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Quantum-Mechanical Second Virial CoefBcient of a Hard-Sphere
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The quantum-mechanical second virial coefBcient NB(T) of a gas of hard spheres is evaluated at high
temperature T. The result is

2a3N- 3X 1X~ 1
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Here N is Avogadro's number, a is the diameter of a molecule, and g= (2xPPp/m)'/' is the thermal wave-

length, defined in terms of the molecular mass m, Planck's constant A, and P =1/kT where k is Soltzmann's
constant. The evaluation is based upon a direct method of expanding the Bloch function, which occurs in
the expression for B(T), in powers of a . The first term in B(T}is just the result of classical statistical
mechanics, the second term was obtained by Uhlenbeck and Beth, and one-half the third term was obtained
by Mohling. Boyd, Larsen, and Kilpatrick calculated B(T) numerically, fitted their results to a series of the
above form, and obtained coefhcients which agree with our exact results to seven decimal places for the
third term and nearly as many for the fourth term.

Here X, the thermal wavelength, and G(x,xp,p) the
thermal Green's function, or Bloch function, are
defined by

(1.2)

BG——DAG = —5 (P)5 (x—xp),
l9

G(x, xp, 0—) =0,

(1.3)

(1.4)

G(X,X,P)=0, ~x—x,
~

&a. (1.5)

In these equations P=1/kT, where k is the Boltzmann
constant and T is the absolute temperature, x, is the
center of a spherical molecule and a is its diameter

*The research in this paper was supported by the National
Science Foundation under Grant No. GP 3668.

S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev.
140, A129 (1965). These authors obtained an upper bound on
BE(T) of the form lnPBg(T}/BE'(T) j&—2m {a/X}'.Here Bp'(T)
is the exchange virial coefficient for an ideal gas without a hard
core.' E.H. Lieb D. Math. Phys. 7, 1016 (1966)j shows the exact
asymptotic formula for BE(T) to be lnfBz(T)/BE'(T) j= —H~'{a/A, )'+Or (a/X)'/'j.

I. INTRODUCTION

A CCORDING to quantum statistical mechanics,
the second virial coefficient NB(T) of a gas of

hard spheres at temperature T is the sum of a direct
and an exchange part, B(T)=Bn(T)+Bs(T). Here X
is Avogadro's number. It has been proved by I.arsen,
Kilpatrick, Lieb and Jordan' and by Lich' that Bs(T)
decreases exponentially with T as T becomes infinite.
Therefore, to 6nd B(T) for T large it suffices to evaluate
Bn(T), which is given by

1
Bn(T) = L1—2"9,'G(-xp, xp,p) jdxp.

2

(i.e., a is the radius of the hard-core interparticle
potential), m is the mass of a molecule, D=k'/m and k

is Planck's constant divided by 2m. .
We shall present a method for expressing BD(T) as a

series in powers of X/a and use it to obtain

2xa'E 3 X 1 P

XBn (T)= 1+ —+——
3 2V2a x a

16m&2 a
(1.6)

Since B(T) Bo(T) for T large, (6) is also the expansion
of B(T).The 6rst term in (6) is the result according to
classical statistical mechanics and the subsequent
terms are quantum-mechanical corrections to it. The
term in X/a was obtained by Uhlenbeck and Beth. '
Mohling' calculated the term in (X/u)' but obtained
the coefficient 1/27r instead of 1/n. . The fact that his
result was wrong was discovered by Boyd, Larsen
and Kilpatrick' who evaluated B(T) numerically and
fitted their results to a series of the form (6). Their
third coe%cient agreed to seven decimal places with
1/m. , which is our result. Their fourth coefficient agreed
with 1/16m. V2 to nearly as many places. In fact they
guessed both of these numbers, as well as the next
coefIIcient, from their calculations.

We wish to thank Elliott Lich for suggesting the
problem of resolving the discrepancy between the
numerical and analytical results.

