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Dispersive Magneto-Optical Phenomena in Semiconductors
in Crossed Magnetic and Electric Fields
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The semiclassical and quantum theories of the Faraday and Voigt effects due to transitions between two
simple energy bands in the presence of crossed magnetic and electric fields are developed. The dispersive
phenomena are found to complement and augment the information obtained from absorption. The decrease
of instensity of de =0 transitions, the Gnite probability of transitions with Ae /0, and the shift of transitions
to lower energies are found here, as they were in the optical absorption. The absorption constant due to
second-order (forbidden} transitions is calculated and anisotropy with respect to electric-6eld direction is
predicted. The experimental results of crossed-Geld Faraday rotation in gemanium are presented, and com-
parison with the theory is carried out, taking into account the degeneracy of the valence band. Good cor-
relation between the theory and the experiment is obtained.

I. INTRODUCTION

;AGNETO —optical phenomena in semiconductors
- ~ in the presence of a transverse electric 6eld have

recently become a subject of extensive investigation.
Aronov' 6rst formulated a theory of interband optical
absorption due to direct transitions between simple
parabolic nondegenerate energy bands in the presence
of external crossed 6elds. Experimental works of Vrehen
and I.ax' and Vrehen' confirmed the main predictions of
the theory. Hensel and Peter' and Shindo' investigated
theoretically the Stark shift of Landau levels in the
degenerate valence bands of germanium. Recently
Vrehen' investigated both theoretically and experi-
mentally crossed-6eld interband optical absorption in
this material. The measurement of crossed-field
absorption can in principle determine separately the
effective masses of carriers in both bands. The aim of the
present work is to extend the investigation of crossed-
6eld phenomena to dispersive magneto-optical effects,
both theoretically and experimentally. ' It turns out
that in some experimental situations, especially in
higher electric 6elds, the dispersive phenomena can be
more easily investigated and provide more information
than the absorption. ' The semiclassical theory gen-
eralizes the approach of Kolodziejczak, Lax, and
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Nishina' (KLN) by taking into account the presence of
dc electric field and avoiding the restriction of low
magnetic-6eld strengths. This procedure makes implicit
use of the effective-mass approximation for an electron
in crossed 6elds. Limits of these approximations are
brie6y discussed in Sec. III, based on a recent treatment
by Zak and Zawadzki. ' Then the quantum theory for
simple bands is developed using the procedure applied
to magneto-optical dispersive phenomena by Boswarva,
Howard, and Lidiard, " Halpern, Lax, and Nishina

(HLN), '~ and Bennett and Stern. 'I In the final section
the experimental results on the crossed-Geld Faraday
rotation in germanium are presented and the com-

parison with the theory is carried out. A good agreement
is obtained and the results con6rm the conclusions of the
crossed-6eld absorption investigation.

II. SEMICLASSICAL APPROACH

The dispersion of light in solids can be obtained from
the absorption coefficient by use of the Kramers-Kronig
dispersion relations between the real and imaginary
parts of a dielectric-constant tensor. However, the dis-
persion and absorption can also be obtained through the
application of classical equations describing the motion
of a bound electron. In this section we use the equation
of motion generalizing the approach of KLN in order
to take into account the presence of dc electric 6eld
perpendicular to the magnetic field. '4

9 J. Kolodziejczak, B. Lax, and Y. Nishina, Phys. Rev. 128,
2655 (1962).' J. Zak and W. Zawadzki, Phys. Rev. 145, 536 (1966)."I.M. Boswarva, R. E. Howard, and A. B. Lidiard, Proc.
Roy. Soc. (London) A269, 125 (1962); I. M. Boswarva and A. B.
Lidiard, iNd. A278, 588 (1964)."J.Halpern, B. Lax, and Y. Nishina, Phys. Rev. 134, A140
(1964}."H. S. Bennett and E. A. Stern, Phys. Rev. 137, A448 (1965).

I4 KLN considered the case of low magnetic 6elds. The present
procedure does not require this assumption and is valid for high
magnetic 6elds as well (within the limits of the effective-mass
approximation). This is of importance, because as follows from
the criterion given in Sec. III the description based on the equa-
tion of motion ceases to be valid for low magnetic fields (for
derivation and details see Ref. 10).
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Ke consider an electron in the valence band as a
classical oscillator" with the oscillator frequency cor-
responding to that of the energy associated with the
particular interband transition involved. Then in the
presence of magnetic and electric fields the equations of
motion can be written as follows:

dl' p i dl' p dl' p
+&ap rap+ + X~c

d/2 r p dh dt

ea eK
=—exp(i(ot)+ —, (1)

where r p
——the displacement vector; ~ p

——the appro-
priate oscillator frequency; ~,=eH/me=the cyclotron
frequency; m = the free-electron mass; H = the dc
magnetic ffeid; r p 'dr p/dt=the damping term with
7 p

——the relaxation time; 8=the electric vector of the
optical radiation; and E= the external dc electric field.
The subscript nP denotes the initial and ffnal states of
the electron in the valence and conduction bands,
respectively.

