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The gravitational quadrupole moment is considered insofar as its effect on the perihelion precession of
Mercury and pericenter precession of satellites is concerned. It is found possible to separate the quadrupole
precession from the precession due to the general theory of relativity. As a corollary, it is found that an
exchange of angular momentum between planet and sun takes place due to the quadrupole moment. This
exchange may help to explain the phenomenon of sunspots and solar flares.

I. INTRODUCTION

HE general theory of relativity (GTR) is unique
in that it arose from a single experimental fact,
the principle of equivalence, and the insight of its
author into the relationship between coordinate frames
and experimental physics. At the time of its promul-
gation one of the major achievements of the theory was
the calculation of the perihelion of the planet Mercury.
Subsequent measurements of the bending of light in
the gravitational field of the sun provided additional
confirmation of the theory. Recently, Schiff* and others
have claimed that it is possible to obtain an expression
for the bending of light, consistent with experimental
observation, without reference to the general theory.
Furthermore, Dicke? has claimed that 259, of the peri-
helion precession may be due to a solar quadrupole
moment.

It is the purpose of this note to indicate that it is
possible to design an experiment to distinguish between
the precession due to the quadrupole moment and that
predicted by the Schwarzschild solution to the field
equations of the general theory of relativity.

In the usual nonrelativistic formulation, the gravi-
tational two-body problem is reduced to that of a point
particle moving in a Newtonian potential,
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where p(7',6',¢’) is the density function for the mass
which produces the gravitational field, and G is the
gravitational constant. If the density function is
spherically symmetric, V (r) reduces to the usual term
for a point mass GM /r. However, if p has an angular
dependence, the form of V(r) depends upon the co-
efficients of the expansion of p in spherical harmonics,
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Then, with 1/|r—r’| expanded in terms of Legendre
polynomials P;(cosO), where O is the angle between r

1L. I. Schiff, Am. J. Phys. 28, 340 (1960).
2 R. H. Dicke, Nature 202, 432 (1964).

149

and r’, the potential becomes
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where R is the radius of the mass distribution and p;™
is the radial coefficient.

For the purposes of this discussion we shall restrict
ourselves to a consideration of those distributions with
axial symmetry, although any actual experiment must
take into account the effect of nonaxially-symmetric
terms. We choose the origin to be the center of mass
and the z axis as the symmetry axis; then the lowest
order correction to the 1,7 potential is the quadrupole
term Q(3 cos?f—1)/7%, where
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The reduced Hamiltonian in spherical coordinates has
the form:
H =1mi+imr22+Lms? sin?0g?
GMm GQm
+
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where m is assumed small compared to M = fF po(r')dr’.
This equation may be considerably simplified by the
usual procedure of restricting the motion to the plane
6=w/2 and choosing fp=0. The Hamiltonian then
reduces to the familiar form:

GMm GQm
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The bound solutions (to first order) for this Hamiltonian
are precessing ellipses with a rate of precession
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For Mercury, and, in fact, for all planets except Pluto,
the restriction to §=m/2 is quite valid, since the angles
between the spin axis of the sun and the normals to the
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planetary planes, the so-called inclination angles 7, are
less than or equal to 6°. It is important to note that the
relevant angle is not the ecliptic angle which is the angle
between the orbital plane of a planet and the orbital
plane of earth, but the angle between the normal to the
orbital plane and the spin axis of the sun.

II. ANGULAR DEPENDENCE

Recent developments in satellite technology permit
the consideration of orbits with various inclinations
and for certain orbits a very large relativistic pre-
cession is possible. In fact, for an orbit with perigee at
1.25 earth radii, a relativistic precession of 400" of arc
per century is possible.® Therefore, one can consider the
case where 6 is different from 7/2. The motive behind
this generalization, which of course complicates the
mathematical analysis, is the possibility of separating
the relativistic effect from the quadrupole precession.
This must be possible since the relativistic effect is
spherically symmetric (S wave) while the quadrupole
term is D wave.

For nonequatorial orbits, the Hamiltonian (5) is
required and one is immediately faced with an odd
effect, the apparent nonconservation of angular mo-
mentum. Because of the presence of the cos?§ term, only
the 2 component of angular momentum is conserved:

dL/dt=[L,H],
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Since angular-momentum conservation is firmly
rooted in physics, the apparent nonconservation must
be due to elimination of those variables referring to the
motion of the sun. However, the retention of the solar
variables would not alter the fact that the angular
momentum of a planet or satellite is not constant, but
that the planet is continually exchanging angular
momentum with the sun. This constitutes a kind of
classical spin-orbit exchange. This exchange causes not
only a variation in the spin rate of the sun, but also a
variation in the direction of the spin axis, the conse-
quences of which will be discussed later.

At present we fix our attention on the angular de-
pendence of the perihelion precession, which requires a
perturbation calculation. The simplest approach in-
volves the classical analog of the interaction repre-
sentation where first the unperturbed Hamiltonian-
Jacobi equation is solved, and, in the new system,

H'=Q(3 cos?9—1)/r3 9)

3 1. Goldberg and E. Marx, Nuovo Cimento (to be published).
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is the new Hamiltonian. H’ must then be expressed in
terms of the new coordinates and momenta (8;a;).
These are determined by the usual Hamiltonian
equations )

Bi=0H/da;.

a;=—0H/dB;, (10)

The solution of these equations is a solution of the
original problem. For the case in point, these equations
are not exactly soluble, but must be solved approxi-
mately. The solutions to first order are
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where we have included only the two equations directly
affecting this discussion.? The first yields the motion of
the pericenter, the second the motion of the orbital
plane. In the above equations the subscript zero indi-
cates the zeroth-order calculation; e is the eccentricity,
a the semimajor axis, w the angle in the orbital plane,
w the angle of the major axis in the orbital plane, ¢ the
polar angle of the normal to the orbital plane.