IL EXPANSION OF G(x,xp, iI) IN POWERS OF a '

I.et us introduce a Cartesian coordinate system
x= (xi,xp, xp) with its origin on the surface of the sphere

' G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936}.
4 F. Mohling, Phys. Fluids 6, 1097 (1963).' M. E. Boyd, S. Y. Larsen, and J. E. Kilpatrick (to be pub-

lished}.
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(2.9)n&1

G&"'(x)=0 at P=O —, n)1. (2.10)

From (2.3) we obtain

~x—x,
~

=a and with the xi a,xis passing through the then set a '=0. Then (1.3) and (1.4) yield
center of the sphere x, and the source point xp. Then
x,= (—&i, 0, 0) and xo ——(x0,0,0), where xo denotes the aG(")

distance of the source from the sphere. In addition the BP
x2, x3 plane is tangent to the sphere at the origin. In
these coordinates the equation of the hemisphere
x1+—a ls

—[a2 p2)l/2 o

= —(p2/2a) —(p4/Sa') —(p6/16&i') — . (2.1)

Here p'=x '+x '
Since G depends upon the sphere radius a, it is helpful

to indicate this explicitly by writing G=G(x,xo,P, &i )
When no confusion can occur„ it is convenient to omit
the arguments xo and P and to write G(x,a '). Our
objective is to express G as a Taylor series in a ' about

G(x,a ')=G&"(x)+G&" (x)&r '+G&'&(x)a '/2+ . (2.2)

G([a —p )'/ —
&i, xg, x3, &i ') =0. (2 3)

Now we set a '=0 in (1.3), (1.4) and (2.3) to obtain
the following equations satisfied by G&"(x:

Here G&"'(x) = && "G(x,0)/&&(a ')" is the nth derivative of
G with respect to a ' at a '= 0.

To determine G&" (x) we begin with (1.3), (1.4), and
(1.5), which we rewrite on the hemisphere xi) —a as
follows, using (2.1):

G&'& (O,x2,xi) = (/&'/2) G,&'& (O, x2,x3)
= (x,/&'/16&r3/') exp( —(xo'+/&')/4DP) (2.11)

G'-& (O,x2,x3) =p'G. ,&'& (O,x2,x3) . (2.12)

G"'(x) =
123RD' p

dr dx2' dx, '(p')'

(- (/')'-xo'i
X[r(&3—r))-'" exp~—

4Dr

In (2.11) we have used the explicit result (2.7) for
G«&. In (2.12) we have used (2.7) to conclude that
G„,&0& (O,xi,x3)=0. We have also used (2.1) to see that
there is no term in a ' in the expression for the surface
of the sphere. Boundary values for higher derivatives
of G can be found by further differentiation of (2.3).

We can now obtain G&" by solving (2.9), (2.10), and
(2.11). This is an initial-boundary value problem for
the heat equation in the half-space x~&0 with zero
initial data and given inhomogeneous data on the plane
x~=0. The Green's function for this problem is G"), so
by Green's theorem we obtain

BG('
—DaG«& = —S(P)S(x—x,), (2.4)

f
—xP —(x,—x2')' —(x3—x3')'

&

Xexp(
I

. (2.13)
4D(P .)—

G&o&(x) =0,
G&'& (O, x2,x3) =0.

xoxi exp (—/&2/4DP) /' rp2
G&'&(x) = 1+

Sr& D'P' 0 4' (P r)—In (2.6) we have used the fact that for any fixed value
of p, 1im, „„[&r'—p')&/' —&i=O.