One can easily see that the solution of Eq. (1) ms, y
be found in the form

are fulfilled. Using Eqs. (1)—(5), we arrive at

e2

(r~=
m p or p2 a)'+—cucv~+uv/r p

IM A exp

g2 1COA exp

do have the rotational symmetry in respect to the s
axis. This is not true for forbidden (second-order)
transitions. Hence for allowed transition effects in a
cubic solid we may write the conductivity tensor in the
form

a„=o„„=-,'(o.++o ),
e'au= ew*= k(e+ e—) i

ozz= o'0
y

all the other components being zero. ao is the conduc-
tivity in the absence of the magnetic field and o+
are the conductivities for circularly polarized waves.
They are obtained by writing the equation of motion
in component form and then combining the x and y
components to obtain the solutions for j ~if„. The
relations

(6)

r p rp' ex——p(isn't)+eK/nm p', (2)
m p a& p' co'+ice—/r p

where r p as a function of co p is identical with that ob-
tained in the absence of dc electric field E. Thus, since
the oscillator is bound, the dc electric field simply
shifts the position of equilibrium.

On the other hand we can calculate the current vector
due to all the transitions

J=P ev p.V p,
ap

where v p=dr p/dt is the electron velocity, and tV p

is the number of transitions between the states n and P,
which depends on the oscillator strength. The conduc-
tivity we look for is defined by the relation

J=o8, (4)

"Bennett and Stern C',Ref. 13}call this model a Hgokean solid.

where o- is the complex conductivity tensor determined
by the velocities v p. Thus the constant term eE/nm p2

in Eq. (2) does not enter explicitly into the expressions
for the conductivities. However the dc electric field
does a6ect the oscillator frequencies ro p and the num-
ber of transitions X p.

We choose the coordinate system to have the mag-
netic field along the s direction and the electric field
along the y direction. This physical situation does not
have the rotational symmetry with respect to z direc-
tion. Thus, even for an isotropic solid in general
o, Wo». Ke shall, however, show later that if the dc
electric field is not very large, i.e., the energy bands are
not distorted by its presence, the allowed transitions

a= (2co/c)k, the absorption coefficient,

it= (co/2c)(n+ n), the —Faraday rotation,
6= (co/2c)(k+ —k ), the ellipticity,
5= (v/c)(n~~ —n~), the Voigt phase shift,

(12)

where X p+ and S p' denote the number of transitions
for longitudinal (~~H) and transverse (J H) propaga-
tion, respectively. Actually by use of the equation of
motion LEq. (1)g we get in Eq. (7) co„=a&„ the cyclotron
frequency. This frequency depends, however, upon the
model applied and we do not specify it now.

The number of transitions is proportional to the
oscillator strength and statistical factors. We assume
for simplicity that the valence band is completely filled
and the conduction band is empty. Then

iY p+= f p~dadP,

and similarly for .7 p'. The oscillator strength is
given by

f p+=2~P p+~'/mba p+, (1O)

where the matrix elements of momentum between the
states 0. and P, I' p, and the transition frequencies co p

have to be calculated by use of quantum methods.
The index of refraction n and the extinction constant

k are connected with the conductivities by the well-
known formula

(n —ik) 2 = 1+(4x /ice) o',ff,

where o;«stands for o+, o.
f l, &, whatever the case may

be. The magneto-optical phenomena can be expressed
by the optical constants as follows:
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Using Eqs. (6)—(12) general formulas for the magneto-
optical phenomena in crossed fields can be written.
In order to proceed further we have to specify our model.

