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The general form of the multiple-occupancy polynomials P„(c),shown by Langer to be necessary in the
perturbation expansion of the Green's function of a mass-disordered lattice, is derived and its use is il-
lustrated by the summation to all orders in the concentration of the self-energy diagrams involving one
vertex. Different Green's functions must be used for the displacement correlations and for the frequency
spectrum, and numerical calculations for a linear chain show that the two Green s functions can differ con-
siderably in certain regions of frequency. Some problems of convergence are discussed.

I. INTRODUCTION

'HE vibrational contribution to the thermody-
namic properties of an alloy is determined by the

frequency spectrum (p(co)) averaged over all atoms or,
equivalently, averaged over an ensemble of atomic
configurations representing the composition and order
of the system. The interaction with external radiation
is determined by the averaged displacement correlations
(u(na)u(mp)) for specified types of atoms (say A or B
for a binary alloy) at the sites n and m (a, P are Carte-
sian components). Each of the above quantities can be
obtained from an appropriate Green's function but,
when the mass located at any site may take on different
values, there appears to be no simple connection be-
tween the different averaged Green's functions.

A diagram expansion technique for calculation of the
frequency spectra of these disordered systems was intro-
duced several years ago by Langer. ' The present work
completes the formalism by deriving the form of the
multiple-occupancy correction polynomial factors which
permit calculation of the contribution from arbitrarily
complex diagrams. The expansion technique is applied to
displacement correlations as well as frequency spectra.

The Green's functions are introduced in Sec. II, thus
fixing the notation, and some of their properties are
given. In Sec. III the average over all configurations of,
say, atoms of type 8 with concentration c is discussed
for the displacement Green's function. The restriction
to at most one 8 atom per site leads to the multiple-
occupancy factor P„(e) associated with an nth-order
vertex in the perturbation series. The complete poly-
nomials are presented in Sec. III, and their derivation
is given in the Appendix. The one-vertex contributions
to the self-energy can be summed to all orders of the
concentration in closed form (Sec. Iv). The resulting
self-energy has an infinite number of poles most of
which are spurious and will be cancelled by the two-
and higher vertex contributions. A similar analysis of

*This work will constitute part of a Ph.D. thesis to be sub-
mitted to the University of Missouri by P. L. L.

' J. S. Langer, J. Math. Phys. 2, 584 {1961).
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the conjugate Green's function, which gives the fre-
quency spectrum, is presented in Sec. V.

D((a) =— Cte*"'D (t) . (2)

Strictly, (2) should be understood as the limit as s -+ cu

(real) from the upper s half-plane. The displacement
correlations may be written in terms of D(s) in the
following way2:

(u(na, t)u(mP))r = —lim &$(t'tn ' coth(fm/2kT))

Xcomet ih7r ' sincot—P

X&m[D(na, mp; (a+ie)5 (3).
Relation (3) does not require the assumption of har-
monicity. For a harmonic system, the verbal definition

'See for example: D. N. Zubarev, Usp. Fiz. Nauk. 71, 71{1960).)English transl. :Soviet Phys. —Usp. 3, 320 (1960)$.
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II. GREEN'S FUNCTIONS

The displacement correlations are obtained from the
usual displacement Green's function' of which the
retarded form is used here:

D(n, mp; t—t')
—= (ih) '(Lu(na, t),u(mP, t')5)re(t —t'), (1)

where u(na, t) is the Cartesian displacement a of atom n
at time t, e(t) = (1 for t)0; 0 for t(0), and the sub-
script T denotes a thermal average. The average over
different atomic configurations will be introduced in
Sec. III. In words, the above definition of D says that

eD is the di—splacement (u(na, t))r when an impulsive
force f(mP, t) = e6(t t') (e small—) is applied to atom m
of the system initially in thermal equilibrium. The left-
hand member of (1) will be regarded as the (na, mP)
element of D(t —t') in the position representation. The
Fourier time transform of 9 is defined by
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where M is the mass matrix with diagonal elements
M(nn, aux)=M„, and V is the force-constant matrix.
The solution of (4) is

D(ma, mP; t)

Q2
~

—1—

M—+V
~

(na, mP; t)
ap

(5a)

= —{Q,N, (mx)u, *(mP)co, 'si-n(co, t) }0(i), (Sb)

independently of temperature, where M„'~'u, (na) are
the orthonormal modes with frequency co„' so that

D(s) = (Mz' —V)-'

