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Effect of Nuclear Spin Correlations on the Scattering of
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The scattering of slow neutrons by spherical-top molecules is discussed taking into account the correlations
in nuclear spin caused by the presence of identical nuclei in the molecule. Matrix elements for the scattering
are evaluted between different symmetrized states using group-theoretical methods. It is shown that
coherent scattering can cause only those transitions which leave the symmetry of the total molecular wave
function unchanged, while incoherent scattering can cause transitions between states of diferent symmetry.
Explicit expressions for the cross section for scattering from methane are derived. These are different from
those obtained by Michael recently in a treatment of the same problem. Formulas for the cross section for
symmetric-top molecules are also derived. Numerical calculations have been performed for the scattering
of 0.025-eV neutrons through a 10' scattering angle by methane gas at 10 and 300'K. It is found, contrary
to Michael's observations, that at 10'K nuclear-spin correlations produce considerable differences in the
scattering compared with the case where their effects are ignored. At 300'K, however, their effects are
negligible. These findings are in accord with the predictions made earlier by Zemach and Glauber.

I. INTRODUCTION
' 'T is well known' that in systems containing identical
~ - particles, the total wave function 4 must transform
into itself under a permutation of the identical particles
if the particles obey Bose statistics, and to (—1)~% if
the particles obey Fermi statistics, where P is the order
of the permutation. Applied to molecules containing
identical nuclei, this restriction due to permutational
symmetry results in a correlation between the space
part and the spin part of the molecular wave function. "
This in turn produces a correlation between the rota-
tional angular momentum of the molecule and the total-
spin angular momentum of the identical nuclei. 4 For
example, if we consider hydrogen in its vibrational
ground state, we find that the states of odd-J value
(where J is the rotational quantum number) are associ-
ated with a total nuclear spin of 1 (orthohydrogen),
while states of even J are associated with a nuclear spin

*Present address: Department of Physics, Iowa State Uni-
versity, Ames, Iowa.' L. D. Landau and E. M. Lifshitz, Quantum 3IIechanics (Perga-
mon Press, Ltd. , London, 1959).' A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 129 (1956).

3 See also Eugene P. Wigner, Group Theory (Academic Press
Inc. , New York, 1959), p. 257.

4 We shall henceforth refer to this correlation simply as spin
correlation. The situation where this correlation is ignored will be
referred to as the uncorrelated case.

of 0 (parahydrogen). Similarly, for methane we have the
state J=O associated with a total nuclear spin of 2
(metamethane), the state J'= 1 with a nuclear spin of 1
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F&G. 1. A schematic drawing of the first few rotational levels
of the methane molecule (in the ground vibrational state). The
states marked + correspond to even parity, and those marked—
correspond to odd parity. The —state arises as a result of in-
version tunneling and, since the barrier to tunneling is very high,
will lie very close to the + state associated with the same J value.
The numbers on the right-hand side denote the multiplicities
associated with a given J for various values of 0, the total nuclear
spin. The numbers on the left-hand side indicate the multiplicities
in the absence of spin correlation.
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(orthomethane), etc. (see Fig. 1). The multiplicities of
the rotational levels are altered as a result of spin cor-
relations, and using the methods of group theory,
Wilson' has calculated these for a number of molecules.
We shall henceforth refer to the multiplicity factors
calculated by Wilson as Wilson factors.

The question now arises as to how the intensities of
the peaks due to the rotational transitions in neutron
scattering will be modified by including the effects of
permutational symmetry. The formal aspects of the
problem have been brieQy considered by Zemach and
Glauber' in a fundamental paper (referred to hereafter
as ZG). These authors show that apa, rt from the modifi-
cations due to the altered multiplicites, the inclusion of
spin correlations results in an extra contribution to the
cross section. This extra contribution arises from the
interference between the incoherent scatterings by the
different identical nuclei in the molecule. Although the
formal framework is available, most calculations' ' of
neutron scattering by molecules have ignored spin-
correlation effects presumably because of the remark
made in the appendix of ZG that such effects are small
for most molecules except at low temperatures. An
exception is the case of hydrogen, which has been treated
in detail by Sarma io and by Young and Koppel
Recently Stiller" has suggested that spin-correlation
effects might not be negligible (for molecules other than
hydrogen) and would have to be considered in making
comparisons between theory and experiments. The
situation regarding the effects of spin correlations on
neutron scattering thus does not appear to be clear, with
conRicting views expressed by Zemach and Glauber and
by Stiller. The actual situation can be assessed only by
performing a detailed numerical calculation. An effort
in this direction has in fact been made by Michael"
recently. Using the formalism of ZG, Michael attempted
to take spin-correlation effects into account for the case
of neutron scattering from methane gas by including the
extra term mentioned earlier and weighting the thermal
distribution over the initial states by the Wilson factors.
Numerical calculations made by him for the scattering
of 0.025-eV neutrons by a hypothetical methane gas at
10'K through a scattering angle of 10' showed that the
partial differential cross section was changed at the most
by about 5%%u~ from the uncorrelated value. Unfortu-

' E. B. Wilson, I. Chem. Phys. 3, 276 (1935).' A. Rahman, J. Nucl. Energy Pt. A13, 128 (1961).
7 T. J. Krieger and M. Nelkin, Phys. Rev. 106, 290 (1957).

G. W. Griping, in Inelastic Scattering of Neutrons in Solids
und Liqmids (International Atomic Energy Agency, Vienna, 1963),
Vol. I, p. 435.

Sidney Yip, Ph.D. thesis, University of Michigan, 1962
(unpublished) .

"G. Sarma, in Inelustic Scuttering of Neutrons in Solids und
Liquids (International Atomic Energy Agency, Vienna, 1960),
p. 397.