We assume that the transitions take place between
two spherical parabolic energy bands with twofold
spin degeneracy in the absence of the magnetic field.
The selection rules for right and left circularly polarized
light are determined by spin and the frequencies cor-
responding to interband transitions are

ice/r e removes the singularities and shifts the maxi-
mum positions toward higher frequencies). In the
approximation to terms co+2 this leads to

(15)

The number of transitions LEq. (9)) for our model is
given by

iV),(,.+= (4/(2n )')f)),.+d'kd'k'. (16)

Cd+P =Mkk~ +PH

with

We now assume, following KLN approach, that in the
(13) semiclassical case the oscillator strengths are equal

for all types of transitions.

v = (1/2k)) a(g.+g.),
where p~ is the Bohr magneton and g, and g„are the
effective spin splitting factors for electrons in the con-
duction and valence bands, respectively. Furthermore
we consider only one nonshifted by spin frequency for
light polarized in the z direction, in analogy to the
classical I.orentz triplet in the atomic Zeeman effect.

(17)

[&~a f'-

+kk' -kk' ~eff—
d'kd'k', (18)

By use of Eqs. (7)—(17) the magneto-optical effects
in crossed fields take the following form:

~P =kk . (14)
where

Here k and k' denote the values of wave vector of an
electron in the valence and conduction bands,
respectively.

The conductivities (Eq. (7)) should have maxima
for frequency in the vicinity of co=ra&k &yH (the term

0 fq = 0+ for 0+
= 0 fOr nl&,

and for 0« the expression in brackets is to be replaced
by

1 1 j.
+

2 Mkk' —0—— -07kk' ~+—

8=A(o Re d'kd'k',
~kk' -kk' ~— ~kk'

A=Au) Im
kk'

1
+

&kk' -kk' ~— &kk' ~+

d'kd'k,

d'kd'k',
kk'

(2o)

(21)

where

and

Q~ =
t CV (CV&2yH —2'/r)) 2)',

0= (cd((d i/r) )2)'—
tion 8 and the ellipticity 6 are proportional to cv'

and the Voigt phase shift to co'.

DI. HAMILTOÃIAÃ AND THE EFFECTIVE-
MASS APPROXIMATION

A =e'/8w'm'kelso

Np is the index of refraction in the absence of external
fields.

The formulas (18)—(21) are valid for both direct and
indirect allowed transitions and frequencies co &~,
and co&co„ if appropriate matrix elements, densities
of states, and transition frequencies are introduced in
every particular case.

It can easily be verified from the above formulas that
for (e(((e),), (long-wavelength limit), the Faraday rota-

In the one-electron approximation the Hamiltonian
for an electron in a solid in the presence of dc magnetic
and electric fields and electromagnetic radiation takes
the form

j. e h
p+ —A +V(r)+eR r+2' c 4m2c'

e eh
X( X(V)'+ E)j(2+—A + (H+H'), (22)

c 28$c
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where
X=3CO+3C', (23)

P2 h
3C'=—+V(r)+eE r+ e

2m 4m2C2

with

X(VV+eE)P+ v H (24)
281c

P= y+(e/2c)(H&&r)

describes the system without radiation, and

(25)

where V(r) is a periodic potential of the solid, A is the
vector potential that takes into account the dc magnetic
field and the electric field of the electromagnetic radia-
tion. The fourth term accounts for the spin-orbit in-
teraction, e being the spin-vector operator, and the
fifth term describes the interaction of spin with the dc
magnetic field H and with that of the electromagnetic
wave H'. The Hamiltonian can be conveniently divided
into two parts,

K = (1/2m*)P'+eE r+-,'peg~a H, (31)

where g* is the effective spectroscopic splitting factor.
This Hamiltonian may be used to calculate frequencies
and matrix elements associated with the interband
transitions.

that for a given electric-Geld strength the magnetic
held cannot be too small for the effective-mass equation
to be valid. For example in germanium a 5)&10
cm, and for the magnetic fields H j.0' G only the first
few Landau levels may be described by use of the
eRective-mass equation. For electric fields of order
5X 10' V/cm, both the conduction and light hole bands
can be described by the effective-mass approximation
(m*=0.04mo and eEa/hco, =0.1) whereas for the heavy
holes with the effective mass much larger than that of
the light holes the effective-mass formalism cannot be
applied. Kith the above restrictions the effective-mass
Hamiltonian for simple parabolic spherical and non-
degenerate (except for the spin) band is

where

X'= (e/c)A'v, (26)
IV. CONDUCTIVITY-TENSOR RELATIONS

A'= (ic/&o) 80 exp i(&at —kr)+conjugate (27)

vector potential of the electric radiation field, and

v = P/m+ (tt/4m'c')e)& (V V+eE) (28)

the velocity operator. The time-dependent part of the
Hamiltonian, Eq. (26), describes the interaction of the
system with the electromagnetic wave. In Eqs. (24)
and (26) we have neglected terms proportional to A'2

and «rH' as small. Practically achievable dc electric
fields that can be applied externally to the solid are
much smaller than the internal atomic electric fields
so that eI; can always be neglected in comparison with
V'V. This is equivalent to the assumption that the ex-
ternal electric field does not distort the energy bands.
Thus the perturbation (time-dependent part of the
Hamiltonian) does not contain the dc electric Geld
which affects only the transition frequencies and matrix
elements, just as in the semiclassical procedure.

