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The scattering of slow neutrons by spherical-top molecules is discussed taking into account the correlations
in nuclear spin caused by the presence of identical nuclei in the molecule. Matrix elements for the scattering
are evaluted between different symmetrized states using group-theoretical methods. It is shown that
coherent scattering can cause only those transitions which leave the symmetry of the total molecular wave
function unchanged, while incoherent scattering can cause transitions between states of different symmetry.
Explicit expressions for the cross section for scattering from methane are derived. These are different from
those obtained by Michael recently in a treatment of the same problem. Formulas for the cross section for
symmetric-top molecules are also derived. Numerical calculations have been performed for the scattering
of 0.025-eV neutrons through a 10° scattering angle by methane gas at 10 and 300°K. It is found, contrary
to Michael’s observations, that at 10°K nuclear-spin correlations produce considerable differences in the
scattering compared with the case where their effects are ignored. At 300°K, however, their effects are
negligible. These findings are in accord with the predictions made earlier by Zemach and Glauber.

I. INTRODUCTION

T is well known! that in systems containing identical
particles, the total wave function ¥ must transform
into itself under a permutation of the identical particles
if the particles obey Bose statistics, and to (—1)P¥ if
the particles obey Fermi statistics, where P is the order
of the permutation. Applied to molecules containing
identical nuclei, this restriction due to permutational
symmetry results in a correlation between the space
part and the spin part of the molecular wave function.?3
This in turn produces a correlation between the rota-
tional angular momentum of the molecule and the total-
spin angular momentum of the identical nuclei.* For
example, if we consider hydrogen in its vibrational
ground state, we find that the states of odd-J value
(where J is the rotational quantum number) are associ-
ated with a total nuclear spin of 1 (orthohydrogen),
while states of even J are associated with a nuclear spin

* Present address: Department of Physics, Iowa State Uni-
versity, Ames, Iowa.

1L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Perga-
mon Press, Ltd., London, 1959).

2 A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 129 (1956).

3 See also Eugene P. Wigner, Group Theory (Academic Press
Inc., New York, 1959), p. 257.

¢ We shall henceforth refer to this correlation simply as spin
correlation. The situation where this correlation is ignored will be
referred to as the uncorrelated case.
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of 0 (parahydrogen). Similarly, for methane we have the
state J=0 associated with a total nuclear spin of 2
(metamethane), the state J=1 with a nuclear spin of 1
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Frc. 1. A schematic drawing of the first few rotational levels
of the methane molecule (in the ground vibrational state). The
states marked - correspond to even parity, and those marked —
correspond to odd parity. The — state arises as a result of in-
version tunneling and, since the barrier to tunneling is very high,
will lie very close to the 4 state associated with the same J value.
The numbers on the right-hand side denote the multiplicities
associated with a given J for various values of ©, the total nuclear
spin. The numbers on the left-hand side indicate the multiplicities
in the absence of spin correlation.
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(orthomethane), etc. (see Fig. 1). The multiplicities of
the rotational levels are altered as a result of spin cor-
relations, and using the methods of group theory,
Wilson?® has calculated these for a number of molecules.
We shall henceforth refer to the multiplicity factors
calculated by Wilson as Wilson factors.

The question now arises as to how the intensities of
the peaks due to the rotational transitions in neutron
scattering will be modified by including the effects of
permutational symmetry. The formal aspects of the
problem have been briefly considered by Zemach and
Glauber? in a fundamental paper (referred to hereafter
as ZG). These authors show that apart from the modifi-
cations due to the altered multiplicites, the inclusion of
spin correlations results in an extra contribution to the
cross section. This extra contribution arises from the
interference between the incoherent scatterings by the
different identical nuclei in the molecule. Although the
formal framework is available, most calculations®—? of
neutron scattering by molecules have ignored spin-
correlation effects presumably because of the remark
made in the appendix of ZG that such effects are small
for most molecules except at low temperatures. An
exception is the case of hydrogen, which has been treated
in detail by Sarma,’® and by Young and Koppel.l!
Recently Stiller'? has suggested that spin-correlation
effects might not be negligible (for molecules other than
hydrogen) and would have to be considered in making
comparisons between theory and experiments. The
situation regarding the effects of spin correlations on
neutron scattering thus does not appear to be clear, with
conflicting views expressed by Zemach and Glauber and
by Stiller. The actual situation can be assessed only by
performing a detailed numerical calculation. An effort
in this direction has in fact been made by Michael'®
recently. Using the formalism of ZG, Michael attempted
to take spin-correlation effects into account for the case
of neutron scattering from methane gas by including the
extra term mentioned earlier and weighting the thermal
distribution over the initial states by the Wilson factors.
Numerical calculations made by him for the scattering
of 0.025-eV neutrons by a hypothetical methane gas at
10°K through a scattering angle of 10° showed that the
partial differential cross section was changed at the most
by about 59, from the uncorrelated value. Unfortu-

5 E. B. Wilson, J. Chem. Phys. 3, 276 (1935).

¢ A. Rahman, J. Nucl. Energy Pt. A13, 128 (1961).

7T. J. Krieger and M. Nelkin, Phys. Rev. 106, 290 (1957).

8 G. W. Griffing, in Inelastic Scattering of Neutrons in Solids
and Liquids (International Atomic Energy Agency, Vienna, 1963),
Vol. I, p. 435.

9 Sidney Yip, Ph.D. thesis, University of Michigan, 1962
(unpublished).

10G. Sarma, in Inelastic Scattering of Neutrons in Solids and
Lz'qui;ls (International Atomic Energy Agency, Vienna, 1960),
p. 397.

7. A. Young and J. U. Koppel, Phys. Rev. 135, A603 (1964).

12 H. Stiller, in Inelastic Scaitering of Neutrons in Solids and
Liquids (International Atomic Energy Agency, Vienna, 1963),
Vol. T, p. 468. See also S. Hautecler and H. Stiller, ibid., p. 423.