Equations (11) clearly indicate the possibility of
separating the pericenter precession due to a quadrupole
moment from that due to a Schwarzschild potential,
since for an orbital angle given by sini=4/# the secular
part of the precession vanishes. This effect has already
been observed for earth satellites, and therefore the
possibility of separating the Schwarzschild effect from
the quadrupole precession by means of a satellite
experiment is open.

However, an additional theoretical analysis is neces-
sary before an experiment of this type becomes meaning-
ful; that is the modification of the Schwarzschild effect
due to an asymmetry in the mass distribution. This

4 Theodore Sterne, An Introduction To Celestial Mechanics
(Interscience Publishers, Inc., 1960), p. 123.
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calculation is currently being carried out, but one can
argue on physical grounds that the quadrupole effect
will modify the relativistic effect only by a super-
position.® If this is true, an experiment of the type
proposed above is possible; and in addition this infor-
mation coupled with the known perihelion precession
of Mercury would set an upper limit on the quadrupole
moment of the sun.

One additional effect should be noted for complete-
ness. This is the Lense-Thirring effect,® the effect of
rotation of the central mass on the pericenter pre-
cession. This effect is a pure rotation effect; that is, it
is not due to an asymmetry in the mass distribution.
The precession is given by
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where 7y is the radius of the spherical mass distribution
and 7 is the period of rotation. For Mercury the ratio
of the Lens-Thirring effect to the Schwarzschild effect,
Yrot/ s, is ~4X 107 which is quite small.

III. ADDITIONAL EFFECTS

The exchange of angular momentum between a
planet and the sun discussed in Sec. II can lead to
interesting effects, so that it is worthwhile to look more
closely at the change of angular momentum. In par-
ticular, we shall consider the effect of this exchange on
the sun. The most simple means of qualitatively deter-
mining the behavior of the system is to substitute the
zeroth-order solutions of the Kepler problem into Egs.
(8). The form of the zeroth-order solutions we shall use
is

r=K/(14 € cosw) ,

sing = cost cosf, 13)

where w is the angle variable in the plant of the orbit
expressed by cosf=sins cosw. The first equation is the
motion in the orbital plane, the second the equation
of the plane, with ¢p=0. Equations (8) then become

L,=30Q sin2i cos’w (14 € cosw)’/K?,
L,=—30Q sins sin2w(14-¢o cosw)?/ K3,
L,=0.

(14)

5 A solar quadrupole moment might account for the small dis-
crepancy between observation and the Schwarzschild calculations
of the general theory of relativity.

6 J. Lense and H. Thirring, Physik. Z. 19, 156 (1918).
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It is clear that because of the conservation of angular
momentum to zeroth order these equations can be
changed from time derivatives to angle derivatives and
integrated. The L, contains a secular term which
indicates a continual rotation of the orbital plane, but
it must be noted that perturbation theory breaks down
when the perturbations become large. The L, term is
not secular and leads to an oscillatory behavior of the
orbital plane. Although the motions of the orbital planes
are interesting, it is far more interesting to consider the
effect of this perturbation on the sun. Since the total
angular momentum is conserved, the planets whose
orbital planes are not perpendicular to the spin axis of
the sun exert a torque on the sun which causes the spin
axis to wobble. The effect of this perturbation on a
plasma in equilibrium must cause similar instabilities
in the plasma. We believe that these instabilities may
propagate through the plasma in a type of wave motion
and result in disturbances similar to those which are
called sunspots.

It is clear that the above analysis is qualitative and
that detailed models must be considered carefully before
sunspots can be attributed to a quadrupole interaction.
However, since no satisfactory explanation for sunspots
is known, any new idea is worthy of careful appraisal.
It must also be remarked that the sunspot phenomenon
is periodic and that the period cannot be determined
from the period of oscillation of the spin axis but is
characteristic of the plasma.

We must also point out that this effect is quite small,
~10718Q, and therefore any relation to sunspots is pure
speculation. However, experience with plasma stability
indicates that even very small perturbations may have
a large effect on stability.

IV. CONCLUSION

We have indicated a possible method for measuring
the “perihelion” precession of a satellite due to the
general theory of relativity. Marx and Goldberg have
noted that with the proper choice of orbit the relativistic
effect on an earth satellite can be quite large compared
to atmospheric and other effects. The above work
indicates that the quadrupole precession can also be
eliminated in a manner consistent with the orbits sug-
gested by Marx and Goldberg.?

As a second consequence of this study, the exchange
of angular momentum between a planet and the sun
might serve to explain sunspots. At this time a program
is under way to look at the result of such perturbation
on simple plasma models. A second program seeks to
determine the change in the relativistic precession if
axial symmetry is substituted for spherical symmetry,
in the Schwarzschild problem.