It has been shown recently" that the Hamiltonian
K' LEq. (24)j for an electron in a periodic potential in
the presence of crossed electric and magnetic fields
(EJ H) can be approximated by the eRective-mass
Hamiltonian provided the two following conditions
are satisfied:

(2&+1)'~'a/1. &&1

eEa/Iae, «1,

(29)

(30)

where a is a typical lattice constant and i.= (hc/eH)'~'
is the radius of the first cyclotron orbit. n indicates the
principal quantum number of a Landau state that can
still be described by the effective-mass approximation
and ra, =eH/m~c is the eRective cyclotron frequency
for the electron in a given band. Equation (30) shows

A/2 1 'rap 7l pa il ap 7l pa+
m h ap Cheap CO+reap ~—Crap

(32)

where

0'sp =
A+2 Zap %pa Pap &pa

~ ~ ap 0)+Map M ap

m.e ——(nimv i P),

(33)

and the velocity operator v is given by Eq. (28). By
use of Eq. (6) o+ can be calculated and then applying
Eqs. (11) and (12) the Faraday rotation is obtained in

"Both methods lead to identical results.

Time-dependent perturbation theory can be applied
to the Hamiltonian LEq. (23)] in order to carry out a
quantum-mechanical calculation of the conductivity
tensor. There are two methods that may be used to find
the imaginary and real parts of the tensor. The first
method incorporates the calculation of the absorptive
(imaginary) part of the conductivity, which is pro-
portional to the probability per unit time for the ab-
sorption processes to occur, and the application of the
Kramers-Kronig dispersion relations in order to find
the dispersive (real) part of the tensor. In the second
method, one explicitly evaluates the expression for the
current density when charged particles move in an
electromagnetic field, and the conductivity tensor is
given by the Kramers-Heisenberg formulas. This is in
analogy to the semiclassical treatment given in Sec. II
and we proceed using the second approach. "

The conductivity tensor for a solid having cubic
symmetry LEq. (5)j takes the form
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the form

m'e'
I
s.e+

I

'
I
x.e-

I

'
8=—

8$ ceno ap (dep Map

id

m'c&no

xP —,(34)
4& e (4& e

—& ) ~ tr(4& e
—+)

where m p+=x p ~in p". Bennet and Stern" showed

recently that the first term on the right-hand side is

identically equal to zero in the general case if only the
interband transitions are taken into account. In other
words the Faraday rotation for au(&~ p goes to zero like
+' if no free carriers are present. Thus we are left only
with the second term.

Similarly the Voigt phase shift by use of Eqs. (6)
(11), and (12) can be obtained in the form

4xe' Im, e*I '
I

vr e*I ' 4~e'
+

m keno ~p e p e p ss "cno

& e (~ e ~ ) & e (& e ~ )

We have not been able to prove that the term propor-
tional to co is equal to zero. However, we assume this in
order to simplify the 6nal formulas and to make the
quantum treatment consistent with the semiclassical
approach.

where J. is the radius of erst cyclotron orbit deined be-
fore, C the normalization coeKceint, and

GD 2 =eH/rn2c

is the eftective cyclotron frequency, nz2 being the effec-
tive mass of holes. P (g) is the harmonic-oscillator func-
tion. For electrons in the conduction band the solutions
are given by similar functions, the argument being
different however: P„.(y/L Lk, '+eEL/bc', &). Fre—-

V. TRANSITION FREQUENCIES AND
MATRIX ELEMENTS

For the ideal model of two spherical parabolic non-
degenerate bands (except for twofold spin degeneracy)
the eigenfunctions of the problem are given in fII.rst
approximation by a product of a periodic part of the
Bloch functions (with the spin parts included) and the
solutions of the effective-mass Hamiltonian LEq. (31)].
In the Landau gauge

A = (—Hy, 0,0) and E= (O,E,O)

the spatial envelope functions for the valence band are

F,(r) =C exp i(k,x+kz)f„(y/L Lk eEL/Ace. 2),—(36)—

quency corresponding to the energy of the transition
between two modified Landau levels in different bands
is

and the density of states

d'k=L 'dndpdk„ (39)

and similarly for the conduction band.
The theory of interband optical transitions in the

presence of the magnetic held can be directly adopted
to the crossed-ields case. Boswarve and Lidiard"
showed that the matrix elements of P=mv (with spin-

orbit interaction neglected) for direct allowed transi-

tions between valence and conduction bands are given

by

P.e+ (1~(v,'/a&,——)(u. I
p+

I
u, ) F„*F,d'r, (40)