13 P. Michael, Phys. Rev. 138, A692 (1965).
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nately, Michael’s work seems to be based on an incorrect
interpretation of the equation given in ZG, and we have
therefore re-examined the problem. In this paper,!¢ by
considering the structure of the wave function when
spin correlations are present, we show that Michael’s
approach is incorrect, and that the thermal average of
the neutron scattering matrix element cannot be ob-
tained by simply considering the element in the uncor-
related case and weighting it by the Wilson factor.
Using group-theoretical methods, we derive general ex-
pressions for neutron scattering by spherical-top mole-
cules containing identical nuclei, under the usual as-
sumptions of no rotation-vibration interaction and
independent averaging over orientations for the rota-
tional and vibrational matrix elements. For simplicity,
we make the further assumption that there is only one
class of identical nuclei in the molecule, and that the
permutation group of such nuclei is isomorphous with
the point group of the molecule. The results can, if
necessary, be generalized to more complex cases.
The selection rules for transitions between (spatial)
states of different symmetry are derived, and explicit
formulas are obtained for the scattering of slow neutrons
by methane gas. Using these formulas, numerical calcu-
lations have been made for the situation considered by
Michael, and it is shown that there are important modifi-
cations to the scattering cross section compared with
those obtained in the uncorrelated case. The calculations
have been repeated for 300°K and it is observed that at
the higher temperature, the influence of spin correlation
is much less, as was indeed anticipated by Zemach and
Glauber.

The formulas derived have been extended to the case
of scattering by symmetric-top molecules like ammonia.
Some other applications are also briefly indicated.

II. MATHEMATICAL FORMULATION
A. Spherical-Top Molecule

We wish to discuss in this section the scattering of
slow neutrons by a gas of spherical-top molecules taking
spin correlations into account. As already mentioned in
Sec. I, we shall assume that there is only one class of
identical nuclei within the molecule and that the permu-
tation group @ of the identical nuclei is isomorphous
with the point group of the molecule.

Itis known?1%that the scattering can bevery generally
discussed in terms of the intermediate scattering func-
tion I(Q,?) defined by

I1Q,H)=3(¥|a.a, exp[iQ-1,(2)]
Xexp[—iQ-r,(0)]| ¥)r. (1)

Here a, and a, denote the spin-dependent scattering
lengths of the nuclei » and u, and %#Q the gain in mo-

14 A brief account of this work was presented at the Symposium
on the Inelastic Scattering of Neutrons by Condensed Systems,
Brookhaven, 1965 (unpublished).

15 A, C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956).
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mentum of the neutron. The bracket (- - - )7 indicates a
thermal average. The operator r is a Heisenberg oper-
ator defined by

1(t) = eiltIhpg—iHtih

where H is the Hamiltonian of the system. The partial
differential cross section may then be written in terms
of the intermediate scattering function as

d% 1 %
=——— [ e=t[(Q,1)dt,

= @
dQdE 2 ko

where 7w is the energy transferred to the neutron, and
ko and % are the magnitudes of the wave vectors of the
incident and scattered neutrons, respectively.

In the presence of spin correlations, it is shown in
ZG that

I(Q)t) = <\I,! Zu:rp AvAyfvp.l \I’>T+ <‘I’; Zuv Cv2fw! \I’>T

nuclei nuclei
+ 2o X[ fuZ( @[ ¥)r. ()
v #pu,
identical

nuclei

In Eq. (3), 4, and C, denote, respectively, the coherent
and incoherent scattering amplitudes; f,, stands for the
operator exp[iQ-r,(t)]exp[—iQ-r,(0)]; and Z(Q) is
given by

2(Q)=
Sy(Sr+1)n(77_ 1)

with S, being the spin of each of the identical nuclei, 7
the number of identical nuclei in the molecule, and Q the
total nuclear spin of the molecule. It is to be emphasized
that ¥ in Eq. (3) stands for the symmetrized total
molecular wave function, i.e., a wave function which
has the right symmetry properties with respect to the
permutations of the identical nuclei, as discussed in the
introduction. The last term in Eq. (3) is the extra con-
tribution referred to earlier which vanishes in the un-
correlated case leaving only the first two terms of that
equation, with ¥ now standing for the unsymmetrized
total wave function.

To proceed further, we must take into account the
detailed structure of ¥. Toward this end, it is convenient
to consider first the unsymmetrized form of ¥, which,
neglecting rotation-vibration interaction, can be written
as a simple product of the electronic, translational,
rotational, vibrational, and spin functions e, ¥+, ¥z,
¥y and &, respectively, i.e.,

Y=y rivE. )

Now the molecule will normally be in the electronic
ground state both before and after the neutron-scatter-
ing process. The ground-state electronic function ¢, is
invariant under the permutations of identical nuclei and
hence may be neglected in our further considerations.
Regarding the remaining functions in Eq. (4), we note

SPIN CORRELATIONS 3
the following: In the first place ¢ transforms according
to the identity representation of ®. Secondly the rota-
tional wave function is the well-known spherical-top
wave function Y7, where the labels M/ and K denote,
respectively, the projection of J, the rotational quantum
number, on a space-fixed axis and on an axis fixed in the
molecule. As for the vibrational wave function, we can
classify it according to the irreducible representations
of ®, since the vibrational Hamiltonian is invariant
under ®. We can therefore write it as yg"*5, where S
signifies which particular representation of a given type
V, and B which row of this representation the wave
function belongs to. The vibrational energy levels are
thus classified by the pair of indices (V,S). Finally we
observe that the spin function £ is simply the product
of the spin functions for each of the nuclei.

Since the molecular Hamiltonian as a whole is in-
variant under the permutations of identical nuclei, we
can classify both the space part Ywry. and the spin
part £ of ¥ in Eq. (4) in terms of the irreducible repre-
sentation of ®. Let us denote the symmetrized spatial
wave function constructed from the degenerate manifold
Yl Mys¥ S [where B runs over all the rows of S, and K
runs over the (2/+1) values from —J to +J] as
&(VSTMt; \ar). Here r indicates which particular repre-
sentation of the type N that the symmetrized function
belongs to, and « denotes the row of that representation.
In a similar fashion, since Q is a good quantum number,
we can classify the spin part £ as £(Q; N'ar") with X, o/,
and #/ having meanings corresponding to the indices
A\, @, 7 in ¢. We can thus write the molecular wave
function ¥ in the uncorrelated case as

V=¢(VSTMt; \ar)E(Q; N'v'), (5)

with the indices (\,e,#) and (\,o/,") being completely
independent of each other. By using the wave function
(5) in the first two terms of Eq. (3) and evaluating the
thermal averages, we shall obtain the intermediate scat-
tering function appropriate to the uncorrelated case.
Actually it is unnecessary to use the function (5) for
this purpose. One might just as well work with a molecu-
lar wave function expressed in terms of the reducible
basis i.e., with

¥ =yubr’ "Ys" 3k, (6)

which is what has been done by Rahman, Griffing, and
Yip to derive expressions for the scattering of neutrons
by spherical-top molecules. The use of both Eq. (5) and
Eq. (6) will give the same results, since the first two
terms of Eq. (3) essentially involve traces of operators
over manifolds of degenerate states, and these remain
unaltered when we make a transformation from the
basis (6) to the basis (5). Our object in writing ¥ in the
form of Eq. (5) is mainly to draw attention to the im-
portant differences that arise when spin correlations
are present.

