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Theoretical Basis of the Symmetrization Postulate
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The postulate of symmetrization for identical particles in quantum mechanics does not necessarily follow
from the condition of indistinguishability. Greenberg and Messiah have shown that, under suitable con-
ditions, the selection rule implied by the postulate of symmetrization actually follows from the indistinguish-
ability complemented by some broad assumptions about the quantum system. The aim of this paper is to
show that the most restrictive of these extra assumptions, namely, PCT or time-reversal invariance, is
unnecessary.

'N a recent paper, ' Greenberg and Messiah investi-
~ - gated the theoretical and experimental foundation
of the symmetrization postulate in the quantum-
mechanical treatment of identical particles. They con-
sidered systems describable in the framework of a Pock
space with a certain evolution operator U(t), either
conserving or not conserving the number of particles.
They derived in particular a rather strong selection
rule for transitions which do not conserve the number
Of particles, according to which states, which contain
no more than one particle in any species for which the
symmetrization postulate is still in doubt, cannot
perform trarisitions to states violating the prescription
of symmetrization demanded by this postulate. As a
consequence, starting from the experimentally very well

supported fact that electrons and nucleons are fermions
and that photons are bosons, no violation of the sym-
metrization postulate for the other particles (e.g. , s,
K, A, ~ ) could be observed in any of the present day
experiments, since all of them are collision experiments,
in which the initial states never contain more than one
particle of possibly questionable species.

This selection rule did not appear, however, as a
necessary consequence of the indistinguishability of
identical particles. In order to derive it, two additional
assumptions had to be made. The first one, expressed
as a property of coherence of certain parts of the Hilbert
space, put some condition on the correspondence be-
tween dynamical states and representative vectors. The
second was the invariance of the evolution operator
U(t) under a suitable transformation involving the
reversal of the time, e.g. , time-reversal invariance
proper, or I'CT invariance.

The purpose of this note is to point out that the
latter assumption is unnecessary, and that the selection
rule holds even if U(t) has none of these symmetry
properties.

To show this, we have to prove the following theorem:

If the transition from a state a to a state b stays for
bidden in the course of time, i.e., if (b

~
U(t)

~
a)=0 for all

t) 0, the same holds for the reverse transition:

(a~ U(t) ~b)=0 for all t)0.
'A. M. I. Messiah and O. W. Greenberg, Phys. Rev. 136,

8248 (1964).
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U(t) =
+00

g
—i sstdg

and the infinitesimal generator II of U(t) can then be
defined (in a dense subdomain of the Hilbert space) by

+00

SdEg j (2)

II is the Hamiltonian of the quantum system.
Postulate (b) follows from the requirement that the

total energy of a quantum system cannot take negative

2 The same remark obviously applies to the derivation of the
law of conservation of the degree of symmetry types. Thus, this
conservation law is a property of U(t) which follows from the
indistinguishability of identical particles, without any further
assumption.

'Otherwise stated, it is a set of operators defined for all real
values of the parameter t, with the following properties:

(i) unitarity: U~U= UU~=1.
(ii) composition law: U(t~) U(t2) = U(t~+t&);

(iii) weak continuity in t, i.e., continuity in t of every matrix
element.

One could, as well, start with a set (U(t) }defined in the restricted
domain (0, +~), i.e., with a semigroup rather than with a group.
Taking as a definition of U(t) for negative values of t:

U( —t) = U~(t),

one recovers the group defined above.' See, for instance, F. Riesz a,nd B. Sz. Nagy, Lemons d'analyse
fonctionneUe (GauthIer-Villars, Paris, 1965), 4th ed. , Chap. X.

1008

As can be seen easily by inspection of the argument
of Ref. 1, the application of this theorem makes un-

necessary any recourse to an invariance property in-

volving the reversal of the time. '
The proof of the theorem makes use of the char-

acteristic properties of the evolution operator U(t) of
a quantum system. We postulate, as usual, that:

(a) the motion of the system is generated by a
Hamiltonian;

(b) its energy spectrum, i.e., the spectrum of this
Hamiltonian, has a finite lower bound.