Equations (2.4)—(2.6) show that G' & (x) is the Green's
function for the half-space x&&0. It is given by

exp(( x02/4Dr) [xP/4D(P—r)])— —
X dr . (2.14)

[r (P r))& /2

at p 0 (2 5) Upon performing the x2' and x3' integrations in (2.13),
we obtain

(2 6)

1 —/&'
—

(—(x,—x )'q
G«'(x) = —exp exp(—

8 (&re)'/2 4DP ( 4DP J

t
—(x,+xo)'i—

exp
I I (2 7)4' )

To evaluate Bn(T) from (1.1) we shall need G&o&(xo),
which is obtained by setting p=O and xi ——xo in (2.7 ).
This yields

G'"'(xo) = 1/8( DP)"'[1—exp( —(xp /D/3) j) (2.8)

To determine G&"&(x) for n 1, 2, . w=e differentiate
(1.3), (1.4) and (2.3) n times with respect to a ' and

By setting x= xo in (2.14), we find

' exp([ xo'P/4D (0— )))—
d7-.

(p )]i/2

xp'
G&" (xo) =

8 D'&Jr' 0

(2.15)

The method we have used to obtain G(" can be used
to obtain all the G("' successively. We shall now use it
to obtain G&2&, which satisfies (2.9), (2.10), and (2.12).
In (2.12) we need the derivative of G&'& with respect to
xi at xi ——0, which can be computed from (2.14).
When (2.14) is differentiated with respect to xi, the
right side becomes the diA'erence of two integrals which
both diverge as x~ tends to zero. Therefore, we introduce
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(2.16)
8r/'D'f3' o [r (P —'" P—r)]'"

'
n G("' taking account om to G(2) and t eh Green's function

b(2.12). In this way we oevaluating the rigri ht side of n

~ 2[xio+ (x,—x, ) + x —xo) ]
4D(P r)—

(/')' —4 )
exp/fxo

r' P r—
X/Xo

64(r&D)"

~

fas the quotient o('& can be written as

gQ

in o te rais. Then G I ca
result

'' into these two integ
=0. A li tio ofL'H it

xo exp ( po/'4—DP ex

' exp (—xo'/4')

o [n (r—n)]'" ( +1) dq . (2.17)1—
2Dr 2'

(2.17)

eXp —o' —r)) ' eXp(—Xo'/4Dl/)~ exp( xo'/4—D(P r-
o [i/(r —n)]'"

Xo

) ~ ~ i~is)
P 2Dg4oro/2Do/2P2

2.17) becomesx ' integrations. Then—x a p= ' wecanperorf rm the x2' and x3 in eg=x and p=0 inAfter we set x~ ——xo a p=

rn. EVALUATION OF Br/ 2')

(T). First we usee (1.5) in (1.1)ex ansion forresults in (1.1) to obtain an expe the preceding results inWe shall now use e
to obtain

2xc 1
Bn(T) = [1 2./ohio/oG(xo, xo,P)]dxo. (3 1)

3
1+—

0

aBg)(T) =

and (2.18) for G&"'(xo),) o, ' ' (. ) sig e its 2.8), (2.1S), and
ms in the braces p o+ )' dl tP'( o) &1 "'(*o

or eraa ' In this way weo ain

(3.2)a 'dx1—2o/9P/oG(xo, 0,0,a ')](xo+a dx

3 (—xoo'l
ex dxo+ —2 exp

DP a' o

3 ( co& exp[ Pxoo/4Dr (P —r-
[r(8 r)]l/o ao

r rxo 1—o exp[ —Pxo'/4Dr (P— xo

l
~Pl

/2[r(P—r)]'

3 OQ

Bg)(T) =-'oorao 1+—
0

—x3

&Dp&(xDP) 1/2

xoo exp[—xoo/4D(P —r)]
&fxo dr

0( D~)'" ~
/2

(—o'/ ) (0—)

2Dg
X -~)]'"—o [gr

a licitl without muchble, they can all be evaluated exp ici y w
theei t I, bt'

t g o e eg
difFiculty if the xo integr ation is always do

3 x DP '" /DPi
+2l —l+'Ea'3 8 a

(3.4)

+
lx0—xel &~

es, 1 ce the angulare s here x, to rep acinte rand about the center of the spow w herical symmetry of the integrand a ou e e s
b multiplication by x xo—,'=integration y m
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From the definitions D= fi'/m and the definition (1.2) of X, it follows that DP =X'/2ir. When we use this relation in