P e* (u„Ip'I u.) —F—,*F,d'r, (40a)

where ar, ' is the free-electron cyclotron frequency,
p+= p*&ip", and u„, u, are the periodic parts of the
Bloch functions with spin parts included. As noted by
Aronov' the envelope functions (36) in conduction and
valence bands are not orthogonal for nAn' because of
the different arguments for electrons and holes; taking
into account the selection rules determined by the spin
parts we Gnally get

IP e+
I

'=

(Iaido'/~

)'I p" I
'L'I c'(n, n')

I

'
Xh(e „—e. ') b(k, —k.')8, , ;pi, (41)

IP-e*l'=L'I p-I'IC'(n n') I'~(e- —e- ')

X~(k.—k.')~.;, ,', (41a)

where p„and p„' satisfy the relation

(2n+1)"'cosrp„= (2n'+1)'~' cosy „.',

which is equivalent to the conservation of k in the

~ e=~a+~,g(n'+2)+a&. 2(n+-,')+ hk. "/2m'+ hk. '/2m2

+h 'eEL'k ' h'e—EL'k (m—g+mg) c'E'/2hH'

+gem, 'g.H yern, g—.H, (37)

where au, is the frequency corresponding to the energy

gap, and m;, m,
' are magnetic quantum numbers, which

for our ideal model can take two values &-,'.
It is convenient to use the cylindrical coordinate in

the momentum space with variables n, y, k, instead of

k, 0„, k,. In this system

k =L '(2n+1)'jmcose;
k '=L '(2n'+1)'" cosy', (38)
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transition, and'7
n+E

@(n+1n ) —(2e'+en tn() —i/2 exp( as/4) g ( 1)a+(—n'+mam+i —n'+im2n, '—m

n'(n+l)!
X for n'& n+l

(n+l n—'+m)!(n —m)!m!

—(2a'+an~tn)) —1/2 exp( g2/4) P ( 1)iaaf' tl !+—2m—2n+r m-
m~o

n'!(n+l)!
X

(n' —n —l+m)!(n+l —m)!m!
for n') n+l, (42)

where a=eEL/ka&. and ca, =eH/c(mi+mi). For the
electric field equal to zero

the matrix-elements properties reduce to those in the
magnetic-held case.

When the direct optical transitions between the
two bands are only allowed to second order one has to
include the first-order corrections in the wave functions.

The matrix elements for second-order (forbidden)
transitions are"

e.P„=—~hM„. I',*VF,dr

where

—(eH/c)M„* F,*yF,dr, (43)

p.i(npi. ) (np. i)pi.
M.,=—P

m t g,—b) g)—g,

The sum is over all bands excluding the conduction
band. e is a polarization vector of the radiation. All
the matrix elements and the energies are taken at
k=0. Using the envelope functions (36) the matrix
element for the forbidden direct transition between
levels n and n' becomes

n P..= kk, LM,„'4(n,n')b(k, k,')(k. k,')— —
—kPI, .-C (n+1,n')+M, .+C (n —1,n')

+(eEL/Aber, i) ,M.
* (C, n')n)

X8(k —k ')b(k.—k, '), (44)

where M.„+=M,„*&iM„& For E=O 'the. result (44)
reduces to

n. P„=kk,LM..*8(k k')b(k. k,')— —
—(k/V2)(M„—(n+1)'i'6„+i „.+M„+n'i'h„ i,„.)

Xb(k —k ')&(k.—k.') (45)

which is equivalent to Elliott's result" (we use a
diBerent gauge).

For a cubic solid p,„*=p.„"=p.,*, M„*=M„"
=M„', and M,„is parallel to e. When the light is prop-
agated along the magnetic-field direction z, only
p„*and p„& come into play. It can be seen then from
Eq. (41) that for the allowed transitions in crossed fields
the square of the matrix elements does not depend on
the orientation of polarization with respect to the de
electric field. For example, for polarization in the x
direction (nJ K) and in the y direction (n~~K) the
squares of the matrix elements are the same, i.e., the
absorption constant is the same. This is of course also
the case in the absence of the electric field. For the for-
bidden transitions in the presence of the magnetic field
alone the same symmetry is valid, as it can be seen from
Eq. (45). LThe mixed term M,„M,„+ in Eq. (45)
vanishes because of the delta functions, and ~M„+~'
and ~M„!' do not depend on orientation. ] The for-
bidden transitions in crossed fields LEq. (44)J, however,
depend upon the orientation of the polarization in
respect to the electric field, i.e. , ~

P.,*~ 'fo b 0
~
P

~
f

Thus the symmetry of the conductivity tensor LEq.
(5)j does not hold for the forbidden transitions in
crossed fields.