When the effects of permutational symmetry on the
total wave function are considered, ¥ cannot be written
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as in (5) but must be expressed in the form?:?
m
U=_1/m)"2 3, ¢(VSTMi; Nar)E(Q2; Acr’), (7)
a=1

where m, denotes the dimensionality of the irreducible
representation A\.!® The representations N and A are
no longer unrelated as in Eq. (5). In fact, if \* denotes
the representation which is complex conjugate to A, then
A denotes the representation A* if the identical nuclei
are bosons, and (—1)P«\* if the nuclei are fermions,
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where P,, stands for the order of the permutation « of ®.
It can be shown? that the ¥ given in (7) transforms in
the right manner under the operations of ®, and further
that it is unique. The indices 7 and 7' are, of course,
independent.

We now introduce the wave function (7) into Eq. (3)
and perform the integration over the spin parts and the
summation over 7. We then obtain, writing

o (VSTMt; Nar) = |i)

for simplicity,

1(Q,0)=i| %m A A fru(1/m) 20 na(Q) | D)3 21}” Cl2fo(1/m)Xa na(Q) | 2)r

nuclei nuclei

+ 2o CXil fuu(1/m) e nma(@Z(Q) |i)r— X CXi| fu(1/m) X e na(QZ(Q)| i)z, (8)

identical
nuclei

identical
nuclei

where 7,(Q2) denotes the number of times the representation A is contained in the basis of spin functions corre-
sponding to total nuclear spin Q. An expression analogous to the above equation has been deduced in ZG [see Eq.
(2.9)] without specific reference to any particular type of molecule. This expression, which forms the starting point
of Michael’s work, is somewhat misleading in that it is not clearly stated that the matrix elements should be taken
between symmetrized spatial states, and Michael has in fact taken the matrix elements between unsymmetrized
states.}” Michael’s approach is equivalent to taking the terms involving A outside the matrix element in Eq. (8),
and performing the summation over N and A corresponding to a given degenerate manifold separately. This is
clearly not possible since the representations A and A are related, as stated above.

In order to deduce the selection rules, we now introduce the final states ¢p(V"S”"J""M"t"; N"’'y'")=| f), upon

which Eq. (8) becomes

1
1(Q0)=2%: van(T)m— 2420 nA(fl)]@']Zuv 4, expliQ - 5,() ]| ){fI X Ay exp[ —iQ-ru(0) ][ 4)

nuclei

F 2o ma@Z Q)| 2, CexpliQ-n,()]] )24 Cu exp[—iQ-1,(0)]]7)

identical
nuclei

+F[2Xana(@)] 2

non-identical
nuclei

C.Xilexp[iQ-1,() ]| /)(f] exp[—iQ-r,(0)]|4)

Hom(@U-Z(@)] X, CXilexp[iQ (@) ]| f){flexp[—iQ-r.(0)][5)} . (9)

identical

Pysr(T) is the Boltzmann factor for the degenerate
energy level specified by (V.SJ¢) and is given by

eXp<—EVSJt/kBT)

Pysi(T)= )
2 vssiwvsss exp(—Evssi/ksT)

(10)

where 7y g7, denotes the total multiplicity of the energy
level (V.SJf) and is nothing but the Wilson factor for
that level. Eygs; represents the energy of the level
concerned.

In Eq. (9), we observe that the operators in all the
terms except the last are invariant under all operations

16 We have included a normalizing factor (1/m))'/? which was
omitted by Zemach and Glauber.

17 Further, Michael has summed the Wilson factors over all
possible symmetries of the vibrational states, whereas the assump-

tion made later in his paper, following Griffing, is that the molecule
is in its ground vibrational state before and after scattering.

nuclei

of ®. From group theory!® it follows, therefore, that
the matrix elements in the first three terms vanish unless
A=)\" and a=¢"’. The operators in the last term are not
invariant and hence can cause transitions between
states of different symmetry. It may thus be seen that
only the incoherent scattering from the identical nuclei
can cause such transitions. Although the selection rules
given above have been deduced with special reference to
the spherical-top molecule, they are in fact quite
general.21* Thus, in the case of the hydrogen molecule
in the ground vibrational state, we have the well-known
result!! that coherent scattering can cause only transi-
tions between states of the same total nuclear spin, i.e.,
ortho to ortho or para to para states, while incoherent

18V, Heine, Group Theory in Quantum Mechanics (Pergamon
Press, Inc., New York, 1960).
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scattering can cause a spin-flip, i.e., ortho-to-para,
transition.

Having derived the selection rules, we are still faced
with the problem of evaluating the matrix elements be-
tween symmetrized spatial states in Eq. (8). For this
purpose, we use the result proved in Appendix A,
namely, that if O is any operator, and ¢; are a set of
functions forming the basis for a reducible representa-
tion of a group @, then

2.(¢(Aar)[O] ¢ (Nar))

-5 Z%xﬂ»(R)Rj',-@lelm, (11)

R&® 55’

where H is the order of the group, and A, a, 7, and
have the same meaning as before. X (R) is the character
of R in the irreducible representation \. Rj/; is the re-
ducible representation according to which the y; must
transform under ®. If A is not contained at all in the
reducible representation, (11) will identically vanish. In
our case, the reducible basis ¥ g/ Myg"S transforms
under the operation R of group ® according to

R Mpg"5)

=3 Dxx”(R)Dgs" (R)Webx" Ms Vs,
K’ﬂl

(12)

where Dgg"(R) denotes the irreducible representation
V, R is the pure rotation associated with the point
group operation R, and Dg.x’(R) is the well-known
rotation matrix of order J which may be calculated
according to the formulas given in Rose.’® We may note
that R does not connect states with different 47.

