
THERMOLUM INESCENCE OF SEMICONDUCTING DIAMONDS

a 640-sec irradiation period) produced the 260'K glow
v ith an integrated emission of j.0' photons. The ab-
sorption of the crystal at 360 mp seems to be less than
1%.Assuming that each of the electrons at 8 will emit
a photon during the glow, one gets about 10 4 as a
lower limit for the efFiciency of the excitation. Prac-
tically, absorption in the transition from A& to .0& or
from A2 to the conduction band (see Fig. g) might be
much less than 1% and the actual efficiency is probably

not far from 1, which is quite surprising for such an

unusual process.
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An expression is derived from perturbation theory for the lifetime of an optical phonon decaying into two
acoustical phonons, and its temperature dependence. The strength of the interaction is expressed in terms
of the Gruneisen constant and the effect of a strain, equivalent to the instantaneous strain of an optical mode,
on the frequency spectrum of a linear chain with alternating force constants. This interaction depends on the
ratio of the acoustical and optical mode frequencies at the zone boundary. Fitting the theory to silicon, the
optical mode at 4=0 has a calculated half-width at 300'K of about 1.2 fo of its frequency. This result is
compared with experimental data.

I. INTRODUCTION

ECAUSE of the anharmonicity of the lattice forces,
an optical mode can interchange energy with other

lattice modes, and in this way maintain a thermal
equilibrium energy content. In this respect, an optical
mode behaves similarly to an acoustical mode. The
rate at which an acoustic mode approaches equilibrium
can be related to the relaxation time which enters the
expressions for the thermal conductivity; optical modes,
however, do not contribute substantially to thermal
conduction. The relaxation time of optical modes does,
however, determine such properties as the linewidth in
infrared absorption measurements, in Raman scatter-
ing, and in inelastic neutron scattering experiments,
and theoretical estimates of this lifetime are therefore
of interest.

The principal anharmonic interaction is due to the
cubic anharmonicities, resulting in the splitting of an
optical phonon into two acoustic phonons of opposite
momentum. This process will be estimated here from
second-order perturbation theory. This method has
been used extensively in thermal conductivity prob-
lems, ' and has also been applied to the problem of the
lifetime of a local mode. ' The latter problem has many
similarities to that of the optical mode: in one case,
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the local mode phonon splits into two acoustic phonons;
in the other, the optical phonon splits into two acoustic
phonons. The main diGerence is that in the case of the
optical phonon one must consider momentum conserva-
tion, and in the case of the local mode the interaction is
localized and there is no momentum conservation.

From physical intuition one would be led to believe
that the lifetime of an optical phonon should be com-
parable to that of a local mode phonon of the same
frequency, since the strain held of a local mode, in a
small region about a defect, is similar in character to
that of an optical mode. This expectation will indeed
be verified. Nevertheless, we shall see that there is an
important difference in the theory of these two cases-—
the method used in the local mode calculation cannot
be simply taken over for the optical mode. It is there-
fore of some interest to describe the calculation for the
lifetime of an optical mode.

A calculation of the lifetime of optical phonons has
been reported by Cowley. ' His calculation is based
on the same principles as the present one, but divers
in the method of estimating the interaction strength,
and in that he sums over all interactions numerically
by means of a computer. In principle his method is
thus capable of greater precision than the present one,
but the present calculation can be followed step by
step, and has the advantage of greater physical insight
and didactic value. It seems difficult to compare the

' R. A. Cowley, J. Phys. (Paris) 26, 659 (1965).
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two calculations except by their final result. Cowley's
calculation leads to somewhat shorter lifetimes or
wider lines than the present one. In the case of silicon,
experimental results on the width of the 6rst-order
Raman line of Parker and Feldman4 seem to support
the present calculation. While this is gratifying, it may
signify nothing more than a more fortunate choice of
parameters.

k=k+k-=o. (2)

The strength of the interaction is governed by the
perturbation Hamiltonian

II. THE PERTURBATION CALCULATION

I.et us consider an optical phonon at k=0 of fre-
quency cop which interacts by anharmonic three-phonon
processes with two acoustic phonons of frequency ~',
au" and wave vector k' and k", respectively. Conserva-
tion of energy and momentum requires

GOp=CV +M
and

and picks out contributions from processes for which
her=0. Also

D(a = 0/ —(1+u)v/'e',

where v is the velocity of wave k', and o,v is that of
wave k". Without loss of generality we can choose
co'&co". In the case when k" and k' belong to the
same polarization branch, +=1, and we shall adopt
that simplification.

Now P,', / =6 if interactions with all polarizations
are allowed, i.e., (j ',j")= (L,L), (L,T&), (L,T2), (T&,T,),
(T$ T2), (T2,T2). But not all these possibilities are
consistent with co=co'+~"; this depends on the nature
of the dispersion curves. For example in Si, a case of
experimental interest, energy conservation only permits
(L,L), since the k=O optical mode is 1.6&(10" cps,
while the top of longitudinal acoustic (LA) is 1.1 and
transverse acoustic (TA) is below 0.4, so that LA+TA
cannot reach the optical mode at k=0. Let g;,,
a number between 1 and 6.