' J. A. Young and J. U. Koppel, Phys. Rev. 135, A603 (1964)."H. Stiller, in Inelustic Scuttering of Neutrons in Solids und
Liquids (International Atomic Energy Agency, Vienna, 1963),
Vol. I, p. 468. See also S. Hautecler and H. Stiller, ibid. , p. 423."P, Michael, Phys. Rev. 138, A692 (1965).

nately, Michael's work seems to be based on an incorrect
interpretation of the equation given in ZG, and we have
therefore re-examined the problem. In this paper, "by
considering the structure of the wave function when
spin correlations are present, we show that Michael's
approach is incorrect, and that the thermal average of
the neutron scattering matrix element cannot be ob-
tained by simply considering the element in the uncor-
related case and weighting it by the Wilson factor.
Using group-theoretical methods, we derive general ex-
pressions for neutron scattering by spherical-top mole-
cules containing identical nuclei, under the usual as-
sumptions of no rotation-vibration interaction and
independent averaging over orientations for the rota-
tional and vibrational matrix elements. For simplicity,
we make the further assumption that there is only one
class of identical nuclei in the molecule, and that the
permutation group of such nuclei is isomorphous with
the point group of the molecule. The results can, if
necessary, be generalized to more complex cases.
The selection rules for transitions between (spatial)
states of different symmetry are derived, and explicit
formulas are obtained for the scattering of slow neutrons
by methane gas. Using these formulas, numerical calcu-
lations have been made for the situation considered by
Michael, and it is shown that there are important modifi-
cations to the scattering cross section compared with
those obtained in the uncorrelated case. The calculations
have been repeated for 300'K and it is observed that at
the higher temperature, the inhuence of spin correlation
is much less, as was indeed anticipated by Zemach and
Glauber.

The formulas derived have been extended to the case
of scattering by symmetric-top molecules like ammonia.
Some other applications are also briefly indicated.

II. MATHEMATICAL FORMULATION

A. Spherical-Top Molecule

We wish to discuss in this section the scattering of
slow neutrons by a gas of spherical-top molecules taking
spin correlations into account. As already mentioned in
Sec. I, we shall assume that there is only one class of
identical nuclei within the molecule and that the permu-
tation group 5' of the identical nuclei is isomorphous
with the point group of the molecule.

It is known' '5 that the scattering can be very generally
discussed in terms of the intermediate scattering func-
tion I(Q, t) defined by

I(Q, t) =Q(%'~ tt.tt„expLiQ r„(t)7
VP

XexpL —iQ r„(O)j I
e)&. (1)

Here a„and u„denote the spin-dependent scattering
lengths of the nuclei o and tt, and hQ the gain in mo-

'4 A brief account of this work was presented at the Symposium
on the Inelastic Scattering of Neutrons by Condensed Systems,
Brookhaven, 1965 (unpublished)."A,. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956).



EFFECT OF NUCLEAR SP I N CORRELATIONS

where H is the Hamiltonian of the system. The partial
differential cross section may then be written in terms
of the intermediate scattering function as

d'0.
e '"'I(Q, t)dt, ,

dOdE 2mb ko
(2)

where her is the energy transferred to the neutron, and
ko and k are the magnitudes of the wave vectors of the
incident and scattered neutrons, respectively.

In the presence of spin correlations, it is shown in
ZG that

I(&,&) =&+I Z.,~.~,f"I +)r+&+I Z. C.'f-I +)~
all all

nuclei nuclei

+ 2" c'(elf"z(Q) Ie) (
v Qg4»

identical
nuclei

In Eq. (3), A„and C„denote, respectively, the coherent
and incoherent scattering amplitudes; f„„stands for the
operator expfiQ. r„(t)j exp) —iQ r„(0)); and Z(Q) is
given by

Q(Q+ 1)—gS„(S.+1)
z(Q) =

S,(S,+1).(.-1) '

with S„being the spin of each of the identical nuclei, g
the number of identical nuclei in the molecule, and 0 the
total nuclear spin of the molecule. It is to be emphasized
that 4 in Eq. (3) stands for the symmetrized total
molecular wave function, i.e., a wave function which
has the right symmetry properties with respect to the
permutations of the identical nuclei, as discussed in the
introduction. The last term in Eq. (3) is the extra con-
tribution referred to earlier which vanishes in the un-
correlated case leaving only the first two terms of that
equation, with 0' now standing for the unsymmetrized
total wave function.

To proceed further, we must take into account the
detailed structure of +.Toward this end, it is convenient
to consider first the unsymmetrized form of 4, which,
neglecting rotation-vibration interaction, can be written
as a simple product of the electronic, translational,
rotational, vibrational, and spin functions f.~, P», P/»,
|t and $, respectively, ie.

+=4.uh4i»4 5

Now the molecule will normally be in the electronic
ground state both before and after the neutron-scatter-
ing process. The ground-state electronic function P,~ is
invariant under the permutations of identical nuclei and
hence may be neglected in our further considerations.
Regarding the remaining functions in Eq. (4), we note

mentum of the neutron. The bracket & )~ indicates a
thermal average. The operator r is a Heisenberg oper-
ator defined by

r(() ~iKt/Ar~ /Ht/—A

+=44r~' A 'k (6)

which is what has been done by Rahman, GriKng, and
Vip to derive expressions for the scattering of neutrons

by spherical-top molecules. The use of both Eq. (5) and

Eq. (6) will give the same results, since the first two
terms of Eq. (3) essentially involve traces of operators
over manifolds of degenerate states, and these remain
unaltered when we make a transformation from the
basis (6) to the basis (5). Our object in writing N in the
form of Eq. (5) is mainly to draw attention to the im-
portant differences that arise when spin correlations
are present.