=P.N,u, ~(s' —a&,') '. (6b)

The frequency distribution ascribable to a system is
not unique and depends on the means of excitation. The
following prescription leads in the harmonic case to the
usual definition p(~) =P, b(co —cu,):Apply a small peri-
odic force to atom m, f(mP, t) = p exp( —hut), and observe
the momentum displacement

(bp(na, t))r= pP(mu, —mP; (o) exp( icot)—
The real part of the amplitude s 'P(na, nn; co) is the
frequency distribution of atom n, and the average over
all atoms,

(p(a&))r =—2(3sS) 'Q Re[P(na;na;(u)j, (7)

is the normalized frequency distribution of the system. '
From its definition F(na, mP; a&) =— iP (na, mP; &o)

—is the
Fourier transform of the conjugate Green's function'

following Eq. (1) implies

a2 BD
M—+V D(t)= —Ib(t), D= =0 for i(0, (4)

BI,2 8$

The displacement Green's function d(co) for the
perfect lattice satis6es

(MaPI —V)d((o) = I, (11)

where M is the fixed scalar atomic mass. For the
system with impurity masses, this relation becomes

(M(u'I —V)D(~) = I+Ma'eD((v) (12)

where e is the fractional mass change matrix defined by
M=M(I —e). Then one obtains

D((u) = d(co)+d((o)pD(co), (13)

where p=MoPz, . The perturbation expansion for D in
powers of the mass change is obtained by iteration,
which gives
D( )=d( )+d( )td( )+d( )1pd( )lpd( )+ (14)

III. CONFIGURATION AVERAGE

We consider the random binary alloy consisting of
atoms of type A and B.The concentration of B atoms
is c. The displacement correla. tions &u(nn)u(mP)) are
determined by (D(co)), the average of D(u) over atomic
configurations. This can be written in the form

(D(-))=d(-)+d(-) &»d(-)
+d( )&pd( )p)d( )+ (15)

It is instructive to review a few of the low-order
terms. ' The second term in (15) involves

(p(nn, mP))= ()s(e))b„„b p=pcb. b.p, (16)

where p= (M —M')oP, and M and M' are the masses of
the A and 8 atoms, respectively. The third term in Eq.
(15) involves (p(n)p(m)) which has the value p'c' if
n~m and p,2c if n=m, so that

&.(.).(»="["+(-")b..&

The sth term of Eq. (15) is

P(nQ, mj9; t —t') —=a '&[P(nn, i),N(mP, i')])re(t —t') . (8)
d(mx)ilail j ~)d (il Yl)12+2 j ~)

In matrix form this function can be written in terms of
the displacement Green's function

or
F(i) = iMdD(i)/di,

F(s) =sMD(s). (9b)

' This de6nition is equivalent to that introduced in the theory
of neutron scattering from liquids by A. Rahman, K. S. Singwi,
and A. Sjolander, Phys. Rev. 126, 986 (1962).

4D. W. Taylor )Ph.D. thesis, Oxford University, 1965 (un-
published) j has used the time-ordered (up) Green's function in
discussing the frequency spectrum of the mass-disordered alloy.

For the case of a harmonic system, it follows from
either form (8) or (6a and 9b) that, for co) 0,'

p&(co))r= —lim2(3slV) ' Im[Tr{F(co+ic)}1. (10)

~ ~, lpyp

Xd(i.y„mp, ~)(p(l&)p(l2)' ' p(l )). (18)

The averages can be written in the form

( (i) (i.) (.))
=p'[cb(lgl2 1,)+c' P"' b(l& )b(l; )

partitions

+p' 2"' ~(ii )~(i*" )b(iJ" )+. j (19)
partitions

where b(l~l2 i,)= (1 for l& 4= =l, ;
——0 otherwise).

The sum in Eq. (19) is over all partitions of the site
indices lI, l2, , l, into one, two, three, etc., groups.

' The discussion is given here in the position (n) representation
which seems to be more direct for the present purposes than the
lr representation used by Langer (Ref. 1).
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FIG. 1.Some diagrams
occurring in the per-
turbation expansion of
(D(co)), with the associ-
ated vertex factors.

TABLE I. Multiple-occupancy polynomials Pk(c) for k ~& 6.

