR !
—hb, ![&(~b~~b—kev, )Q~&P(&.,v.)]

- (COb )

Xexp—
cobWcub k, (vg+kk, /2y) '—

(47) &[8(cobra&b —k,v.)F(E„v,)], (51)
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and average rate of gain of the s momentum of their radia-
tion Geld as predicted by Eq. (51).

The average rate of gain of particle s momentum

COb

X —~I„
001

BF(Ei,v,))
dv, dl&', I-'h'ppv,

B~

XLB(",~ -k.".)e, "(E,")7}
(52)

~((1+E,Q„)LB(~.~~b-k. '.)~(~.,")7},
where

X ~EJ."+1
Mb)

(55)

respectively, where the linear differential operators & c r r / i e ar&r

~LB(&ob~&ob —k,v, )F(E~,v,)7}. (56)
B k. B)

0+i=
BEi PNbBVq)

(53) In obtaining Eq. (55) from Eq. (52) we have carried
out two integrations by parts, one over dE~ and the
other over dv„and the constant terms resulting from

In deriving Eq. (52) from Eq. (17) we have made use the Parts integrations vanish at E,=O and E~=+~
of the relation and at e,=~ ~.

8
—LB(Mb —l(db kv )—7=0

BEg

The average rate of gain of the s momentum of the
radiation field

for any value of the harmonic number / since the above
b function is not an explicit function of the perpendicular
energy E'. To evaluate the sum Pz in Eq. (52) one has
to ™plyuse the prescription of Eq. (18b). The first
term of Eq. (51) represents the rate of damping (the
so-called cyclotron damping; that is, the rate of absorp-
tion minus the rate of stimulated or induced emission)
of the electromagnetic waves, while the second term of
this equation gives the appropriate classical rate of
spontaneous emission of the electromagnetic waves.
Since E,=p"/2, (B/BE,) =(1/pn)(B/Bv) It is th. erefore

apparent that Eq. (52), which is the classical limit of the
"master equation, " Eq. (17), is a Fokker-Planck equa-
tion whose first and second terms represent a "diffusion"
and dynamical friction, " respectively. It may be
pointed out that Pines and Schrieffer" have previously
obtained somewhat structurally similar equations for
electron-plasmon and electron-phonon systems. But
it must beborne in mind that in this paper we are
dealing only with transverse photons (that is, transverse
bosons) and not with longitudinal and scalar bosons
such as the plasmons or phonons.

Let us now show by examining the conservation
laws of the s momentum that the coupled set of equa-
tions (51) and (52) is self-consistent. That is, we will

now prove that the average rate of loss of a momentum
of the electrons as predicted by Eq. (52) is equal to the

I D. PineS and J. R. SchrieGer, Phys. Rev. j.25, 804 {1962}.

k s=l, 2

d~i —".'Ll —(i. eb )'7 I

2

(k,)
XI —~~i"~i (57)

C. Harmonic Numbers 1=+2 and 1=—2

Similarly, when the harmonic number / take the
values +2 and —2, we obtain from Eqs. (3a), (10),
(12), and (14).

(x+2)(n+1) p'q'hk ')
M(,ew2) =

e(e—1) k L'~by' )

Ak. 2

X L1—(f, eb,)'7+ ki'(f, as,)', (58)
2PQPb

where we have retained only the leading terms in the
multipole expansion. Using Eq. (58) in Eq. (24') we

where we have made use of Eq. (51).Thus, it is readily
seen from Eqs. (55) and (57) that the total s momentum
of the electrons and their radiation Geld in the box of
volume I' under consideration is really conserved.
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obtain
(m'12(ov2hk22 - ( hks ) '

V+2(~.)=
I L1—(2* ".)')+I I k.'(2. ".)' [((~+2)2)-+2((~+2-))-+a)

4&~bv, I k, I (2yb0

X f 1—exp(%2 ~b/~T2) exp[—h(cob&2or b
—k,vd)/zT~ ~])exp—

-cob&2cob —k.(vg+ hk, /2I2) '
(59)

(8 k, 8)
(BR 2p&b &v )

(64)
-2r»AT, ca 'k '[1—(2, sb )']-

11m 'ry2(Mb) =
h ~o 2p&djsVii

i ks
i
Mb and in deriving Eq. (63) from the "master equation"

(17) we have made use of Eq. (54). To evaluate the
sum pk in Eq. (63) we have simply to use the prescrip-
tion of Eq. (18b). It is again apparent that Eq. (63) is a
Fokker-Planck equation.