Using Egs. (11) and (12) in Eq. (8), we get for the
first term (i.e., the intermediate scattering function for
coherent scattering), for instance,

Tean(Qy) =§(1/ H)X*M(R)[ 20 7a(2) 1Pvsae(T)

X Drrx? (R) Dy " (R) (b7 5|
XZV}: AVAMfVMI‘//ﬂ’VS\[/K'JM‘/’t>~ (13)
The symbol 4 stands collectively for V, .S, J, M, i, A,
R, 8, B, K’, and K. The matrix element in Eq. (13)

connects unsymmetrized states and may therefore be
evaluated by methods employed previously by Griffing.®
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Fi1c. 2. Schematic drawing of the —
methane molecule. The body-fixed / /

axes are also shown. 3

This involves factorizing the matrix element into a
product of three matrix elements connecting respec-
tively translational, rotational, and vibrational states.
To do this we first write

r,=o+b,+u,, (14)

where g is the position of the center of mass of the
molecule, b, is the vector from the center of mass to
the equilibrium position of the »th nucleus in the mole-
cule, and u, is the displacement of the nucleus from this
position due to molecular vibrations.

We now make the following assumptions, as was done
earlier by Griffing:

(1) There is no correlation between the translational
motion and the rotations and vibrations. Further there
is no correlation between the motion of nuclei in different
molecules. This is permissible since we are considering
a gas.

(2) The averaging over orientations of the molecule
may be performed separately for the rotational and
vibrational matrix elements. This assumption is neces-
sary because the vibrational matrix element,

(Ws"*|exp[iQ-w,(¢)] exp[—iQ-u,(0)]|¢s"*),
and the rotational matrix element,
(x| exp[1Q-by(1)] exp[—iQ-b,(0) ][¢¥x '),

both depend on molecular orientations. Actually Griffing
does the averaging over orientations of the vibrational
matrix element classically. The validity of this approxi-
mation of separate averaging for the rotational and
vibrational parts, and further doing the averaging in
the case of the vibrational part classically, has been
discussed by Griffing.

Making use of these assumptions, Eq. (13) may be
written as

Tan(Q,)=N zR:{(Za X*®(R) o na(@)) ¥ exp[iQ- o(9) ] exp[ —iQ- 0(0) ] [¥0)r

XX Pyss(T ):;3(1/ H )Dﬂ’ﬂV(R)§ KZ:}{ Dror? (R)YWs" S| 2, AvA , exp[iQ- (u,(6)+b, (1)) ]

VsJ

Xexp[—iQ- (@,(0)+bu(0)) ¥ 7 ¥ VS).  (15)

Here IV is the number of molecules and the summations over » and g now run only over the nuclei in one molecule.
The thermal average of the translational part has been separated out and the Boltzmann factor Pyss(T) is given

19 M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957).
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TaBte I. Character table for point groups T4 and O and Wilson factors for the first few rotational levels of CH4 in the ground vibra-
tional state. xsp(R) and xs(R) denote the characters of the reducible representations generated by the spin and rotational wave functions,
respectively. 74 () is as defined in the text, while #)\(J) is the number of times the irreducible representation \ is contained in the
reducible representation corresponding to that J. #," and »,~ are the multiplicities for the even and odd parity levels corresponding to
the various @ (see Fig. 1). The Wilson factors are obtained by summing the contributions from the different Q’s.

Ta E 8C; 3C, 604 654 na(Q) 2 ma(Q) m(J)

0 E 8Cs 3C, 6Cs 6C4 Q=0 Q=1 Q=2 @ J=0 J=1 J=2 J=3 J=4
A, 1 1 1 1 1 0 0 5 5 1 0 0 0 9
A, 1 1 1 -1 -1 0 0 0 0 0 0 0 7 0
E 2 -1 2 0 0 1 0 0 1 0 0 5 0 9
T 3 0 —1 -1 1 0 0 0 0 0 3 0 7 9
Ty 3 0 -1 1 -1 0 3 0 3 0 0 5 7 9
xsp(R) 16 4 4 8 2 \J nyt ny~

a\ 012 3 4 01 2 3 4

R 1 1 1 1 1 0 0035 0 9 00 S5 0 9
ﬁfERg 9 0 _3 _3 3 1 09 0 21 27 0 0 15 21 27
x2(R) 25 -5 5 5 -5 2 00 0 3 ©0 50 0 0 45
xs(R) 49 7 —7 —7 -7 Wilson 0 9 5 56 36 5 0 20 21 81
x1(R) 81 0 9 9 9 factor
by

exp(—EV,gJ/kBT)
S vss nvssexp(—Evss/ksT) .

Pygs(T)=

The vibrational and rotational parts are written together at this stage. Their separation will be carried out later.
As mentioned previously, if the representation X is not contained in the manifold of states (V.SJM), then there is
no contribution from this X to Ieon(Q,#). We can therefore formally allow X to run over all the irreducible representa-
tions of @ and thus do the sum > x"™ (R)>_o #a(Q) separately. This is of great use in actual computations.

Similar expressions may be derived for the other contributions to the intermediate scattering function in Eq. (9)
by substituting C, for 4, and > o Z(Q)na(Q) for 3 ¢ na(22) where necessary, and summing over the appropriate
nuclei.

We shall now specifically consider the scattering from methane. Methane is a spherical-top molecule with carbon
at the center of mass, and the four C-H bonds arranged tetrahedrally (see Fig. 2). The permutation group of the
protons is isomorphous with the point group 7'g of the molecule. We shall assume, with Griffing, that the molecule
is not excited from its ground vibrational state either thermally or by the neutron. This means we can confine our
attention to the two lowest vibrational states, transforming according to the one-dimensional irreducible repre-
sentations 43 and A4, and corresponding to even and odd parity, respectively. These two states will be effectively
degenerate owing to the extremely high barrier for the inversion tunneling of the protons. Since 4; and 4, occur
only once each, the summation over S in Eq. (15) disappears and because of the effective degeneracy of the two
levels, the Boltzmann factor reduces to

CXp(--EJ/kBT)

, (16)
27 nyexp(—Ey/keT)

Py(T)=

where E; is the energy of the rotational level J and ns is the Wilson factor (see Table I) for that level (including
both + and — parity states). The various matrix elements in Eq. (14) may now be evaluated. For the translational
part we have

(W] exp[iQ- o(1)] exp[—iQ- 0(0)]|¥+)r= exp{— (Q*/20W) (é#it+ k5T )} , an

as shown by Zemach and Glauber.!s 91 denotes the mass of the molecule. Further it is shown in Appendix B that