When the effects of permutational symmetry on the
totaL wave function are considered, + cannot be written

the following: In the first place P» transforms according
to the identity representation of O'. Secondly the rota-
tional wave function is the well-known spherical-top
wave function fx~~, where the labels M and I». denote,
respectively, the projection of J, the rotational quantum
number, on a space-fixed axis and on an axis fixed in the
molecule. As for the vibrational wave function, we can
classify it according to the irreducible representations
of 6', since the vibrational Hamiltonian is invariant
under /P. We can therefore write it as psvs, where S
signifies which particular representation of a given type
V, and P which row of this representation the wave
function belongs to. The vibrational energy levels are
thus classified by the pair of indices (V,S). Finally we

observe that the spin function $ is simply the product
of the spin functions for each of the nuclei.

Since the molecular Hamiltonian as a whole is in-

variant under the permutations of identical nuclei, we
can classify both the space part P»P/»P and the spin

part $ of 4 in Eq. (4) in terms of the irreducible repre-
sentation of (P. Let us denote the symmetrized spatial
wave function constructed from the degenerate manifold
fgPx™P//~s Lwhere P runs over all the rows of S, and E
runs over the (25+1) values from —J to +JJ as

$(VSJ3A; Xnr). Here r indicates which particular repre-
sentation of the type ) that the symmetrized function
belongs to, and o. denotes the row of that representation.
In a similar fashion, since 0 is a good quantum number,
we can classify the spin part ( as P(Q; X'n'r') with X', o.',
and r' having meanings corresponding to the indices

X, n, r in qk We can thus write the molecular wave
function 0' in the uncorrelated case as

e=y(VSm~; ~mr)~(Q; Vn'r'), (5)

with the indices p„n,r) and (V,n', r') being completely
independent of each other. By using the wave function

(5) in the first two terms of Eq (3) and. evaluating the
thermal averages, we shall obtain the intermediate scat-
tering function appropriate to the uncorrelated case.
Actually it is unnecessary to use the function (5) for
this purpose. One might just as well work with a molecu-
lar wave function expressed in terms of the reducible
basis i.e., with
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as in (5) but must be expressed in the formz '

e=(1/mg)'t' p re(VSJMtt Xnr)&(Q; harv'), (7)

where mz denotes the dimensionality of the irreducible
representation A,." The representations X and h. are
no longer unrelated as in Eq. (5). In fact, if X* denotes
the representation which is complex conjugate to X, then
A, denotes the representation X* if the identical nuclei
are bosons, and (—1)P X* if the nuclei are fermions,

where I' stands for the order of the permutation n of (P.

It can be shown' that the @ given in (7) transforms in
the right manner under the operations of 5', and further
that it is unique. The indices r and r are, of course,
independent.

We now introduce the wave function (7) into Eq. (3)
and perform the integration over the spin parts and the
summation over r'. We then obtain, writing

(VSJMt;X«)= lz&

for simplicity,

I(Q, t) = (il Q,„A,A„f,„(1/mi)Prt zzti(Q) l i&z+&il P, C.'f,„(1/mi)gn zzq(Q)
l i)z

all all
nuclei nuclei

+ Q„„C„z&ilf «(1/m~)g„zz~(Q)Z(Q) li&z P C '(il f (1/m„)Pn zz~(Q)Z(Q) li&z (8)
identical

nuclei
identical

nuclei

where zzq(Q) denotes the number of times the representation A is contained in the basis of spin functions corre-
sponding to total nuclear spin Q. An expression analogous to the above equation has been deduced in ZG [see Eq.
(2.9)7 without specific reference to any particular type of molecule. This expression, which forms the starting point
of Michael s work, is somewhat misleading in that it is not clearly stated that the matrix elements should be taken
between symmetrized spatial states, and Michael has in fact tak.en the matrix elements between unsymmetrized
states. 'z Michael's approach is equivalent to taking the terms involving h. outside the ma, trix element in Eq. (8),
and performing the summation over I, and A corresponding to a given degenerate manifold separately. This is
clearly not possible since the representations X and A are related, as stated above.

In order to deduce the selection rules, we now introduce the final states t(tV" S" JM'' 't; ) "ot"r")=
l f), upon

which Eq. (8) becomes

I(Q, t) =Q; I'vsgt(T) Qr{[Qn zz—z(Q)7&iI X A„exp[iQ r„(t)]If&&fl&~ A~ exp[ —iQ r~(0)]li&
SSQ all

nuclei

+[Pa zzti(Q)Z(Q)7&ii Q„C„exp[iQ r„(t)] l f)(fig„C„exp[—iQ r„(0)]li)
identical

nuclei

+[Pntzti(Q)7 g. Cz&ilexp[iQ r„(t)]lf)(flexp[ —iQ r, (0)7li)
non-identical

nuclei

+[go zzq(Q)(1 —Z(Q))7 P C '(il exp[iQ r,(t)] l f)(fl exp[—iQ r„(0)7l i&) . (9)
identical

nuclei

I'vsqt(T) is the Boltzmann factor for the degenerate
energy level specified by (USJt) and is given by

exp( —Evs Jt/tzBT)I VSJt(7 ) (10)
Zvs Jt zzvs Jt exp( EvsJt/ttBT)— '

where e&»& denotes the total multiplicity of the energy
level (VSJt) and is nothing but the Wilson factor for
that level. E&»& represents the energy of the level
concerned.

In Eq. (9), we observe that the operators in all the
terms except the last are invariant under all operations

"We have included a normalizing factor (t/tttg&'t which was
omitted by Zemach and Glauber.

