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Remarks on a Recent Method for Lower Bounds to Energy Levels
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A procedure of Gay for lower bounds to energy eigenvalues is improved and extended to apply to excited
states and more complex systems.

INTRODUCTION

ECENTLY Gay' introduced a modification of the
method of intermediate problems' ' with which he

obtained good numerical results in applications to
ground-state calculations for helium-like atoms. "In
this note we remark on this method and extend its appli-
cability to excited states and more complex systems.

DISCUSSION

For convenience we shall use the notation and setting
of the problem given by Gay. '

A self-adjoint Hamiltonian H is assumed to be
decomposable as

H=H'+ V,

in which V is positive definite and H' is a resolvable
self-adjoint Hamiltonian, i.e., H has known eigenvalues
E„ indexed in increasing order and corresponding
eigenfunctions 0'„0. The eigenvalues E„o, which give
crude lower bounds to the eigenvalues E„of H, are
improved by the eigenvalues E„"of the problems,

II-e—Em=0,

for intermediate Hamiltonians4' H". The latter have
the form

with 0" given by

o-= Z lp, &~-.,&p, lv,
i, j-1

where the p, are linearly independent vectors in the
domain of V and the matrix A."is the inverse of the nth-
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p =p'(I-')= V '(H E)f—(2)

where the f, are suitable linearly independent elements,
then the equation would no longer contain the resolvent
operator and the elements might be computed more
easily. A problem arises since the theory of intermediate
Hamiltonians is based on the use of fixed vectors p;,
while those given in terms of the f; by Eq. (2) depend
on E Thus, the meaning .of the roots of (1) with vectors
p, of the form (2) must be interpreted, as Gay remarked.

To aid in this interpretation, Gay introduces a
parameter e in place of E (ultimately e is put equal
to E), i.e. , vectors p;(e) are defined by

p, (e)= V '(H e)f;, -—(~)

and intermediate Hamiltonians H" (e), given by

H" (e) =H'+ VO" (e),

are constructed as before employing the p;(~) of (3).
For each fixed real value of e nothing is changed from

the usual intermediate Hamiltonian theory; however if
e is put equal to E, then a solution 4", E" (E" real) of
the nonbnear eigenvalue problem

H" (E)O—&I =0 (4)

is also a solution of the linear intermediate eigenvalue
problem

II"(~)+—M =0
for ~ having the Axed value A'". Thus E" may be in-
terpreted as a lower bound for some eigenvalue of II;
but for which oneF

order matrix having the elements (p;I Vlp;). The im-

proved lower bounds E„"satisfy

E 0&2 n&E„, v= 1, 2,

The eigenvalues E„"which do not lie in the spectrum
of II' are given" by the roots of the determinantal
equation

l&p*l vl»&+&vp'I (H' —E) 'I vp ) I

=o.
A principal difFiculty in finding these roots is that the
resolvent operator (H' —E) ' is rarely known in closed
form.

Gay observed that if the vectors p; were to have the
form
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A second problem to be resolved for this method is

how to proceed if the operator V does not have an
inverse known in closed form.

Ke will give some answers to these questions in

subsequent remarks, but to explain these clearly we

must follow the theoretical development a little further.
The nonlinear equation (4) may be cast in the form

n

(H' —E)Lq —2 C.(E)f I=o,
I

(5)

where the quantities C;(E) satisfy

((H' —E)f
I
V '

I

(H' E)f )C—'+(f I

H' E
I
+)=—o,

i=l

j=1, 2, (6)

If O'", E" (E" real) satisfy Eq. (5) with E" not in the
spectrum of H~, then +" is given by

n

C, (Ee)f
i=1

(7)

must be satisfied by the C;(E"). Conversely, if these
equations have r linearly independent solutions for a
real value E" not in the spectrum of H', then the r
resulting vectors of the form (7) are solutions of (5), (6)
for the value E".

If q ", E" satisfy (5) with E" equal to an eigenvalue
E„' of H', then +"has the form

q"=P C, (E„")f;+C,+',
i=l

(9)

where 0' is an eigenvector of H' corresponding to E„',
and the quantities C;(E„') must satisfy the equations
(8) which result from putting 4'" given by (9) into
Eqs. (6). Clearly, every eigenfunction q' of H' corre-
sponding to E„' satisfies (5) and (6) with E equal to
E„o.Further, if the system (8) with E equal to E„ohas r
linearly independent solutions, these yield r additional
solutions of (5), (6) of the form (9) unless the span of the
f, contains eigenvectors 4'o corresponding to E„o. In the
latter case the number of solutions 0" independent of
the 0' is r minus the number of linearly independent
eigenvectors 0' contained in the span of the f; We note.

and the system of equations resulting from (6),

n

L"((HO En)f
I
V—I

I

(HO En)f )
i=1

+(f, I H" E"
I fi)jC' = 0, —j= 1, 2, , n, (8)

that if the span of f, does contain an eigenvector ql',

then the vectors p; given by Eq. (2) are not linearly
independent.

REMARKS

Ke observe that if an eigenfunction% „ofH belongs to
the span of the vectors f;, then ql„, E„satisfy (4). This
follows from the fact that 0"p=p for any vector p in the
span of the vectors p, . Thus, 0"p=O"V '(H' E„)%„—
= V '(H' E„)+„;—or, equivalently, since (H' —E„)%„
= —VC„, we have 0"C„=C,so that

H" (E )q =H'q +VO "q =Ha% + V+ =E q

In general there is no certainty that E„will be the vth-

ordered eigenvalue of the operator H"(E„).
We now consider procedures for locating E", arising

from a solution of (5) and (6), in the spectrum of the
operator H" (E"); (E" is regarded as fixed).

This problem was considered by Gay, ' who observed
(we modify his statement slightly) that when E"(E +io,
the fact that H'&H" (E") implies that E" is no larger
than the nth eigenvalue of H"(E"); thus E"(E+i'
gives E"&E . This result is of practical use only in
those problems for which the eigenvalues of H lie close
to those of H.

A more e6'ective means for locating E" is to use the
operators H' "(E")=H' '+ V'O" (E") in which H' ' is
the 1th-order truncation" of H'. The eigenvalues E' "
of the operator H™(E")are easily determined' and
satisfy

E '(E ' "(E, n=1, 2, , t+1.
If E" satisfies En(E+l'", then E" can be no larger
than the uth eigenvalue of H"(E"), and it is a lower
bound for E . Further, if suSciently good upper bounds
E„are available and the inequalities

S'. ,&E.™&E"&E.„™
are satisfied, then E" is the nth eigenva, lue of H" (E")
and is nondegenerate.

Now we turn to the problem of what to do if the
inverse of V is not available in closed form. In this case
a second projection~ can be employed. This is done by
replacing H by the smaller operator Ha p+ (VQ +p), —
where p is an arbitrary positive constant and Q" is the
projection with respect to the positive bilinear form
generated by V on the linear span of a family of vectors
qi, q&, , q in the doinain of V. Then using VQ +y,
which always has an easily found inverse, in place of V
and H —p in place of FI, the technique developed by
Gay can be applied.

' N. Bazley and D. K. Fox, J. Math. Phys. 3, 469 (1962).