Postulate (a) is equivalent to assuming that the set
(U(t)} is a continuous unitary representation in the
Hilbert space of the group of time translations. ' Ac-

cording to Stone's theorem, 4 such a set admits the
spectral representation
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values (spectral condition). It means that, the support
of the spectral measure dE, has a finite lower bound.
Accordingly, the evolution operator U(t) admits a.

spectral decomposition of the following form:

U(t) =
+00

g
—

s std'It (3)

e-*'"dp (s),

and, since

Thus, we must prove that, if f(t)=0 for all t)0, it
identically vanishes on the whole domain (—~, +~).

We may assume m&0 without any loss of generality,
since an overall shift 6 in the energy scale merely
results in multiplying f(t) by the phase factor e'a' and
does not change the final conclusion. I.et us then
introduce the following function of the complex vari-
able 7'

+co

e "'dt's(s), Imr&0.

Since the integral converges uniformly in v when
Imr&0, F(r) is analytic in the lower half-plane. Fur-
thermore, its limit on the real axis is f(t):

f(t) = limF(t —ie) .
e-+0+

We have now to take into account the condition

f(t) =0 for all t)0.
It means that J (r) vanishes on a certain segment of
the real axis. Therefore, it can be continued through
the operation of Schwarz's principle of reRection be-
yond this portion of the boundary of its domain of
analyticity. In the continuation process, this portion of
the boundary becomes a line inside the domain of

Equation (3) summarizes all the properties of U(t)
that are needed in our proof.

The proof goes according to the following standard
argument.

From (3), we can express the transition amplitudes
under investigation as Lebesgue-Stieltjes integrals.
Using the notation

t (s)=—(b I
E(s)

I a),
we have

analyticity. Since the function vanishes on this line, it
necessarily vanishes on its whole domain and its
boundary value vanishes on the whole boundary. Thus,
f(t) =0 on the whole domain (—~, +~). Q.E.D.

Clearly, postulate (b) played an important role in
our argument. In fact, the above theorem does not
follow from postulate (a) alone, as is shown by the
following counterexample.

Let p(x) be an infinitely differentiable function of
the real variable x, with support contained in the in-
terval L

—1, +1).For concreteness, let us take

q (x)—=e—""—"8(1—x')
with

8(y) =1 when y) 0
=0 when y(0.

In the Hilbert space of square integrable functions of x,
we consider the two vectors ~a) and ~b), which are
defined, respectively, by the functions

a(x) = q (x), b(x) = q (x+2) .

We then consider the continuous group of unitary
operators {U(t)) defined by

U(t) performs the translation of each state by an
amount t along the x axis. It is generated by a Hamil-
tonian whose spectrum is continuous and extends from
—~ to +~. Thus, postulate (a) is fulfilled, but postu-
late (b) is not. Now, we obviously have (b

~
U(t)

~
a) =0

for all t)0, but (a~ U(t)
~
b)WO when 0&t&4.

Thus, in the cases when H is neither bounded from
above nor from below, we cannot expect the theorem
to hold for every pair of states a and b. It still holds,
however, for certain pairs of states. In particular, it
holds when either a or b is an analytic vector. ' Indeed,
under this condition (b

~
U(t)

~
a) is analytic in t over the

whole real axis; therefore, if it vanishes when t&0, it
necessarily vanishes everywhere. The above counter-
example reflects the lack of analyticity of both a(x)
and b(x).

ACKNOWLEDGMENTS

One of us (A.M.L.M.) is indebted to Professor
dell Antonio for an interesting discussion, which actu-
ally stimulated this research, and to Professor Michel
for pointing out a deficiency in a first tentative solution
of the problem.

' Cf. E. ¹lson, Ann. Math. 70, 572 (1959).