'7 Further, Michael has summed the Wilson factors over all
possible symmetries of the vibrational states, whereas the assump-
tion made later in his paper, following GrifBng, is that the molecule
is in its ground vibrational state before and after scattering.

of (P. From group theory" it follows, therefore, that
the matrix elements in the first three terms vanish unless
X=X" and a=n". The operators in the last term are not
invariant and hence can cause transitions between
states of diAerent symmetry. It may thus be seen that
only the incoherent scattering from the identical nuclei
can cause such transitions. Although the selection rules
given above have been deduced with special reference to
the spherical-top molecule, they are in fact quite
general. 2 '4 Thus, in the case of the hydrogen molecule
in the ground vibrational state, we have the well-known
result" that coherent scattering can cause only transi-
tions between states of the same total nuclear spin, i.e.,
ortho to ortho or para to para states, while incoherent

"V. Heine, Group Theory &s Quantlnz Mechanics (Pergamon
Press, Inc. , New York, 1960).
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scattering can cause a spin-Rip, i.e., ortho-to-para,
transition.

Having derived the selection rules, we are still faced
with the problem of evaluating the matrix elements be-
tween symmetrized spatial states in Eq. (8). For this
purpose, we use the result proved in Appendix A,
namely, that if 0 is any operator, and lt; are a set of
functions forming the basis for a reducible representa-
tion of a group (P, then

PQ (Xnr)
~
O

~
y(X~r))

FIG. 2. Schematic drawing of the
methane molecule. The body-fixed
axes are also shown.

u-C

5$$
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where B is the order of the group, and X, n, r, and m),
have the same meaning as before. X&~&(R) is the character
of R in the irreducible representation X. E;.; is the re-
ducible representation according to which the &fr; must
transform under (P. If X is not contained at all in the
reducible representation, (11) will identically vanish. In
our case, the reducible basis lt, ltd~~&&tt&vs transforms
under the operation R of group (P according to

R(P P J3rp v8)

g Dx,x (R)Dt, ,v(R)g, g„,z.V,, vs (12)

where Dtt ttv(R) denotes the irreducible representation
V, 8 is the pure rotation associated with the point
group operation R, and Dtr. tr (8) is the well-known
rotation matrix of order J which may be calculated
according to the formulas given in Rose."We may note
that 8 does not connect states with different 3E.'

Using Eqs. (11) and (12) in Eq. (8), we get for the
first term (i.e., the intermediate scattering function for
coherent scattering), for instance,

XDrr rr ~(R)Dtt. ttv(R) (&frt&frtr ~~iPtt vs
~

XZ., A.A J..IA V84x'%t) (13)

The symbol A stands collectively for V, 5, J, M, t, X,

R, P', P, E', and E. The matrix element in Eq. (13)
connects unsymmetrized states and may therefore be
evaluated by methods employed previously by Griffing. '

r„= t&+b„+u„, (14)

where y is the position of the center of mass of the
molecule, b„ is the vector from the center of mass to
the equilibrium position of the vth nucleus in the mole-

cule, and u„ is the displacement of the nucleus from this
position due to molecular vibrations.

We now make the following assumptions, as was done
earlier by GriS.ng:

(1) There is no correlation between the translational
motion and the rotations and vibrations. Further there
is no correlation between the motion of nuclei in different
molecules. This is permissible since we are considering
a gas.

(2) The averaging over orientations of the molecule
Inay be performed separately for the rotational and
vibrational matrix elements. This assumption is neces-
sary because the vibrational matrix element,

its" I
exp[iQ u.(t)] expL —iQ u.(0)jIA ")

and the rotational matrix element,

lexpLiQ b.(t)3«pL —iQ b.(O)jlltx' )

both depend on molecular orientations. Actually GriSng
does the averaging over orientations of the vibrational
matrix element classically. The validity of this approxi-
mation of separate averaging for the rotational and
vibrational parts, and further doing the averaging in
the case of the vibrational part classically, has been
discussed by GrifFing.

Making use of these assumptions, Eq. (13) may be
written as

This involves factorizing the matrix element into a
product of three matrix elements connecting respec-
tively translational, rotational, and vibrational states.
To do this we erst write

I.,&(Q t) =Eg{(p&,x*&"&(R)gn ns(Q))(&&t t ( exppiQ y(t)7 expL —iQ .9(0)j~lt«)r

X P Pvsq(T)g(1/H)Dtt. tt (R)P P Dtr. tr (B)(&frtt &frtr ~Q„„„AAe pxL'iQ (u„(t)+b„(t))]

Xexp L
—iQ (u„(0)+b„(0))$

~
&frtr. Ptt. ) . (15)

Here X is the number of molecules and the summations over v and p now run only over the nuclei in one molecule.
The thermal average of the translational part has been separated out and the Boltzmann factor Pvs J(T) is given

"M. E. Rose, Eternentary Theory of Angular iVontenturn (John Wiley 8z Sons, Inc. , New York, 2957).
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TABLE I. Character table for point groups Td and 0 and Wilson factors for the first few rotational levels of CH4 in the ground vibra-
tional state. xsp(R) and xq(R) denote the characters of the reducible representations generated by the spin and rotational wave functions,
respectively. rls(D) is as defined in the tert. while nz(J) is the number of times the irreducible representation X is contained in the
reducible representation corresponding to that J.n J+ and nJ are the multiplicities for the even and odd parity levels corresponding to
the various 0 (see Fig. 1).The Wilson factors are obtained by summing the contributions from the different 0 s.

Td
0

A1
A2
8
Tl
T2

8C3
8C3

—1
0
0

3C2

3C2

1
1
2—1

60.d
6C2

—1
0

1

654
6C4

1—1
0
1

gs(Q) P ns(n)
@=0 @=1 @=2

5
0
0
0
0

Ng(J)
J=0 J=i J=2 J=3 J=4

xo(R)
x (~)
X2(~)
x (~)
x~(R)

1
9

25
49
81

1
0—5
7
0

1—3
5—7
9

1—3
5—7
9

1
3—5—7
9

ng
0
1
2

Wilson
factor

'SJ
0 1 2 3 4
0 0 5 0 9
0 9 0 21 27
0 0 0 35 0
0 9 5 56 36

0 1 2 3 4
0 0 5 0 9
0 0 15 21 27
5 0 0 0 45
5 0 20 21 81

by
exp( Ev sg/kBT—)

~VSJ(T)
Q vs' iivs J exp( Evs J/kB—T)

The vibrational and rotational parts are written together at this stage. Their separation will be carried out later.
As mentioned previously, if the representation X is not contained in the manifold of states (VSJM), then there is
no contribution. from this X to I„s(Q,t). We can therefore formally allow X to run over all the irreducible representa-
tions of 8 and thus do the sum P&, x"&~&(R)gn es(Q) separately. This is of great use in actual computations.