<‘/’KJM‘//A1| Zvn 4,4, eXP[iQ . (b,,(t)—{—u,(t))] eXP[— Q- (b,,(())—l—u"(())):l ‘ ‘/’AI‘I’K’JM>

= WxT Y42 3 Avdy expliQ- (by () +u, () ] exp[ —iQ - (bu(0)+u,(0) J|¥*%x: 7 )

= Zvu 4,4, eXP("‘ Q2'YVM) <¢KJMi eXPDQ . b,,()f):l eXP[_ iQ- bu(o))] ‘ 1rI/K’JM> s (18)
where Y41 and ¢42 stand for the vibrational parts of the wave function in the states 4; and 4.. The quantity

exp(— (Q%,,) on the right-hand side of Eq. (18) is the Debye-Waller factor associated with zero-point vibrations,
the constant v,, having the same meaning as in the work of Griffing. The rotational part, when evaluated using
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the methods of Rahman® and Yip® and summed over M, yields the result
2 (x| exp[iQ-b,()] exp[—iQ-bu(0)]|¥x"M)= > exp[it(Es—Es)/n](27+1)(27"+1)(— 1)E+K’
M JIIKII

24/ 2U4-1))7(Q0,) ju(QbLC(T Tl —KK")C(T "l —K'K")Y (5K (6,,4,) Vi K=K (6,,,) . (19)
i

In deriving (19) we have expanded the matrix element in terms of the ordinary rotational final states Y. 7"’ #”
rather than the symmetrized states. Since Yx7""#"" form a complete set, this is permissible. The C’s are the usual
Clebsch-Gordan coefficients,!® the ¥’s are the spherical harmonics,” and 7; denotes the spherical Bessel function
of order /. The (6,,¢4,) represent the polar co-ordinates of the »th nucleus with respect to a set of axes fixed in the
molecule.??

Using Egs. (14)-(19) in Eq. (2), and performing the time integration, we obtain for the coherent scattering
cross section per molecule

2% 1 k2790 \1/2 (hwta)?
(£0) LAY ]Gt
dQAE/ oo 27h ko\Q%*%8T JJ (2#2Q2%k T /M)
XI§{ Lgx 2, 4,4, eXp("Q27m)Fm(]J”KK/) ) (20)
’ '
where
a= (h2Q2/2m)-EJ+EJ~ , (21)
Lex=3(1/H){Drx’(R)Z X' M(R)E ny(Q) X XP(R)}, (22)
R A 2 V=A1,A2
and

F(JJ"KK')= KZ QI+ 1) (- DFHE ;(‘hr/ (20+1)) j(Q0,) j1(Qb,)

XCJJ"l; —KK'")C(JJ"l; —K'K" )V 1 5=K")(0,,0,) Vi E'—E"*(9, 8,).  (23)

It is to be noted that in Eq. (22) as R runs over the operations of T, R runs over the operations of the isomorphous
group of pure rotations, O.

Remembering that carbon has zero incoherent-scattering amplitude, we have in a similar fashion for the in-
coherent scattering?!

( d2c ) =_1_£( 2790 )1/2 > py() exp{— (hw+a)?

AQE/ sne 2mwh Eo\Q%5T JJ 2#2Q%pT/IM)
X{2 Lrx 2 Cplexp(—Q%pp)Fpp(JJ'KK')+ 3> Mrx 2, Cp? exp("Qz'Ypp’)Fpp’(]JHKK,)} , (24)
K'K ? K'K 2.9’
»#p’

where Lk x is as defined before and Mk x is given by

MK'K=§(1/H){DKfK’(R)%I X*“’(R)Eﬂl Z@Qnm(Q) 2 XxM(R)}. (25)

V=A1,42

The two terms on the right-hand side in Eq. (24) denote, respectively, the self and interference parts of the scatter-
ing. The terms may be regrouped in a slightly different fashion as

{2Z Mxx 2 Cp? exp(—Q*pp)Fop (JT"KK')+ X (Lrx—Mrrx)2 Co? exp(—Q%50)Fpp(JJ'KK')},  (26)
»p’ K'K ?

K'K

to display respectively the nonflip and flip components of the incoherent cross section, as discussed previously. It is
to be noted that x4:(R) = —x42(R) for operations of the group involving improper rotations, while x41(R) = +x42(R)
for operations involving pure rotations. Hence in the formulas given above, we could drop the summation over V'
and let R run over just the operations of the rotational subgroup T of T4, and take H to be the order of this sub-

20 Tt is important to note that the operations R of the group must also be expressed with respect to the same set of axes.
2 In writing out the terms explicitly, we shall denote » and u by p when they refer to the same proton, by p and p’ when they refer
to different protons, and by C when either of them refers to carbon.
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Tasre II. Eulerian angles for the operations of the point group
T. The operations are indicated by the permutations they effect
on the protons (see Fig. 2). The Eulerian angles are defined as
in Ref. 19. cosf=—(1/3).

Operation a B %
1234) 0 0 0
(1423) 2/3)r 0 0
(1342 —(2/3)w 0 0
3241) (4/3)x 0 1/3)r
4213) 2/3)r 0 (5/3)r
4132) 0 0 (5/3)w
2431) 4/3)w 0 ™
2314 2/3)« 0 T
(31249 0 0 (1/3)x
2143) 0 0 T
4321) 4/3)x 0 (5/3)
3412 (2/3)w 0 1/3)x

Fop(JT"KK")= (2] +1) 2T "+1)(— 1)E+K" 3, 52(0b,)C(JTJ"l; —KK)C(JT"l; —K'K)dgrx

K. SINHA AND G.
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group. This in fact has been done by us in the numerical
calculations, and bears a close resemblance to the way in
which Wilson® calculates the multiplicity factors by
considering essentially only the subgroup 7'. Further
simplifications are possible in the expressions given
above for the cross section. It is shown in Appendix C
that LgxF,(JJ”KK') is the same for all equivalent
nuclei (i.e., all protons), and that Lg’gF,,(JJ"”KK') and
Mg'xF,,(JJ'KK') are the same for all equivalent pairs
(i-e., all pairs pp and Cp). Further, methane being a
spherical top,it is allowable and convenient to choose the
molecule-fixed axes with the origin on the carbon atom,
the Z axis along one of the C-H bonds, and the XZ plane
containing another C-H bond (see Fig. 2). (The Eulerian
angles for the various operations of 7" for this choice of
axes are given in Table II.) In this case we have