(3.4) we obtain the result (1.6) stated in the Introduction.
In conclusion, we note that our procedure could be used to evaluate additional terms in (3.4). We also observe

that we could have introduced dimensionless variables from the beginning, and then our expansion would have

been in terms of a dimensionless ratio rather than in terms of a . Finally, we should point out that our procedure

yields the asymptotic expansion of Bn(T) for X/a small, rather than a convergent power series, since BD(T) has an

essential singularity at X/a=O. This singularity will be manifested by exponentially small terms similar to those

occurring in Bs(T) and described in footnote 2.
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When a tenuous electron stream gyrates around the field lines of a static magnetic field in the presence
of a stationary plasma, electromagnetic waves are excited which propagate perpendicular to the magnetic
field. Previous theoretical studies involved the assumption that these excited waves are almost longitudinal
(quasistatic approximation). Such an assumption is not made in this analysis. It is shown that the ex-
cited waves have the electron cyclotron frequency or some multiple thereof. The electric intensity vector
rotates in a plane perpendicular to the magnetic field; the phase velocities are of the order of, or exceed,
the velocity of light, and for certain plasma-beam systems lower harmonics of the electron cyclotron fre-
quency cannot be excited. Expressions are given for the rate of growth of the waves as a function of the
plasma-beam parameters and the harmonic number.

I. INTRODUCTION

HERE has been considerable interest recently' in
processes which produce emission of waves from

plasma, perpendicular to a magnetic field, with fre-
quencies which are multiples of electron gyrofrequency.
The relevant theory has been developed in terms of a
dispersion equation based on quasistatic approximation.
This approximation involves the assumption that the
electrostatic e8ects alone control the wave propagation
and is valid when the phase velocity of the wave, when
compared to the velocity of light in vacuum, is sufIi-
ciently small. In a quasistatic approximation the waves

*Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

f Consultant, University of Tennessee, Tullahoma, Tennessee.
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1963 (Serma Publishing Company, Paris, 1964), p. 28; J. L.
Hirshfield and S. C. Brown, Phys. Rev. 122, 719 (1961); A.
B. Kitzenko and K. N. Stepanov, Zh. Tekhn. Fiz. 31, 176
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are almost longidudinal, i.e., the electrical intensity K
is almost parallel to the wave vector k.

A suggestion that waves moving perpendicular to the
magnetic field are electrostatic was made by Canobbio
and Croci' in their analysis of radiation observed in a
P enning ion-gauge (PIG) discharge by I.andauer. '
Subsequent investigations based on quasistatic approxi-
mation were made by Dory, Guest, and Harris, 4

Crawford and Tataronis, ' Ikegami, ' and others.
This investigation is based on a different approach to

the problem. It has not been assumed that the excited
waves are quasistatic (i.e., no a priori restrictions are
imposed on the orientation of E with respect to It), and
it is shown that there is an emission of excited harmonic
waves which are not almost longitudinal. The main
characteristics of these excited waves are: (a) each is
elliptically (or circularly) polarized and the electric

E. E. Canobbio and R. Croci, in Proceedings of the Sixth
International Conference on Ionization Phenomena in Gases, Paris,
1063 (Serma Publishing Company, Paris, 1964).

' G. Landauer, in Proceedings of the Fifth International Con-
ference on Ionisation Phenomena in Gases, Munich, Germany, July
i%61 (North-Holland Publishing Company, Amsterdam, 1961),
Vol. I, p. 389.' R. A. Dory, G. E. Guest, and E. Q. Harris, Phys. Rev. Letters
14, 131 (1965).

' F. W. Crawford and J. A. Tataronis, J. Appl. Phys. 36, 2930
(1965).' Hideo Ikegami, Institute for Plasma Research, Stanford
University, Stanford, California, Report No. SUIPR 29, 1965
(unpublished).