Similar expressions may be derived for the other contributions to the intermediate scattering function in Eq. (9)
by substituting C„ for A. and Pn Z(Q)es(Q) for Pn eq(Q) where necessary, and summing over the appropriate
nuclei.

We shall now specifically consider the scattering from methane. Methane is a spherical-top molecule with carbon
at the center of mass, and the four C-H bonds arranged tetrahedrally (see Fig. 2). The permutation group of the
protons is isomorphous with the point group Td of the molecule. We shall assume, with Griffing, that the molecule
is not excited from its ground vibrational state either thermally or by the neutron. This means we can confine our
attention to the two lowest vibrational states, transforming according to the one-dimensional irreducible repre-
sentations A~ and A2 and corresponding to even and odd parity, respectively. These two states will be electively
degenerate owing to the extremely high barrier for the inversion tunneling of the protons. Since A& and A& occur
only once each, the summation over S in Eq. (15) disappears and because of the eRective degeneracy of the two
levels, the Boltzmann factor reduces to

exp( —EJ/kBT)
&~(T)=

Qg eg exp( —Eg/kBT)

where Ez is the energy of the rotational level J and nz is the Wilson factor (see Table I) for that level (including
both + and —parity states). The various matrix elements in Eq. (14) may now be evaluated. For the translational
part we have

Q,
~
exp[iQ g(t)] exp[—iQ y(0)] ~

f,)r ——exp{—(Q'/25K) (i7it+tskBT) }, (17)

as shown by Zemach and Glauber. "5R denotes the mass of the molecule. Further it is shown in Appendix 8 that

(Prr~srg»~P„„A„A„exP[iQ (b„(t)+u„(t))]exP[—iQ (b„(0)+u„(0))]~/"'f» ~ )
= (pic~"~P"2t P» A„A„exp[iQ (b„(t)+u„(t))]exp[—iQ (b„(0)+u„(0))]~ P Qrr )
=Q„A„A„exp(—Q'y„„)pre

~
exp[iQ b„(t)] exp[ iQ b„(0))—]~err ), (18)

where P"' and f~' stand for the vibrational parts of the wave function in the states At and As. The quantity
exp( —Q'7„„) on the right-hand side of Eq. (18) is the Debye-Wailer factor associated with zero-point vibrations,
the constant y„„having the same meaning as in the work of Griping. The rotational part, when evaluated using
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the methods of Rahman' and Yip and summed over 3f, yields the result

gQ« ~~exp['iQ b„(t)] expr —i(}.b„(0)]~/« ~)= P expLit(Eg —E~-)/h](2J+1)(2J"+1)(—1)«+«'
Jr rKrr

P(4x/(2l+1))j&(Qb„) j&(Qb„)C(JJ"l; KK—")C(JJ"l; K'—K")Yp««"~(0„,&„)Y,&«' «"&"(e„,y„). (19)

In deriving (19) we have expanded the matrix element in terms of the ordinary rotational final states P«"~"~"
rather than the symmetrized states. Since f« ~"~" form a complete set, this is permissible. The C's are the usual
Clebsch-Gordan coeKcients, ' the F s are the spherical harmonics, " and j~ denotes the spherical Bessel function
of order l. The (8„,&„) represent the polar co-ordinates of the vth nucleus with respect to a set of axes fixed in the
molecule. '0

Using Eqs. (14)—(19) in Eq. (2), and performing the time integration, we obtain for the coherent scattering
cross section per molecule

(ko+n)'
Z Fz(T) exp—

kdQdE)„h 2m. h ko Q'AT) (2h2Q2ksT/~)

X P L««g A„A„exp(—Q'y„„)F„„(JJ"KK'), (20)
KK' V JLC

where

and

n= (h'Q'/2BR) Eg+E—& g. ,

L ~ =Z(1/&){D '(R)Z &*'"'(R)Z (~~) 2 '"(R)),
0 V=Ay)A2

(21)

(22)

F„„(JJ"KK')= Q (2J+1)(2J"+1)(—1)«+«' g(4n/(2l+1)) j&(Qb„)j&(Qb„)
lKll

XC(JJ"l; KK")C(JJ—"l; K'K")Y&'«—"'(0 P ) Y&'x' «"*(8„,4„). (23)

(ha)+n)'

(
d'0. ) 1 k 2m5K )'t'

F~(T) exp
dQdEJ;, 27rh ko Q2k~TJ (2h'Q'k~T/QR)

X{Q L«.«P C„'exp( Q'y»)F»(JJ—"KK')+ PM«.«P C„'exp(—Q'y». )F».(JJ"KK')), (24)
n K'K P.P'

pap'
vrhere LK.K is as defined before and MK'K is given by

It is to be noted that in Eq. (22) as R runs over the operations of T, R runs over the operations of the isomorphous
group of pure rotations, O.