VI. MAGNETO-OPTICAL EFFECTS

Now we apply the general expressions given in Sec.
IV to calculate the interband magneto-optical eRects
using the idealized model of two spherical, parabolic,
nondegenerate energy bands. We mentioned already
that in formula (34) for the Faraday rotation the first
(independent of ca) term can be shown to be identically
zero."Halpern, Lax, and Nishina" (HLN) assumed,
moreover, that every term in the sum is equal to zero.
To examine this assumption we notice that by use of
Eqs. (37) and (41) the assumption can be rewritten in
the form

"For l=0 Eq. (42) is equivalent to Aronov's result (with a
few corrections, as indicated in Ref. 6).' We follow the notation of R. J. Elliott, T. P. McLean, and
G. G. Macfarlane, Proc. Phys. Soc. {London) ?2, 553(1958).

where & is defined in Eq. (13). For completely free
electrons (g,=g, = 2) this relation is indeed true,



MAGNETO —OPTICAL PHENOMENA IN SEMICONDUCTORS 855

2[Pkk *['/~kk *= [Pkk ['/~kk (48)

k4kk' k/kk' (rH) (49)

Using the above simplifying assumptions the con-
ductivities can be written in the form

especially for lower transitions with co» =~,. Thus
making this assumption we neglect terms of higher
order due to spin-orbit interaction which result in
anomalous values of g factors. Hence we assume after
HLX

(Pkk. +/k/kk+)'= (Pkk —,//dkk
—)'= (Pkk /k/kk )'. (47)

For light polarized parallel to a magnetic field we have
the selection rule Am, =0 [Eq. (41a)j. If the g factors
diRer for electrons in the conduction and valence band
we have in general two transitions with frequencies
~kk"+. The difference orI, I,.~—~~~ '—is, however, again
different from zero due to spin-orbit interaction and we
neglect this assuming co» ~=coj,k" . Furthermore, if
we assume that in the first term on the right-hand side
of Eq. (35) P //*'/ko //*'= 2P //*'/k/ //*' for all transitions
aP, this can be most easily satisfied by the HLN
assumption:

If spin effects are neglected (y=0) the absorption
(53) reduces to Aronov's result. To avoid the singu-
larities in the vicinity of the transition frequencies
co„„arelaxation time can be introduced in analogy to
the semiclassical approach by putting co +k-/ i/—r
and taking a real part of the resulting expression.

The absorption due to forbidden transitions can also
be calculated using the matrix elements given by Eq.
(44). For linearly polarized light propagating along the
magnetic field (8J H) we get (spin effects are omitted)

e4(2~) I/2 H2
O'forb. —Z ( }'(~--~) "', (55)

2m'C'm'h'~'no o) nn'

where the expression in the braces is defined in Eq.
(44). As we mentioned before, this absorption constant
depends on the angle between the dc electric field and
the polarization vector. For light propagating per-
pendicularly to the magnetic 6eld and polarized with
8[[8 the absorption constant does not show the oscilla-
tory behavior because of the k, term in the matrix
element (44).

The Faraday rotation for allowed transitions can
be calculated on the basis of Eqs. (34), (37), (39), (42),
and (50) to give

ie2c4 [Pk/; [' 1

SS If c c Gl jcjc~ (APlcgi Qef f )
(50)

where

8=BHk/ Q [C(n,n') ['(F„„+ F„„), — —
nn'

where for 0.+. O,ff=Q+, for 0.„=r&l.. O,ff=Q, and for
0 0 J the expression in the parentheses is to be sub-
stituted by

F„„.+=Q~ '[ 2co„„—'/2—+(k/ +Qg) '/'

+(40 —Q~) '/'j; (57)

2[(k/kk' Q+ ) +(/dkk' Q—) j.
Q~ =40&yH, Q2= 442+ (yH) 2 (51)

k/„„are defined by Eq. (54), and Q+ by Eq. (51).
The Voigt phase shift given by the second term of