27

Fpp(JT"KK')= 2]+ 1) 27"+ 1)(=1)¥+5 321 722(0b,) 4/ (214-1))*

Fep(JT"KK")=(2T4+1)50(Qbp)ox k877 ,
Fcc(JJ”KKI) = (2]+1)6K’K6JJ" )

XC(JJ"l; —KK)C(J"l; —K'K)PyE~5(6,,), (28)
(29)

(30)

where 0,,» denotes the angle between two C-H bonds, and P;(6) is the associated Legendre polynomial.’* We

thus finally obtain

d% 1 k2790 \12
dQAE/ oon 2wt Ro\Q%kBT/ T

(hwta)? }
(272Q%pT /M) )

X 2 Lrrx{44,? exp(—Q%pp) Fpp(JT"KK")+124 2 exp(— Q% pp) Fppr(JJ"KK")

K'K

+84A4, exp(—Q%ycp)Fep(JJ'KK")+A4c? exp(—Q%yoo) Foo(JJ"KK")}

and

(31

(ho+a)?

d% 1 &y 279\ 12
Gar) o) 270\ ~Ggarn)
AQAE/ ine 27t ko Q2kBT JJ (2h2Q2kBT/€ﬂZ)

X{ X LrxdC,p? eXP(—Q27pp)Fpp(]]"KK’)+ 2 Mgx12C,2 exp(—Q%ypp) Fop (JT'KK')}, (32)
K'K

K'K

with F,,(JJ”KK') etc., being given by Egs. (27)—(30). It is interesting to compare the formulas in Eq. (31)
and Eq. (32) with the expressions for the uncorrelated case,

d% 1 /29 \Y?
deE coh 27rh ko szBT JJ!

(fwota)? }
(2120% 5T /5N)

T4J

XQIAD@I DAL Sp(=Qtr) T Q8 +124, xp(— 0P )

J+J

X X

[
and

712(Qbp) Pi(61)+84cA » exp(—Q%vc5) jo(0b)ds5 A0 exp(—Q*voc)dssm},

(33)

2 1 B/ 2mm\i/2 (fwta)?
(o)~ mielomr) 50| g
4Q4E) e 20 ENQ%sT/ 577 (2720% 5T /M)

X (2741)(27"+1){4C* exp(—Q*yp) H? , 72Qby)} (34

T

—J’!
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derived by Griffing. In the last two equations, P;(T) has the meaning
exp(—E;/ksT)
Py(T)= (35)
ZJ(2]+ 1)2 exp(—EJ/kBT)
and P,(6) is the Legendre polyonmial. We observe that apart from the difference in P;(T’) due to the Wilson factor
there are several other differences in the expression for the two cases, and the complexity of the formulas for the
correlated case arises essentially from the mixing of the states with different K.

B. Symmetric-Top Molecule

The discussion given above for the spherical-top molecule is easily extended to symmetric-top molecules like
ammonia. In this case, part of the (274-1)-fold K degeneracy is removed, and only the levels with K= |K| for a
given J are degenerate. The rotational levels may thus be labeled by (J,| K|) and the reducible basis that we must
start with is Yabs” S/, with 8 running over all rows of S as before, but K now restricted to ==|K|. By con-
structing symmetrized functions from this unsymmetrized basis and proceeding exactly as before?? we obtain
instead of Eq. (20)

() s & g £ a0
=— exp] ——m———
A00E o 20h k\Q%sT/) T 1k T e (2020%5T/)
X 2 Y YAd,exp(—Q¥,)F,(JJ'KK'|K"]), (36)

K=*+|K| K'=£|K| vu

where
a=1%Q* 2M—~E;g+E g,

and L x is the same as in Eq. (22); F,,(JJ"KK'|K"|) is also the same as in Eq. (23) but with the summation
over K" being restricted to == | K”’|. The Boltzmann factor P x(T) is now given by

exp(— Esxi/ksT)
Y rixi nix) exp(—Egix/ksT)

ny x| being the Wilson factor for the level (J,| K|) including as before, both positive- and negative-parity states.
Similarly for incoherent scattering we have

(d2“> ' k(zm)wz T PanE 3 ep|oteS

Px(T)=

A0dE) e 200 k\Q%sT/ T 1% 7 =0 (2120 5T /o)
X{ ¥ ¥ LexX CPexp(—Q%,,)F,(JJ'KK'|K"])
K=+|K| K'=+|K| v
+ X X Mrpx X CGlexp(—QM.)F.(JJ'KK'|K"|)}, (37)
fem R = dentical

nuclei

M gk having the same meanings as in Eq. (25). The corresponding expressions in the uncorrelated case are

d?c 1 k2790 \/2 (hw+a)?
( ) =—~—~( ) S Pow(D) S exp[—————}
A4 wn 2nh B\Q%sT/ TR o (2120% 5T /)

4
X2 A4, exp(— Q%) (27 +1) (27" + 1)Zl mﬁ(@bv)]'l(@b )

d XY EKD(6,,6,) VK0, )[C(JT"l; —KK") 2, (38)
an

d% 1 &y 279 \1/2 (hw+a)?
( ) =——< ) 2 Prri(T) X2 CXP[*—“*}
AQdE) e 2mh B\Q%sT/ 7% 7R (272Q% 5T /5N)

47
X2 G2 exp(— Q%) 2T+ 1) (27"+ 1) i 1jl2(Qby)l Vi &=K(6,,¢,) |2[C(JT"l; —KK") ]2, (39)

v l .

22 As in the case of the spherical-top molecule, the inversion splitting in the symmetric-top molecules also is very small, at least for
our purposes. The positive- and negative-parity levels are therefore effectively degenerate and this fact has been made use of in
deriving Egs. (36) and (37).