Remembering that carbon has zero incoherent-scattering amplitude, we have in a similar fashion for the in-
coherent scattering"

M««=Q(1/II){D««~(R)Q X*&"&(R)gZ(Q)eg(n) Q x&r&(R)}.
F=Ay, A2

(25)

The two terms on the right-hand side in Eq. (24) denote, respectively, the self and irtterferenee parts of the scatter-
ing. The terms may be regrouped in a slightly different fashion as

{Q M«'«Q Cy exp( —Q'r»')F» (JJ"KK')+ g (L««M««)g C„' exp( Q'r„„)F»(JJ"K—K')), (26)
K'K ~pl K'K u

to display respectively the nortfliP and fliP components of the incoherent cross section, as discussed previously. It is
to be noted that x"'(R)=—x"'(R) for operations of the group involving improper rotations, while x"'(R)= +X"'(R)
for operations involving pure rotations. Hence in the formulas given above, we could drop the summation over V
and let R run over just the operations of the rotational subgroup T of Td, and take H to be the order of this sub-

"It is important to note that the operations R of the group must also be expressed with respect to the same set of axes."In writing out the terms explicitly, we shall denote ~ and p by P when they refer to the same proton, by p and p' when they refer
to different protons, and by C when either of them refers to carbon.
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Operation

(1 2 3 4)
(14 2 3)
(1342)
(3 2 4 1)
(42 13)
(413 2)
(2 43 1)
(2 3 14)
(3124)
(2 143)
(43 2 1)
(3412)

0
(2/3)~—(2/3)7I.
(4/3)~
(2/3) w

0
(4/3)~
(2/3)e.

0
(4/3}
(2/3)m

0

0
(1/3) ~
(5/3) ~
(5/3)Ir

(1/3)~

(5/3)-
(1/3) 71-

TABLE II. Eulerian angles for the operations of the point group
T. The operations are indicated by the permutations they effect
on the protons (see Fig. 2). The Eulerian angles are defined as
in Ref. 19. cosg= —(1/3).

group. This in fact has been done by us in the numerical
calculations, and bears a close resemblance to the way in
which %ilson' calculates the multiplicity factors by
considering essentially only the subgroup T. Further
simplifications are possible in the expressions given
above for the cross section. It is shown in Appendix C
that LKIKF„(JJ"KIC') is the same for all equivalent
nuclei (i.e., all protons), and that LK KF„„(JJ"KK') and
cVK KF„„(JJ"EK') are the same for all equivalent pairs
(i.e., all pairs pp and Cp). Further, methane being a
spherical top, it is allowable and convenient to choose the
molecule-fixed axes with the origin on the carbon atom,
the Z axis along one of the C-H bonds, and the XZ plane
containing another C-H bond (see Fig. 2). (The Eulerian
angles for the various operations of T for this choice of
axes are given in Table II.) In this case we have

F„„(JJ"KK')= (2J+1)(2J"+1)(—1)K+K' Qg gP(Qb )C(JJ"/,; KK)C(J—J"I K'K)bK. K—, (27)

F„,(JJ"KK')= (2J+1)(2J"+1)(—1) +K' Q( g('(Qb„)(4 s/(21 +1))' '
XC(JJ"l,; KK)C(J—J"1; K'K)P&—'K' K&(8»), (28)

(29)Fc„(JJ"KK')= (2J+1)js(Qb, )~K'Kb JJ",
Fcc(JJ"KK')= (2J+1)6K~Kbll ~, (30)

d'~ q 1 k 2~OR (~+n)'
Q Pl(T) exp

dOdE). ,h 2~h ks Q'k~T zz" (2h'Q'k T/OR)

X p LK K{4&,'exp( —Q'y»)F»(J "J KK) +1 A2„'exp( Q'», ,)F„,(JJ"—KK')

where 8». denotes the angle between two C-H bonds, and Pp(8) is the associated Legendre polynomial. "We
thus finally obtain

and
+gllc~ ~ exp( —Q'vc, )FC„(JJ"KK')+~c' exp( —Q'ycc)Fcc(JJ"KK')), (31)

(' d'o ) 1 k 2~OR (hcu+n)'»l(T) exp-
kdQdEl;„. 2mh ks Q'kgT (2h'Q'knT/OR)

X{Q LK'K4Cr exp( Q'err)F»(JJ"KK—')+ Q MK K12C~s exp( —Qs7», )F»,(JJ"KK')), (32)

with F»(JJ"EK') etc., being given by Eqs. (27)—(30). It is interesting to compare the formulas in Fq. (31)
and Eq. (32) with the expressions for the uncorrelated case,

d'o ) 1 k /, 2z.OR (Puo+n)'
P Pl(T) exp

dQdEi, .„2 h ko(Q'knT (2h'Q'knT/OR)

and

J+Jll

X (2J+1)(2J"+1){4A„'exp( —Q'p») P jP(Qb.„)+122„'exp( —Q'p» )
l=i J—J"

/

J+Jl I

X Q j l (Qbr)PE(8»')+g&c&r exp( —Q'yc, )js(Qb,)4l"+~c exp( Q 7'cc)4l-), (33)
i=IJ—J"~

(
d'a 1 k 2m OR )'" (haI+n)'

Z Pl(T) exp
dQdE i11C 2W A k 0 kg & (2h'Q'knT/OR)

X (2J+1)(2J"+1){4C„'exp( —Q'y») Q jP(Qb~) ) (34)
I J—J")
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derived by Grif5ng. In the last two equations, Pz(T) has the meaning

exp( —E~/k~ T)
P~(T) = (33)

Q J(2J+1)' exp( —FJ'/k&T)

and P&(8) is the Legendre polyonmial. We observe that apart from the difference in Pz(T) due to the Wilson factor
there are several other differences in the expression for the two cases, and the complexity of the formulas for the
correlated case arises essentially from the mixing of the states with diferent E.