Tg(Nb&2GDb —ksvg
X &1

T112O)g

where ((22+2')2), and ((n+2)), are given by Eqs. respectively, where the linear differential operators Q+2
(34) and (48), respectively. and Q 2 are
The classical limit of Eq. (59) is

Mb&2b2b —k,v

r
Xexp —

~
. (60)

k,Vlf

Using Eq. (37), the classical limit of Eq. (23'), may be
written

For the case 1=+2, Eq. (61) is valid only if co&—k,vd)2bob(1 —T„/T&), and it predicts an overstability when
cob —k,vz(2cob(1 —T„/T,).Similarly, for the case I= —2,
this equation is valid only if cob —ksvz) —2a»(1 —T„/T&),
and an overstability occurs when coI,—k,vz& —2~t,
X (1 T[[/Tg). On making use of Eqs. (58), (35), (37),
and (39) one finds, after a certain amount of algebra,
that the classical limits of the coupled set of Eqs. (16)
and (17) for I=+2 and I= —2 become

(882,) 2r(o„2k/[1 —(z, 22,)2)
= (a) dvs dE, E,'

k at )~2 4@cog

(207b

x
~

Sa.)Ls(s,wa, — ss)g s(sz, s) j

( lim Bk,)(=~2
h o

r GDp l= (~T„)~ I. (61)
(cob —ksvq&2a&b(1 —T~~/T~))

The average rate of gain of particle s momentum

BF(E„v,)
dv, dE&1.'Sop, v,

8$

2r(o„2k22[1 (2, s—b,)2])
=(W) dv, dE, Q Q

k s=1,2
)4pGOg

where

(k.q
X~ —iE,2x„, (65)

((db)

(kz) (~hbs)

k 1,2 s((gk) ( QI )p2

X/2= ([(2~b/~b)~bs)[&(~2~2~b ksvs)Q/—2F(Es,vs))
~[8(cuka2(ob —k„v,)F(E2,v,))) . (66)

Here again in obtaining Eq. (65) from Eq (63) w.e have
carried out two integrations by parts, one over dE&
and the other over dv„and the constant terms resulting
from the parts integrations vanish at E&——0, EL+~,
and at v, = &~. From Eq. (62) we obtain the average
rate of gain of the s momentum of radiation field to be

and.
&[8(cdb&2cob k,v,)F(E—q, vs))

k 8=1,2

(2r(ov2ks2[1 —(2..22,)2))
dv, dEii

4@Mb

(aF(E„v.) (2~ q'k, '2[1 (2, 2..)2]—)=Z Z iR ~2 k s=&, 2 E L2ragubp2

(k,
Xi —E 2& 2. (67)

— 2~b
X h.. i((2E.+E.'Q+ )

~b
Hence, we find that the average rate of loss of s momen-
tum of the electrons as given by Eq. (63) is equal to the
average rate of gain of the s momentum of their radia-X[b(~2~ b

—ks s)Qg2 (K, s))) t,on field a, g,v,„by Fq (62)

~((2E +E 2Q )p(~2~2~ k v )F(E v )]) (63) that the coupled set of Eqs. (62) and (63) is self-
consistent.
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IV. GENERAL REMARKS

T;„«=3C;.«+ (q'/2 pc') A', (68)

Ke remarked earlier that when conditions are such
that I«of Eq. (21) is greater than zero, there is no

possibility of radiative equilibrium in the above simple

theory and the number of photons &VI„will keep in-

creasing until limited by nonlinear eRects in the set
of coupled Eqs. (16) and (17), combined with the
eGects of the higher order terms which have been
neglected in Eqs. (5) and (7) Lthat is, the effects of the
higher order terms which occur in the improved form of

Eq. (7) due to Heitler and Ma and those arising from

the As term which have been neglected in Eq. (5)].
Under such conditions one has to replace Eq. (5)
by4'

equation appropriate to a free-electron gas placed in
a uniform magnetic field 8=Bi, as

d BF BP—F(rs E, s, t)= +v —+r
dt Bt Br 8s

+oo — gJf"lim, (73)
0

since, for the system under study,

dEy & dv g=—
I

—. pv v] =pv. —=—v (vx B)=0
dt Ct dt c

y(dv, /Ch) =0.
and according to Heitler and Ma' one has to replace

Kq. (7) by

j(f; s) = (2~/&)
I &fl T

I s& I
'B(Eg—E;), (69)

where
&fl 7''.«I j'&&f'I 7'I «&

&fl T lr:&= &f I
T -«I «&+ &

X~.,—E~

Here (BF/Bt)i is given by the coupled set of Eqs.
(16) and (17). It is therefore apparent from Eqs.
(72) and (73) that the transformation f(r,s,v, w„t)
F(r,s,E,,v„f) results in the replacement

(7o)

where
I
f'& is an intermediate sta, te of energy Eq .

The series solution of the integral equation (70) may
be written

&fl7'.«I j'&&7
I
T.«l«&

&fl Tlr&= VI T'- lr&+ &
E.;—Eg

&fl T'-«I f'&&f'I T'-«I f"&&f"
I T*-«I s&

+Z
(E, Ep)(E; Eg )— —

(71)

where
I
f"& is another intermedia, te state of energy Er .