Pl(C) =C

P2(C) =C—C'

P, (i) =e —3c2+2V
P4(e) =c—7c'+12c' —6c4

P6 (e}=c—15c'+50c'—60c'+24c'
P6(c) =c—31c +180|,"—390c'+360c' —120c'

The prime signifies the exclusion of those cases where
two or more 8's in a product refer to the same site. This
restriction on a given partition sum can be removed by
adding to it the excluded terms and subtracting them
from the sums with fe7&&&er partitions. As was first indi-
cated by Langer, ' this procedure leads to multiple-
occupancy corrections which are polynomials P&, (&:)=c+, of degree k, multiplying each &&(l, &i& I;«,&).

Then (19) becomes

(p(li) y(t.))=p'[P. (&:)i&(f&l ' t.')

partitions
P+q =s

+ z &3' PP(~)PQ(~)P (~)&(f& )
partitions
p+q+r =s

n

!l

Ca) (b)
FIG. 2. A third-order vertex (a) and diagrams (b)

whose vertex confluence determines P3(c).

which terminates with p'(Pi(c))' (or g'&.") corresponding
to s distinct lattice sites. It has been assumed im-

plicitly, but can easily be proven, that the polynomials
P„(c), etc. , are independent of the total number of
sites s and depend only on the number of sites in the
corresponding && function. From Eqs. (16) and (17) a.nd
the above, it is clear that Pi(c)=c and P2(c)=c—c'.

The derivation of the P&, (c) is expedited by a diagram
representation of the expansion (15). In Fig. 1 let the
solid circles represent lattice sites which interact with
the phonon through the dashed lines, each of which
carries the factor p. The horizontal line segment be-
tween two successive interactions with, say, sites n and
m carries the factor d(nn, mP; cv), the unperturbed
phonon propagator. A lattice site which is the vertex
of k interaction lines is assigned the factor P&, (c).
Figures 1(a) and (b) represent the second and third
terms on the right-hand side of Eq. (15). Figures 1(c)
and (d) show two terms for s= 7 with p=4 and &7=3 in
the second sum of Eq. (20) where the propagators have
been included. The contribution of an unlabeled dia-
gram is obtained by summing the internal lattice sites
and Cartesian indices over all values.

To illustrate the origin of the P&, (c), we consider the
third-order vertex P3(c) in Fig. 2(a). The terms of
higher order than c should correct for the conQuence of
site indices in the diagrams with more partitions, shown
in Fig. 2 (b), which themselves are already corrected for
the confluence of 6.rst-order vertices. The correction
factor P&(&;) so constructed is

P3(c)= c 3[P&(r—)P2(c)] Pi'(c) =—c 3c'+—2c'. (21)

The results for P&, (c) up to k =6 are presented in Table I.
The general term is shown in the Appendix to have

the simple form

P&, (c)= P (—1)™1(rn —1)!S(k,m)c, (22)

where S(k,ni) are Stirling numbers of the second kind. ' '
A combinatorial interpretation is that S(k,m) is the
number of ways that k distinct objects can be put into
m indistinguishable boxes with no box empty. Langer'
gave the coefficient of c' to be 2" ' —1 which agrees
with S(k,2).i

Since the summations in two parts of a diagram
separated by a d line are independent when the Pi(c)
are used, the usual notion of reducibility is applicable.
Thus Figs. 1(c) and (d) show a reducible and an irre-
ducible diagram, respectively. The Dyson equation is

(D( ))=d( )+d( )&( )(D( )), (23)

where II(nn, &nP;cv) is the proper self-energy, that is,

' The notation used here for the Stirling numbers is that nf
J. Riordan, An Introduction to Combinatorial Analysis (John
AViley R Sons, Inc. , New York, 1958), p. 32.' A better reference than Ref. 6 for the identities and numerical
tables of the Stirling numbers is National Bureau of Standards,
Handbook of Matlsematical Functions, edited by M. Abramowitz
and I. A. Stegun (U. S. Government Printing OQice, %'ashington,
D. C., 1964), Appl. Math. Ser. 55, Chap. 24.' Pote: After this work was completed, a derivation of PI, (c)
in terms of cumulants was announced by T. Matsubara and F.
Yonezawa, in a letter: Progr. Theoret. Phys. (Kyoto) 34, 871
(1965). The connection with Stirling numbers was not made.
This was important in our obtaining Eqs. {30}and (36), using
the identity {28).However, they did give a generating function

g(x; c) =Pf, PI,(c)x"/k!=1n(1—c+c exp(x)).
That this generating function agrees with the Stirling number
representation is easily verified by expanding PI, (c) according to
Eq, (22), formally interchanging orders of summation, and using
the identity

(exp(x) —1)'"=m! g S(n,m)x" jnt
n=rn

of Ref. 7. The relationship between Stirling numbers and cumulant
coefficients may be of interest in other connections.
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(24a)(D(~))= [I—d(~)II(~)1 'd(~),

the sum of all irreducible parts. The formal solution of
contributions to the self-

~
+ I ~, + «& + ~ ~ ~

(23) is energy. I ~ l

or
(D( ))=[d-'( ) —II( )?'.