B. Symmetric-Toy Molecule

The discussion given above for the spherical-top molecule is easily extended to symmetric-top molecules lib.e
ammonia. In. this case, part of the (2J+1)-fold E degeneracy is removed, and only the levels with E=&

~
E

~
for a

given J are degenerate. The rotational levels may thus be labeled by (J,~E~) and the reducible basis that we must
start with is f,psvsp«~~, with p running over all rows of S as before, but E now restricted to & (E~. By con-
structing symmetrized functions from this unsymmetrized basis and proceeding exactly as before" we obtain
instead of Eq. (20)

( d'0 1 k]2 B7rR Jl I (ho)+n)'
exp—

EdodF. „& 2~h koEQ'k~T (2h'Q'k T/5K)

X P g P A.A„exp( —Q'y„„)F„„(JJ"EE'~E"~), (36)
K=+]K/ X'=+jX/ vp

where
n=h'Q'/2BR Eg«+Eg «—

and 1.«.« is the same as in Eq. (2 ); F„„(JJ"EE'~E"~) is also the same as in Eq. (23) but with the summation
over E"being restricted to & (E"~. The Boltzmann factor Pz~«~(T) is now given by

exp( —Ej[«[/k«T)
P~t«i(T) =

Z&l«l '1&l«l exp( +J'I«l/k& )

eq~«~ being the Wilson factor for the level (J,)E[) including as before, both positive- and negative-parity states.
Similarly for incoherent scattering we have

( d'0 1 k 2~92 Jl I (ha&+n)'
P~i«i(T) 2 2 exp—

kdodF;, 2mh ko Q'k«T z ~«~=o (2h'Q'k&T/Ott)

X { Q Q 1««g C,' «p( —Q'y. .)F..(JJ"EE'~E"
~ )

X-~~X~ X'=g(XI

+ Z Q ~«'K p C,' «p( —Q''r. „)F,„(JJ"EE'~E"
~ )), (37)

K-y[x/ x'=y]x/ v Qp~
identical

nuclei

M««having the same meanings as in Eq. (25). The corresponding expressions in the uncorrelated case are

( d'0 1 k 2~OR (h(o+n)'
2 Pz[«i(T) Z exp ——

(dodF „g 2~h ko Q'kgT z «" (2h'Q'k~T/RY)

Xp A„A „exp(—Q'y„) (2J+1)(2J"+1)Q j&(Qb„)j &(Qb „)
v jL & 2l+1

X Y) ««" (8„,$„)Y('«'«(8„,@„)[C( JJ1; EE")]' (38)—'

and

(
d2~ ~ 1 k 2~m~'~' (hM+a)'

P Pz(«((T) 2 exp
dQdEi;. 2 hk Q'k Ti J"«" (2h2Q2k~T/5E)

4~
XP C ' exp( —Q'y„,)(2J+1)(2J"+1)P j i'(Qb, ) ~

Yi~«« ~(8„$,) ~

'LC(JJ"/; EE")]' (39)—
& 2l+1

22 As jn the case of the spherical-top molecule, the inversion splitting in the symmetric-top molecules also is very small at least for
our purposes. The positive- and negative-parity levels are therefore. electively degenerate and this fact has been made use of in
deriving Eqs. (36) and (37).
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A possible further application of the formulation de-
veloped here is to the case of hindered rotations. If we
consider the "weak-held" limit where the molecules are
only slightly hindered by a fluctuating field which has
no symmetry, then the degenerate manifold of rotational
states characterized by (J,M) will be split into a number
of levels corresponding to the irreducible representations
of the point group of the molecule, as this symmetry
will still be left in the Hamiltonian. Then the "sym-
metrized" wave functions discussed above may be re-
garded as good "zero-order" wave functions to be used
to calculate the scattering. Additional complications
would of course be introduced by the fact that the final
states would now also have to be expressed as sym-
metrized combinations.

% 3000-

1500-

0
0.00 0.01 0.02 0,03

NEUTRON ENERGY (eV)

0.04

450

300

0
0.05

APPENDIX A

We shall prove the relation (11) given in the text.
Consider the matrix A which completely reduces the
representation of (P provided by the basis P;. I.et us
denote the symmetrized function P(l~«) with the help
of a single

suffix

as P;, with i running over all the rows
of all the irreducible representations contained in the
reducible representation generated from the basis f;.
We then have

4'= E ~~.'ttj. (A1)

Now if 0 is any operator, we can, using our compact
su%x, write

g(q(l ~) lolq(x«)) =P"(y, loly;), (A2)

where the superscript on the summation on the right-
hand side denotes that it picks out only rows traris-
forming according to the irreducible representation P.
Using Eq. (A1), we then obtain

p(yp. nr) I
0

I y(xnr))
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Fzo. 5. Results for the scattering of neutrons by methane gas
at 300'K in the correlated case. As in the previous figure, L and R
denote the scales on the left and right side, respectively. The
uncorrelated case gives almost the same results, the difference
being at the most 0.7%.

U= P A—'RAx*&"&(R),
zQg

(A4)

where R denotes the reducible representation of the
operator R of the group with respect to the basis lt;.
Since A completely reduces the representation R, the
matrix A 'RA will have the box diagonal form

Di"(R.)

A-'RA = D&"(R)

D&s&(R).

where D&"(R), D"'(R), D' '(R) denote the S
different irreducible representations (not necessarily
all distinct) contained in R. It is clear that U also will
have a box diagonal form. A typical element of U will be

U p Qri(A 'RA) p——gi, Di, i*&"&(R), (AS)

where k runs over all the rows of the irreducible repre-
sentation X.

We now recall a well-known theorem regarding ir-
reducible representations" which states that

Z~ D'~'"'(R)D~i*'"'(R) = (H/~~) &,~~'a&, i. (A6)

Making use of this orthogonality relation, it is easily
seen that

U ~
——(H/mq)8 ~ if n and P refer to diagonal boxes cor-

responding to the species X, (A7)
=0 otherwise.

We have used the unitary property of A in deriving the
last step. Consider now the matrix U defined by

In other words, U is a diagonal matrix with (H/mq)
=p(p~g, ,,g,,—i}(g,. lOlp, ,). (A3) along rows which transform according to X, and with

zero in other rows.
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Let us now define another matrix P by

P=Qg x*&'&(R)R.