10 S. K.

with
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exp(— Eixi/ksT)

Prgi=

III. NUMERICAL RESULTS AND DISCUSSION

The expressions for the scattering by methane have
been programmed for computation in a CDC-3600 com-
puter and numerical calculations performed for several
cases. The first case studied was the same as that con-
sidered by Michael, ie., the scattering of 0.025-eV
neutrons through a 10° scattering angle by methane gas
at 10°K. In the calculations, rotational states with J
and J”’ <4 were included. The results of the calculations
are shown as a solid line in Fig. 3. The results were con-
firmed by an independent calculation in which the X, ¥
and Z axes were chosen along the three twofold axes of
the molecule, respectively. The computing time for the
latter choice of axes was nearly twice as long as that
required for the choice indicated in Fig. 2, so that all the
remaining cases were done with the axes as in Fig. 2.
The dashed line in Fig. 3 shows the energy spectrum
obtained in the uncorrelated case using the expressions
in Egs. (33) and (34). The results for the uncorrelated
case have also been obtained in a different way by
setting M gx=0 and Lx-x=Dg x’(E)=0x'x, where E
is the identity operation and P ;(T") is given by Eq. (35).
The two sets of results for the uncorrelated case agreed
exactly with each other, as may be expected from a
comparison of Egs. (31) and (32) with Egs. (33) and (34).

It is clear from Fig. 3 that spin-correlation produces
appreciable differences in the scattering. The “elastic”
scattering is enhanced by about 309, the height of the
peak representing the 0 — 1 transition is approximately
doubled, and the 1— 2 peak is lowered appreciably.
This is in contrast to very small difference which Michael
obtained in his calculations.

Note added in proof. The numerical results for the
correlated case at 10°K presented earlier* are in error.
The correct results are shown in Fig. 3.

T T T
—2800
METHANE
T=10"K —[2400
Eo =0.025 eV
010 —2000
—{1600
-1200
-1 — 800
— 400
le=msy L

0020 0021 0022 0023 0024 0025 0026 0027 0.028 0029 0.030
NEUTRON ENERGY (eV)

F16. 3. Results for the scattering of neutrons by methane gas
at 10°K. The solid line refers to the correlated case and the
broken line to the uncorrelated case. The transitions associated
with the various rotational peaks are also indicated.

Y x(2J+1) exp(— Egix)/ksT)

Figure 4 shows the different contributions to the
scattering. It may be seen that nonflip transitions are
appreciable only in the “elastic” region. This is to be
expected since there are very few symmetry-conserving
transitions possible between states of different J among
the first few rotational levels. (See Fig. 1.) It may also
be noted that the interference term (pp’) in the in-
coherent scattering, which identically vanished in the
absence of spin correlations, is appreciable in both the
“elastic” and ‘“inelastic” regions, whereas the self term
(pp) is diminished relative to the uncorrelated case.

The calculations were repeated for the case of 300°K
taking into account rotational levels with J, J”/<9. The
results are shown in Fig. 5. Similar calculations per-
formed for the uncorrelated case yielded almost exactly
the same results, the difference being at the most 0.79,.

We may thus conclude that spin correlations play an
important role in determining the scattering at low
temperatures, but their effect is very much reduced at
higher temperatures, as anticipated by Zemach and
Glauber.

400 | — T T T T T T

& ﬂoo
3000 METHANE n
—{3000
T=10%K / \ COH.PP
2000 Eo’ :’(;225 eV \ COH.CP 2000
=
—_— COH.CC
1000} {1000
1 | |
00 T I T T T lT { { 00
30000 A L e INC.FUP  — 750
R
a 20.000— ! ‘\\ :' INC. NON FLIP {509
Q i “\ ;
é 10 000 ! R v R 250
- AN
n a Wi N
~ e _om Npetm
g ot - f—too
& |
© 30000 7s0
A A — = INC.SELF
20000~ / \‘ " L et 500
;o \
[y ;
10000} Y 250
~, ,!
// N/ R
ll ~ 4
00}-< < 00
-10 000 1 1 1 | 1 11 L 1 -250
0020 0022 0024 0026 0028 0030

NEUTRON ENERGY (eV)

Fi1G. 4. The various contributions to the scattering at 10°K in
the correlated case. L and R denote, respectively, the scales on
the left-hand side and the right-hand side of the figure.
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A possible further application of the formulation de-
veloped here is to the case of hindered rotations. If we
consider the “weak-field” limit where the molecules are
only slightly hindered by a fluctuating field which has
no symmetry, then the degenerate manifold of rotational
states characterized by (J,M) will be split into a number
of levels corresponding to the irreducible representations
of the point group of the molecule, as this symmetry
will still be left in the Hamiltonian. Then the “sym-
metrized” wave functions discussed above may be re-
garded as good ‘“‘zero-order” wave functions to be used
to calculate the scattering. Additional complications
would of course be introduced by the fact that the final
states would now also have to be expressed as sym-
metrized combinations.
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APPENDIX A

We shall prove the relation (11) given in the text.
Consider the matrix A which completely reduces the
representation of @ provided by the basis y,. Let us
denote the symmetrized function ¢(Aar) with the help
of a single suffix ¢ as ¢;, with ¢ running over all the rows
of all the irreducible representations contained in the
reducible representation generated from the basis ¢;.
We then have

bi=2 Aj;. (A1)
J

Now if O is any operator, we can, using our compact

suffix, write

2(@(\or) |0lo(Nar))=2Ne:|Oles),  (A2)

where the superscript on the summation on the right-
hand side denotes that it picks out only rows trans-
forming according to the irreducible representation A.
Using Eq. (A1), we then obtain

2(@(ar) O] p(Nar))
=2 A5*A4;4]01¥i)}

k2

=22 Ajsdi T} Olgir) . (A3)

(3

EFFECT OF NUCLEAR SPIN CORRELATIONS 11
6000 T T T T = 600
METHANE
4500 T =300 °K iso
Eo=0.025 &V
> 8=10°
i
E 3000 {300
g 1500 {150
0 0
0.00 001 002 0.03 004 005

NEUTRON ENERGY (eV)

F16. 5. Results for the scattering of neutrons by methane gas
at 300°K in the correlated case. As in the previous figure, L and R
denote the scales on the left and right side, respectively. The
uncorrelated case gives almost the same results, the difference
being at the most 0.7%,.

We have used the unitary property of A in deriving the
last step. Consider now the matrix U defined by

U= ¥ A-RAX'O(R),
RCE

(A4)

where R denotes the reducible representation of the
operator R of the group with respect to the basis y;.
Since A completely reduces the representation R, the
matrix A~!RA will have the box diagonal form

DO(R)

A-RA= DER) -

b

DO(R)

where D®M(R), D®(R), ---D®(R) denote the S
different irreducible representations (not necessarily
all distinct) contained in R. It is clear that U also will
have a box diagonal form. A typical element of U will be

Uap=2_1 (A7'RA)as >k Der* M(R), (AS)

where % runs over all the rows of the irreducible repre-
sentation A.