IV. ONE-VERTEX CONTRIBUTION TO
THE SELF-ENERGY

11"'(&d)=2 W'd (&d)" 'Pi(d)
~

k 1
(27)

where dp(&d) =d(0a, 0a; &d). Using Eq. (22) and the
identity'

Q S(n,p)x"=x&[(1—x)(1—2x) (1—px)] ' (28)
A=P

for ~x~ (p ' gives for the coefficient of c" in Eq. (27)

Figure 3 shows the self-energy diagrams with one
vertex. Their total contribution, using Eq. (22), will

be a power series in c, beginning with the first power.
Self-energy diagrams with two vertices will contribute
from c2 on, and so forth. Thus, the contributions to the
cp term in the self-energy come from all diagrams with
r (p vertices. The one-vertex diagrams can be summed
in closed form. This may be of use in considering the
convergence of the perturbation series.

The one-vertex self-energy II&'& (&d) is diagonal in the
lattice indices. For simplicity, we assume here and in
the next section that we have a Bravais lattice and that
the point group includes tetrahedral symmetry, so that

II&'& (&1«,&llP; &d) = II&'& (&d)&& &) &&. (25)

It follows from Eq. (24b) that D&'&(&d), the II"'(&d)
approximation to (D(&d)), is related to d(&d) by

D&" (&d) = d([&d' —M—'Il &'&(&d) y") . (26)

The diagram rules give

tinuum and the in-band modes have complex co„. The
poles of the hypergeometric function a,t (r&i)dp(&d) =1,
r= 2, 3, ~ represent the overlapping of more than one
mass perturbation p at a single site and are nonphysical.
The nonphysical nature is especially evident when M' is
slightly smaller than M so that rIJ. may correspond to a
very light impurity with a high-frequency localized
mode in a region where there is clearly none. Langer'
has shown that the r= 2 pole multiplying c' in II&'&(&d)

is replaced by a different singularity on combination
with the c' contribution of II&'&(&d), the two-vertex part
of the self-energy. Presumably the r) 2 poles of II &'&

(&d)

will be similarly affected by contributions from II&'& (&d)

to II&'& (&d)

It is important to note that in the diagrams for II(&d)
the overlapping of mass defects is not completely com-
pensated as it is in (D(&d)). Figure 2 illustrates this
point in that only Fig. 2(a) and the second diagram
in Fig. 2(b) are irreducible and included in II(&d),
whereas all five diagrams are needed for compensation.
This may have the consequence that II(&d) has singu-
larities of a nonphysical type, that is, not corresponding
to any possible cluster of atoms.

The result of a numerical calculation of the im-
aginary part of D«&(&d) for a linear chain with nearest-
neighbor forces, where d&&(&d)=(&d' —&d~') '"(M&d) ' is
shown in Fig. 4 for c=0.1 and M'=-,'M. For the par-
ticular case chosen, the condition r&«d&&(&d) =1 for a pole
in II "&(&d) on the positive real axis is satisfied only for
r= 1 and just one impurity band appears.

The way in which this impurity band appears can be
seen from Eq. (26). If II &'&

(&d) has a simple pole for some
real &d) &d&r, then near this pole (&d' —M—'ll "&(&d))'" can

(p-1) '~(-~do(~))" '

X[(1—Pd&&)(1—2pdp) . (1—p&idp) j—', (29)

if
~
pd&&(&d)

~
(p '. Summing the c" terms over p gives

A
3
a
V

e

II&&( )=
pc

gFg 1)i )
2—

1—
&id&&(&d)

1
; c, (30)

& do(~)

which converges as a power series in c for all c(1.The
hypergeometric function has poles at all nonpositive
integral values of the third argument, i.e., at&«d&&(&d) = r ',
r= 2, 3, , which shows that the form (27) of II&'& (&d)

as a power series in pd&&(&d) has zero radius of conver-
gence and should be regarded only formally while
Eq. (30) is its proper analytic form.