Eq. (35) becomes

For direct-transition, terms linear in k and k, in a
transition frequency Eq. (37) cancel out. Using density
of states (39) the absorption coefficient can be calculated
to give

n„//=48Hk/Q, //
' Q. [C(n n') [2(/d„„.—Q //)

—"'
(53)

where the transition frequencies between the modi6ed
Landau levels are

nn'

cd„„=k4, +k/, 2(n+ 12)+k/, 1(n'+ 21 )
(mi+m2—)c2E2/2hH2 (54)

8=e ( 2)'2"/4[ p,„[2/8m'c'm'I/' "n//,

1//4=1/mi+1/m2 is the reduced effective mass.

and the matrix elements for allowed direct transitions
are

[P,k ['g;,——L'[ p., ['[C(n n') ['
X~(~.—~. ')~(~.—&. ). (52)

41= —BH&u p [C/(n, n')[2(F„„++F„—2F ), (58)

where F„„ is defined by Eq. (57) with Q+ replaced by
Q. The third term in Eq. (57) is singular whenever
co„„.=0+, so that all the eRects, as in the case of mag-
netic Geld alone exhibit oscillatory behavior. If a
phenomenological relaxation time is introduced the
singularities go to line shapes characteristic of Landau
transitions and the dominant term near the singularity
is given by

G
,++[(X,+)2+ 1j1/2 1/2

(X +)'+1

where X .+=(40 —Q+)r. Thus the dispersive mag-
neto-optical eRects in crossed 6elds exhibit behavior
similar to that of absorption. Namely, with increasing
electric 6eld the transitions with An=0 decrease in
intensity and transitions with An/0 become possible.
Moreover the frequencies of transitions are shifted to
lower energies by the amount m*c2E2/2H2.
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For small electric fields the obtained formulas can
be expanded, similarly to the procedure of Vrehen and
Lax. ' The shift of transitions to lower energies is
negligible in this case and for the formerly allowed
transitions (An=0) the main terms in the diiferential
spectrum of the Faraday rotation are

fI (m2ym2)2c3 E2
68= ——

(v 4' he II'

P r'~ 2(2n+1)(G„„+—G „) (59)
n~p
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and for formerly forbidden transitions (An=+1)

(ml+m2)2c3+2 g2
68=+—

co 492he H'

)( Q r'12m(G„+ G„„—), (6-0)
n 0

where

m=n+1 for n'=n+1
=n for n'=n —1.

It can be seen from these expressions that in the dif-
ferential-spectrum transitions with An=0 correspond
to negative peaks, whereas the transitions with An= ~1
correspond to the positive ones as related to the spec-
trum without an electric 6eld.

VII. EXPEMMENTAL RESULTS FOR CROSSED-
FIELD FARADAY ROTATION

The measurements of the crossed-6eld Faraday rota-
tion were made on a sample of intrinsic germanium 7 p,

thick, freely mounted, the same one that had been used
by Vrehen in the crossed-held absorption investigation.
The experimental techniques are described in Ref. 6.
The basic procedure is to investigate the differential
spectra. In the presence of a strong external magnetic
held a transverse electric held is applied. The electric
field consists of two parts: a dc 6eld and a smaller ac
modulation. The differential spectra are then obtained
by measuring the modulation in the transmitted in-
tensity AI due to the oscillating component. This
method proved to be very sensitive in the crossed-field
absorption investigation.

To determine the usual Faraday rotation in the
absence of an electric 6eld one has to measure two
transmission intensities: Ij with a linear analyzer form-
ing an angle of +45' (counterclockwise) to linear
polarizer, and I2 with an angle of —45 to the polarizer,
(looking in a direction opposite to that of the magnetic
field). Then, if ellipticity is neglected, the Faraday rota-
tion 8 is given by the simple formula

sin280 ——(I2—I2)/(I2+I2) . (61)
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Fro. 1. The Faraday rotation and cross-6eld diGerential rota-
tion in "strain-free" germanium at 77'K and 96-kG, Hit/110).
(a) The Faraday rotation, (b) calculated transitions, (c) cross-
Qeld differential spectrum measured with Ed, = 1000 V/cm and
E„=400 U/cm (rms) and, (d) calculated differential spectrum.
The solid lines denote the formerly allowed transitions, the
dashed line corresponds to formerly forbidden transitions (only
those below 930 meV are indicated). Note the difference in scale
for light- and heavy-hole transitions in the calculated differential
spectrum (d).