In this way one can, in principle, formulate a quasilinear

particle orbit theory of a free-electron gas in a uniform

magnetic field. ""4

The classical Vlasov equation for a free-electron gas

(that is, a noninteracting system. of electrons) placed in

a uniform magnetic field B=Bi, may be written

~f ~f ~f 0 Bf ~f—yv —+o,—= —(vXB) —=— —,(72)
Bt Br Bz pc 8~ Bt s

where the conventional phase-space distribution func-

tion f is a function of the variables r=xi,+ys„, s,
v =e,s,+v„r",„, v„and f; and (Bf/Bt)n L

—(q/pc)——
X(vXB) (Bf/Bv)] is the rate of change of f due to the

magnetic force acting on the electrons. But in the above
formalism we defined a probability function F as a
function of the variables r, s, Ei (p/2)(v v)=(fi/2)——
X(v,s+o„'), v, and f Then one can .write the kinetic

This has the following simple physical meaning.
(Bf/Bf)r« is the rate of change of f due to the magnetic
force acting on the electrons. That is, (Bf/Bt)n is the
rate of change of f due to the magnetic acceleration of
the electrons. But

+~ BJ
lim

Bt

is the rate of change of Ii due to the emission and a,bsorp-
tion of electromagnetic radiations by the magnetically
accelerated electrons (that is, by the electrons which are
being constantly accelerated by the uniform magnetic
field). Hence, Eqs. (72) and (73) imply the following
simple physical fact: Classically speaking, all accelerated
electrons must emit and absorb electromagnetic radia-
tions and, conversely, only accelerated electrons (or,
more generally, only accelerated charged particles) can
emit and absorb electromagnetic radiations. This is

simply a statement of the familiar classical electro-
dynamics. It is, therefore, clear that under the trans-
forrnation of f(r,s,v, v„t) to F(r,s,Er,vj), the kinetic
equa, tion appropriate to a free-electron gas in a uniform
magnetic field goes over from the familiar Vlasov
equation (72) to a somewhat unfamiliar Fokker-Planck
equa, tion (73).
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Stimulated Brillouin Scattering in Liquids*

ALAN S. PINE
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Stimulated Brillouin scattering in various liquids is examined in a transverse resonator and in a backward-
wave oscillator. Comparison with elementary resonator theory indicates that the data are in satisfactory
agreement for many liquids. The theoretical picture for the unstable backward-wave con6guration is
complicated by phonon transit-time sects, but even here the results establish guidelines for the theory.
It is found necessary to discard the results for some liquids because of self-focusing and other nonlinear
processes which interfere with the Brillouin effect.

I. INTRODUCTION

S OME experiments on stimulated Brillouin scattering
in liquids are devised to test the validity of existing

theories on the subject. The use of a resonator trans-
verse to a laser beam provides the most direct con-
firmation of the quantum theory of Yariv' and Pine'
or the equivalent classical theory of Chiao. s Threshold
behavior of the more conventional backward-wave
conhguration is examined but does not yield conclusive

proof of either the theory of Kroll' or Bloembergen. '
It does, however, indicate the parameters of importance
for any such theory.

Based on measurements of observational thresholds
for 180 and 90' scattering and of total output in the
transverse resonator, the liquids divide into two classes
coincident with the previously distinguished' non-self-

focusing (NSF) and self-focusing (SF) categories. The
NSF liquids behave in stimulated Brillouin scattering
as would be expected from their photoelastic properties.
Self-focusing liquids however correlate poorly with

hypersonic parameters as many pa.rasitic effects are in
evidence.

*This work was supported by the Ofhce of Naval Research.
' A. Yariv, J. Quant. Electron. 1, 41 (1965).

A. Pine, thesis, and College of Engineering, University of
California, Berkeley, ERL Technical Memorandum M-117, 1965
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' R. Chiao, thesis, Massachusetts Institute of Technology,
1965 (unpublished).

' N. Kroll, J. Appl. Phys. 36, 34 (1965).
'N. Bloembergen, NonHneor Optics (W. J. Benjamin, Inc. ,

New York, 1965).
6 N. Bloembergen, P. Lallemand, and A. Pine, in Proceedings of

the Conference of Quantum Electronics, Phoenix, Arizona, 1966
(unpublished); J. Quant. Electron. (to be published).

Spectral output, radiation patterns, and temporal
behavior identify the Brillouin effect. Other competitive
nonlinear effects are disclosed by these measurements
and by study of concomitant Raman radiation.
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Fzc. 1. Experimental schematic for stimulated scattering in a
transverse resonator. A, aperture; F, .ilters; L, lensesj BSp beam
splitters; D, di8useri 1I/4, depolarizer; F-P, interferometer; P,
polarizer; M, mirrors.

~ J. Dennis and P. Tannenwald, Appl. Phys. Letters 5, 58
(1964).

s J. Dennis, Lincoln Laboratory, Solid State Research Report
No. ESD-TDR-65-31, 1964 (unpublished).

9H. Takuma and D. Jennings, Appl. Phys. Letters 5, 239
(1964).

II. EXPERIMENTAL RESULTS

The apparatus of the transverse-resonator experi-
ment is depicted in Fig. 1. It is similar in nature to that
used by Dennis a,nd Tannenwald' to study the Raman
effect and by Dennis' to obtain Brillouin radiation.
Takuma and Jennings' used an off-axis cavity at small

angles to study the Brillouin effect. These latter two
experiments were performed with a limited range of
liquids and in the Dennis case with an a,mbiguous