The pole of II&'& (&d) at &«d&&(&d) = 1 is the condition for
a localized mode for an isolated 8 atom; the high-
frequency localized modes have real co„above the con-

0.5 1.0 (, 2 Q/&~

Fro. 4. The negative imaginary part of D(') (nn, na, ~) versus cu,
Eqs. (26) and (30), for a linear chain with c= —,'0 and M'=&~M.
The spectral density of the displacements is obtained by multi-
plication with the factor A7r ' coth(Ace/2kT) of Eq. (3).

' In Ref. 1 Langer considered the quantity —co I(J ~(~)) in the
k representation )his DI, (aP) j, but (D(cv)) can be discussed
similarly.
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h p-
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0.5 1.0

FiG. 5. The frequency spectrum {p(')(a))), versus ~, Eqs. (36)
and (38), for a linear chain with c =~ and M'=)M.

sweep through the interval (O,a&u) where the imaginary
part of do(co) is nonzero. This gives an impurity band
near the pole of m"'(co) which is a nonuniform lateral
compression of the perfect lattice band.

V. CONJUGATE GREEN'S FUNCTION

The equation for F(c0) from the substitution of

Eq. (6a) into Eq. (9b),

F(co)(aP VM—']—
leads to the Dyson equation

F(c0)= f((o)+F(s))VZ(Ma))
—'f(a)),

where
(31)

M '=M '(1+3) and f(a)) =M(od(co). (32)

Iterating in Eq. (31) and performing the configuration
average gives an expansion in (1/M' —1/M):

(F( ))= f(a))+f'(a&)(X)f(co)
+f'(~)(&f'(~)&)f(~)+

where
fc(~)=f(~)V(M(y) —'=cof((u) —I. (34)

Since &(re&,~p)=) (u)p„-p s is nonzero only at fI
sites, the configuration average and diagram representa-
tion in Sec. III are applicable with the modifications
that (a) & = (M—M')/M' replaces u as the interaction
strength, (b) f'(~) replaces cf(s&) as the propagator,
except for the external propagator at one end which
is f(~). In terms of IIp(ra), the self-energy, the equa-
tion for (Faro,':) is

(F(co))= f((a)+(F(s)))V(Mco)—'IIp(cu)f((o), (35a)

which has the solution

(F( ))= I
f '( )—(M )-'VII, ( )]- . (35b)

The one-vertex part of IIp(ca) has the diagonality of
Eq. (25). The diagonal elements IIp&'&(co) can be found,
using the diagram rules, to be

IIp "&(&o)

(P—1) &&"(—&fo'("))~'
I

= El —& f'( )]D—2l&fo'( )] [I—p~fo'( )]

which can be written in the closed form

IIp&" (co) =
&c j

2F& 1, 1;2—;c,(36)
1—

& do(~) &f0'(~)

2
(p&'&(or)) = ——lim ImL(1+lip&'&(s)) —'&'

XTr(fez(1+IIp&" (z))$—'")], +;, . (3g)

Figure 5 shows (p&'&(&o)) for the linear chain with
nearest-neighbor forces and c=0.1, M' = -,' M. As in
I&ig. 4, the first high-frequency band is a distortion of
the unperturbed band but now each of the poles
r& fo'(a&) = 1, r~&2, occurs on the positive real axis and
gives a side band. The latter are not of physical sig-
nificance, as discussed in Sec. IV, and decrease rapidly
in weight.

VI. DISCUSSION

The formulas in this paper hold in three dimensions;
the calculations using Eqs. (26) and (37) were done
for a linear chain in order to illustrate simply the
features of the perturbation method. The expansions
(15) and (33) of (D(s&)) and (F(co)) are similar but not
identical and Figs. 4 and 5 for D"&(~) and F&"(~),
respectively, differ significantly in the region co&~~.
It is important to recognize that, in (F(co))=co(MD(co))
Wcv(M)(D(&a)), the factoring of the average may not
hold even approximately in some regions of cu. Thus, for
example even if the scattering lengths and temperature
factors of the 3 and 8 atoms are nearly the same, the
neutron inelastic scattering cross sections give the
spectral density of (D(co)) rather than the frequency
spectrum. However, the relation co(MD) =a& 'LV(D) —I]
does give a useful connection between (F) and (D) in the
k representation in low orders of the perturbation c
when changes of the phonon polarization vectors are
neglected. 4