We now recall a well-known theorem regarding ir-
reducible representations!® which states that

ZR Dij(")(R)Dkl* ()‘)(R) = (H/m)\)al,)ﬁikajz . (A6)

Making use of this orthogonality relation, it is easily
seen that

Uas=(H/m))dap if @ and B refer to diagonal boxes cor-
responding to the species A, (A7)

=0 otherwise.

In other words, U is a diagonal matrix with (H/m,)
along rows which transform according to A, and with
zero in other rows.



12 S. K.

Let us now define another matrix P by

P=>zx*®»(R)R. (A8)
From Eq. (A4) we have
P=AUA. (A9)
Thus
Pjj= VZl:Aj'z' Upidyt=(H/ mx)}_:," AzAgt. (A10)
But, from (A8)
Pjj=2_r X*O(R)R;;, (Al1)

whence Eq. (A3) becomes
2 (¢(\ar) [O|d(Nar))

=% (/)X D (R)Rys{3[ O¥), (A12)

which is the required result.

APPENDIX B

In this appendix, we shall establish the relation given
in Eq. (18). Let g denote collectively all the vibrational
coordinates u, associated with a given configuration of
the methane molecule, where u, is given by [see Eq.
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(14)]
(B1)

Further, let § stand for the coordinates u, associated
with the “inverted” configuration. u, is given by

u,=r,—p—b,.

@,=r,—o+b,. (B2)

If ¢y(g) describes the ground-state vibrational wave
function, then because of the inversion symmetry of
the molecular Hamiltonian, y.(g§) must also be a wave
function with the same eigenvalue. However, neither
¥v(g) nor ¥(g) has a well-defined parity, and since the
wave functions must have a well-defined parity, we
construct the linear combinations

AN W) +¢.(9)} (B3)
(1/\/2){%(8)—%(!7)} (B4)

having, respectively, positive and negative parities.
Evidently (B3) transforms according to the irreducible
representation A [since ¢,(g) and ¢¥,(g) both transform
according to A;, being ground-state wave functions],
while (B4) transforms according to 4,; and we may
denote them simply as ¢4 and y42 The two states
Y41 and 42 are effectively degenerate owing to the high
barrier for inversion tunneling. Physically this would
mean that the nuclei are strongly localized about their
equilibrium positions and that ¢,(g) and ¢,(§) overlap
very little. We may therefore write

x| 3 4,4, exp[Q- (1) +b,()] exp[—iQ - (u,(0)+b,(0)) ]| ¥4 &7 M)

=X A,Aux”¥|exp[iQ-b,(1) ] exp[—iQ-bu(0) ]|¢x 7¥) (4! | exp[iQ - u,(8)] eXP[*i'Q'uH(O)]WA‘)av

=Z %AVAM{@bv(g) I V”#[‘/’v(g)>av+<¢v(g)l Vvﬂl‘pv(g))av}cw’

The suffix av above denotes an average over orienta-
tions. It is necessary when the rotational and vibra-
tional parts are separated, as explained in Sec. II. The
operator V,, is exp[iQ-u,(?)Jexp[—4Q-u,(0)], and
G,, is the rotational matrix element. In a similar fashion,
we can show that the right-hand side of (BS) is also
equal to

WMy 3 4,4, expliQ- (w()+b,(0))]

Xexp[—iQ- (Wu(0)+b,(0)) ][ 4%c 7).
Now let us consider
WMy A,A, expliQ-(w(0)+by(D)]

Xexp[—iQ- (u,(0)+b, (0 ][¢4%rc 7).
This can be expressed in the form

<l/‘/A1 I Z AVA MGVMV)UJ | ¢“2>av . (BG)
vu

(BS)

Since the operator inside the matrix element in (B6) is
invariant under the group of permutations of identical
nuclei, the matrix element vanishes.'® On the other hand,
substituting for ¢4t and ¢4 from Egs. (B3) and
(B4), we obtain [neglecting overlap integrals between

l!/v(g) and Kbv(g)];
<¢A1 ! Z AvA MGvant l ¢A2>av

=Z %A"'AMGV“{ﬁbv(g) [ Vvﬂl‘pv(g»&v
- (%(g)[ VVulll/v(g»av} .

Hence

oD Voul (@)= o@D | Vs (@))av.  (BT)

The quantity (¢,(g)| V..|¢¥.(g)) has been evaluated by
Griffing and shown to be equal to exp(—(Q2y,,), where
¥»u is @ constant. Using this result and (B7) in (BS) we
obtain the result quoted in Eq. (18).
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APPENDIX C

Because of the symmetry of the molecule, every
proton can be transformed into any other proton by a
rotation .S belonging to the point group O which, as we
have already remarked, is isomorphous to the point
group Tq. Likewise all proton-proton pairs can be
transformed into each other by the operations of O,
and the same is true of all carbon-proton pairs. Thus for
each term in the sum over » or (y,u) in

LK’K Zvu APA m eXp(—‘ QZ'YyM)Fy"(J]”KK’) )
and
Mgk 30 Crexp(—0%,,)Fou(JJ'KK'),

or
(Lxx—Mk k) 2, C2 exp(—Q%w)Fu(JJ"K'K),

which involve protons [see Egs. (20) and (24) and (26)],
we transform the molecular axes by the rotation .S in
order to keep the arguments (6,, ¢,) and (0,,¢,) the
same. Since R will now have to be expressed in terms of
the new axes, we shall have to replace Dx:x’/(E) by
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Dy’ (S71RS). Further since
X*M(R)=X*M(R)=x*M(S-1RS),
and in a similar fashion
X(V)(R)=X(V>(S_1RS) ,
we may write for each transformed term

Ler= 2 (I/H){X X*‘”(S“‘RS)QZ na(Q)

Reo A

X X

V=A1,42

XN (SRS} D x? (STRS) .

Now S—1&S is simply another member of the group O,
and as we are summing over all the operations of the
group, Lx x will be unchanged as a result of the trans-
formation by S. It follows, therefore, that L' xF»
X(JJ"KK') is the same for all equivalent nuclei, and
the sum over all such nuclei is simply obtained by cal-
culating it for one nucleus in the equivalent set and
multiplying it by the number of nuclei in the set. The
same holds for all equivalent pairs (v,u) in Lx/xFy,
X (JJ"KK') and Mg xF,,(JJ'KK").