Ke assume now that the Faraday rotation and the
intensities I are functions of the electric field. Then the
change in the rotation due to the electric 6eld is

1 AI2 BI2 AI2+—AI2)
68= —sin 28p (62)

2 cos28p Iy+I2 I2+I2 )

Ij. and I2 are transmitted intensities for zero electric
6eld, AIi and AI2 are the modulations in the intensities
due to the oscillating component of the electric field.

Figures 1(a) and 1(c) present the interband Faraday
rotation and the differential-rotation spectrum as
measured in germanium in a magnetic 6eld of 96 kG
for a strain-free sample and HiiL110] at 77'K. The
differential curve was measured with Eq, = 1000 V/cm
and E„=400 V/cm (rms) .

The general theory presented in Sec. VI cannot be
applied directly to interpretation of the experimental
results because the valence band of germanium is
degenerate. However, the main features of the spectra
are in agreement with the theoretical predictions. First,
the peaks in the Faraday rotation are observed in the
vicinity of the frequencies corresponding to the inter-
band transition energies. Secondly, the differential
spectrum LFig. 1(c)] is, save for a few details, a mirror
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reflection of the normal rotation )Fig. 1(a)j, which is
predicted by the general theory if we assume that the
difI'erential rotation is dominated by the decrease of
intensity of the allowed (En=0) transitions LEqs.
(56) and (59)j.

To carry out a more detailed comparison of the ex-
periment with the theory the actual band structure of
Ge in a magnetic 6eld has to be considered. Figure 1(b)
presents the energies and the strengths of the transitions
for 0+ and 0 radiation calculated by Vrehen' for a
magnetic field of 96 kG along the L110j direction, on
the basis of Roth's theory, "including effects of higher
than second order in k in the effective-mass Hamil-
tonian. These are allowed transitions with the selection
rules An=0 and dn= —2. In an electric 6eld the in-
tensity of those transitions is decreased whereas for-
merly forbidden transitions with he= —3, —1, +1
now have a 6nite transition probability. The decrease
in the intensity of allowed transitions gives rise to peaks
in the diGerential spectrum in the direction opposite
to those in the E=O rotation, similar to the results of
the theory for simple bands. The formerly forbidden
transitions give rise to positive or negative peaks in the
differential spectrum according to whether they occur
for tr+ or 0 radiation, respectively. In Fig. 1(d) we
present intensities due to decrease of formerly allowed
transitions (solid lines) as calculated in Ref. 6 by use
of perturbation theory. For the electric 6eld used (1000
V/cm) the shift of the transition energy can be shown
to be negligible. The forbidden transitions for energies
lower than 930 meV are also shown (dashed lines).

The interband Faraday rotation presented in Fig.
1(a) is in agreement with results of Nishina ef, al. 2O

and Mitchell and %allis. "All the main peaks in the
rotation can be well understood in terms of Landau
transitions given in Fig. 1(b). An origin of a broad

"Laura M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114,
90 (1959).

~ Y. Nishina, J. Kolodziejczak, and B.Lax, Phys. Rev. Letters
9, 55 (1962)."D. L. Mitchell and R. F. %allis, Phys. Rev. 131, 1965 (1963).

shoulder of the hrst positive peak is not clear, but it
presumably is due to the group of four close transitions
in the vicinity of 900 meV. The main feature of the
differential spectrum Fig. 1(c) is that it resembles
the mirror reQection of the rotation 1(a). As we have
already mentioned this indicates that the main effects
are due to electric-6eld-induced decrease of the intensity
of the formerly allowed transitions. This is conhrmed
by a more detailed comparison with intensities due to
the formerly allowed transitions plotted in Fig. 1(d).
Furthermore, it can be seen that the differential
spectrum is primarily governed by the heavy-hole
transitions. This is due to the fact that allowed heavy-
hole transitions are relatively stronger in the dif-
ferential spectrum than in the normal-relation spec-
trum, when compared with the allowed light-hole
transitions. For example in the normal rotation the
predominance of light-hole transitions (especially b+)
at the energy just above 900 meV results in the large
positive peak. In the differential spectrum, however,
the heavy-hole transitions are much stronger than the
light-hole ones (note the difference in the scale), and
again the positive peak is produced, which at 6rst seems
to be in contradiction with the general reQection
character of this spectrum. In the energy region 903—
932 meV there are no formerly allowed transitions
and it can be seen that two negative peaks in the
differential curve are due to two pairs of forbidden
heavy-hole transitions in the vicinity of 905 and 926
meV, respectively. These forbidden transitions can
also be quite clearly visible in the differential absorp-
tion spectrum of 0. radiation. ' In general all the main
features of the differential dispersion spectrum are in
agreement with the crossed-6eld absorption data.
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