The scattering of radiation by lattice vibrations in-
volves the quantities (u "u sa) and (u "u„c&"), the
displacement correlations for distinguished atom types
of n and m. Taylor' has given an approximate treatment
of these functions for a mass-disordered lattice, and
Dzyub' has discussed the perturbation expansion to

OI. P. Dzyub, Fiz. Tverd. Tela 6, 1866 (1964); 6, 3691 (1964)
/English transls. : Soviet Phys. —Solid State 6, 1469 (1964);
6, 2955 (1965)g.

where fo'(~)= f (Oa,Oa;o&) and e=(M™)/M.The
first pole & do(a&)=1 of IIp&'&(cu) is the same as that for
11"&(ra) but the other poles are not. The c and c' terms
of Eq. (36) agree with the corresponding terms given
by Langer. ' From Eq. (35b) and the diagonality of
IIp "&(co), one gets

F&'&(co) = (1+IIp&"((u))
—'&2fgco(1+lip&'&((o)) '"P, (37)

so that the frequency spectrum of the alloy in the
IIp&'&(co) approximation is



148 F REQUENCY SPECTRA FOR MASS —D I SO RD E RED LATTICES 973

order c2 in the Green's function without the benefit of
the multiple-occupancy factors. These factors can be
incorporated by modifying the coefFicients for the dis-
tinguished vertices by differentiation with respect to c.
The details will be presented elsewhere.

The two-vertex contribution to the self-energy can
also be reduced using the properties of the Stirling
numbers but the result is more complicated than Eqs.
(30) or (36) because it is no longer diagonal in n. This
contribution has been evaluated and will be discussed
elsewhere.

APPENDIX

The proof of Eq. (22) is by induction. Assume for
k(n that P&(c) is as given in (22). This is clearly true
for k = 1 since S(1,1)= 1.Then P„(c)is calculated by the
procedure used in obtaining Eq. (21), namely,

r2—1 m2 —1

g (—1)~'r2!S(n,,r,)c" P
rg+3 m,~ m1=1x, (A6)

m2 Pgl ~2 m2

which in turn can be summed over k3, and k4, and so
forth, until all the successive sums in Eq. (A2) are
completed, leaving

Thus, (A3) becomes

P (—1)'ri!S(n„r,)c"' P (AS)
rl& 2 1 ml (rl ml)

which is similar in form to P, (c)=P 1,(c), so that
the sum over ki in (A2) can be performed in the same
manner, giving

The sum of the Pi, (c) products
P„(c)=c— for all diagrams with 2 lattice

sites and n interactions (Ai)
3 lattice sites }-
n lattice sites }.

The (j—1)st bracket is

(-1)'
P.(cj )= Q (—1)"r!S(n,r)c"

jf

f~g} Wlt82
(A7)

1 +—(2—1)

P„(cj)=
j!k;,-1

(n2—2) (nl—1)

k. l kt=l

n!P»(c)P1,(c) Pi, (c)x, (A2)
k11k2! ~ ~ ' k~. 1!k~.l

where (m, } denotes the summation over all sets of j
positive integers satisfying m1+m2+ +~n; =r. Thus,
from Eq. (A1),

P (c)=c—Q P„(c,j)
i=2

where n;=n —k;+1—k;+2— —k; 1, and k, =n1—kl.
The factor

n

=c+P (—1)' 'r!S(n,r)c"
r 2

r (—1)i 1xg
f~iI Wlm2 ~ yt.

(A8)

nl —1 nJ
Z P»(c)P--1 (c)
kl 1

(A3)

can be performed by expanding P&(c) according to
Fq. (22), noting that the sum there can be extended to
infinity since S(k,m) =0 for m) k, and using the follow-
ing identity~. '

a—1

S(k,mi)S(n k, m1)—
k

mi+my)
iS(n, m, +m, ) . (A4)

mi

is the number of ways in which n successive interactions
of a phonon can be assigned in groups of k1, k2, , k;
to j unordered lattice sites (in an unlabeled diagram).

The innermost sum in Eq. (A2),

The sum over j is equal to 1/r, which proves Eq. (22).
The assertion about the sum over j follows from the
relation

(A9)

for r~&2, since the left-hand number of (A9) is the
coeScient of x" in the series expansion about x=o of

exp/in�(1

—x)$ = 1—x. Thus the sum starting fromj=2 is equal to 1/r
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