From Eq. (A4) we have

(14)]
u„=r„—g—b„. (81)

Further, let g stand for the coordinates u„associated
with the "inverted" configuration. u, is given by

P=AUA-'. (A9) u„=r„—p+b„. (82)
Thus

I';;= QA; t Ut tA(; '=(Fl/rrtg)Q" A;,A;, '. (A10)

But, from (A8)

»'~=K~ x*"'(&)&~'~, (A11)

whence Eq. (A3) becomes

P(y(Xnr) I Ol @(xnr)&

=Z(~./&)x*"'(&)&~'tQ~ IOIA )

which is the required result.

APPENDIX 8
In this appendix, we shall establish the relation given

in Eq. (18).Let g denote collectively all the vibrational
coordinates u„associated with a given configuration of
the methane molecule, where u„ is given by [see Eq.

If P (g) describes the ground-state vibrational wave
function, then because of the inversion symmetry of
the molecular Hamiltonian, P (g) must also be a wave
function with the same eigenvalue. However, neither

P (g) nor f (g) has a well-defined parity, and since the
wave functions must have a well-dined parity, we
construct the linear combinations

(1/v2) {4.(g)+4.(g)}, (83)

(1/v2) {4.(g) —N. (g) ) (84)

having, respectively, positive and negative parities.
Evidently (83) transforms according to the irreducible
representation A q [since P„(g) and P„(g) both transform
according to Aq, being ground-state wave functions],
while (84) transforms according to A2, and we may
denote them simply as P"' and P~'. The two states
P"' and P~' are effectively degenerate owing to the high
barrier for inversion tunneling. Physically this would
mean that the nuclei are strongly localized about their
equilibrium positions and that f„(g) and P„(g) overlap
very little. We may therefore write

Qx'~4"'I 2 A.A I exp[iQ (u (t)+b (t))] expL —iQ (up(0)+b p(0))] I 4 "4x ™&

=g A„A„Qx~~rlexp[iQ b„(t)]exp[—iQ b„(0)]l|tx~~&(p"'Iexp[iQ u, (t)] exp[—iQ u„(0)]If~'&,
Vttt

=Q -,'A.A {(0'.(g) I
U Itt' (g)) +(f (g) I

v ltt' (g)) )G (85)

The suSx av above denotes an average over orienta-
tions. It is necessary when the rotational and vibra-
tional parts are separated, as explained in Sec. II. The
operator U.„ is exp[iQ u, (t)]exp[—iQ u„(0)], and

G„„is the rotational matrix element. In a similar fashion,
we can show that the right-hand side of (85) is also
equal to

Q ~~&"'IQ A„A„exp[iQ (u„(t)+b„(t))]

&«xp[—iQ (u„(o)+b„(o))]I
p~Vx, ~~&.

Since the operator inside the matrix element in (86) is
invariant under the group of permutations of identical
nuclei, the matrix element vanishes. "On the other hand,
substituting for tt

"& and P"' from Eqs. (83) and
(84), we obtain [neglecting overlap integrals between

P„(g) and P„(g)],

(P" Ig A,A„G„„U,„IP&)..
=& lA A.G"{8 (g) I V"lk. (g)&-

Now let us consider

Qtr~~f~'I Q A.A, exp[iQ (u„(t)+b„(t))]
Hence

—
&& (g) I v"lk. (g)&-).

Xexp[—iQ (u„(0)+b„(0))]I
P~yx, »~&,

This can be expressed in the form

&0"'1».A.G"V" I &"&- (86)

Q.(g) I
U..l~.(g)&,=(~.(g) I U,.ly. (g)&..

The quantity Q „(g) I V,„lp,(g)& has been evaluated by
Griping and shown to be equal to exp( —Q'y„„), where
p,„is a constant. Using this result and (87) in (85) we
obtain the result quoted in Eq. (18).
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APPENDIX C

Because of the symmetry of the molecule, every
proton can be transformed into any other proton by a
rotation S belonging to the point group 0 which, as we
have already remarked, is isomorphous to the point
group T~. Likewise all proton-proton pairs can be
transformed into each other by the operations of 0,
and the same is true of all carbon-proton pairs. Thus for
each term in the sum over v or (v,p) in

Lx.Ir Q„„A„A„exp(—Q'y„„)F„„(JJ"EE'),
and

M P„„C„' p(—Q' „„)F„„(JJ"E'K'),

ol

(Lx x Mx x) Q—, C„2exp( —Q'y. ,)F„(JJ"K'K),

which involve protons (see Eqs. (20) and (24) and (26)j,
we transform the molecular axes by the rotation S in
order to keep the arguments (8„, p„) and (8„,&„) the
same. Since 8 will now have to be expressed in terms of
the new axes, we shall have to replace Drr. x~(R) by

Drr x~(S 'RS). Further since

x*&»(Z)=x*&»(R)=x*&»(S'-MRS),

and in a similar fashion

x~ &(R)=x& &(S 'RS)

we may write for each transformed term

LJr.x Q——(1/H)(Q X*'»(S—'RS)Q mg(Q)
Rgg X 9

X Q &&v&(S 'RS))-DJr.x~(S 'RS)—.
F=A1,ig

Now S 'BS is simply another member of the group 0,
and as we are summing over all the operations of the
group, I~ ~ will be unchanged as a result of the trans-
formation by S. It follows, therefore, that I.J„-'zF„„
X(JJ"KK') is the same for all equivalent nuclei, and
the sum over all such nuclei is simply obtained by cal-
culating it for one nucleus in the equivalent set and
multiplying it by the number of nuclei in the set. The
same holds for all equivalent pairs (v,p) in Lz'&F„„
X(JJ"EK')and Mx'JrF„„(JJ"KK').