We define the relaxation time 7 by

1 1'
n dt

where the coeKcient e(k,k',k") is related to the cubic
anharmonicities, G is the number of atoms in the
crystal, and the coefFicients a, a* are creation and
annihilation operators given by

aN, N+&*= (tg/Mar)'/2(&V+1)'/2,

QN N 1
—(ft//If ~)1/2A, 1/2

In (4) E is the number of phonons and M the atomic
mass. Since k=0 we can disregard umklapp processes
and H' vanishes unless k'= —k", leading to (2).

From standard perturbation theory the rate of
change of the occupation number X of mode k is
given by

c'k' 1—cosA~t
t =2
k 2' 2"» 3f Mb) 07 /'It Dco

(2s.)'

Ga'
d'k'=

1 J g'G a'~p'
QMp Q)p )

32~ M' v'
(10)

where g is deflned by c(k,k',k")=g/eo&'&u". This relaxa-
tion time pertains to zero temperature. A similar result
has been given by Weinreich. '

We must now estimate the coeflicient e in (3) or (5),
or the coefIicient g. We could make use of the following
standard result' ' in terms of the Gruneisen constant y

where V is the volume of the crystal and a' the volume
per atom, the summation (5) can be carried out. We
note that ddt/dk'= —2v, and a&'=a&"=/eo/2. After some
rearrangement one obtains the following result:

X$(%+1)X'X"—X(1P+1)(1l/'"+1)), (5)

when Dco=cup —co'—~", and the summation is over all
modes k', and all polarizations of k' and k".

If E=Ã'+n, when E' is the equilibrium value of
E, and if 37', E"are in equilibrium, then the expression
in square brackets on the right-hand side of (5) be-
comes n(X'+X—"+1) At T=O. this becomes —e.
Now

1 J Atop a cop

p

24m- 3fv'
(12)

although we shall show below that this result is not
applicable to the present case. With this form of g,
Eq. (10) becomes

1—cosAort
d(Dco) =~t (6) This can be simplifled somewhat. If we take the fre-

'G. Weinreich, Solids—Elementary Theory for Advanced Stg-' J. H. Parker and D. W. Feldman (private communications). dents (John Wiley R Sons, New York, 1965), p. 94.
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quency of the optical mode to be the Debye frequency
of the corresponding monatomic lattice, which is of
course only an approximation,

a'coo'/v'= a'kD' ——(3/4s. ) (2~)'~60, (13)

where kD is the Debye wave number. If we further
take y = 2, J= 1

o &~o
u)p = 3COp

r 24m Mv' Mv'

Taking for the typical case of silicon M«'/IV=30 000'K,
hcuo/K=600'K, we obtain for the inverse lifetime at
zero temperature

In the present case, however, we have k' and k" of
the same frequency, albeit moving in opposite direc-
tion, but the strain of the optical mode, even though
it is of magnitude (s&/r)a(k), is not uniform, but
changes sign even more rapidly than that of the other
waves. Under these circumstances it seems questionable
to use an approximation based on uniform strain.

The following alternative procedure will be used to
estimate H': We consider the energy M(co')'a"(k')a(k')
of the mode k, and impose a static strain field identical to
the instantaneous strain field of an optical mode. This
causes a change in energy 23II&d'ha&'a*(k')a(k'). We now

equate this change with c(k k', —k')a(k=0)a( —k')a(k'),
i.e.,

1/r =0.06&do. (15) c (k, k', —k') a(k) = 2Mco'ko',

H, =—Q M&d&e'e'&"-"' *a*(k')a(k)
G x, k, k'

(16)

which, after summation aver x, has nonvanishing terms
only for k'=k. A dilation 6 changes cu to &d(1—yh), so
that Ho is appropriately changed. If 6, instead of
being independent of x, varies slowly with position,
the perturbation is

H' = +2M(ua)'a*(k') a—(k) P 6 (x)e'&"-'& *. (17)
Q i, i ~ x

If now 6 is due not to a static strain, but to that of a
third lattice wave, one readily obtains (11), except
that a factor 1/v3 has been included to consider the
possibility that k and k' may belong to di6erent polari-
zation branches: In that case B' should include a
trigonometric factor whose root mean square value is
1/&3, when the different polariza, tion directions are
so complex as to be almost random.

This method of deriving c(k,k',k") applies strictly
speaking to the case when one wave, say k, is long so
that its strain is only slowly varying, and where the
other waves k' and k" are nearly equal. Equation (8)
has frequently been applied to cases where the strain
field of the first wave was no longer varying slowly,
and although then no longer valid, the extrapolation
from the case of uniform strain seems to give order of
magnitude agreement, as seen from thermal conduc-
tivity studies.

III. THE INTERACTION HAMILTOÃIAN

The linewidth predicted from (15) is considerably
greater than the width of the 6rst-order Raman line
of silicon observed by Parker and Feldman. ' We must
therefore examine the choice of the interaction Hamil-
tonian (11). The argument used to derive (11) pro-
ceeded as follows.

The unperturbed Hamiltonian can be written

where ko' is calculated for the same strain as that
produced by a(k).

As a model for the calculation of bc'' we take a linear
chain with alternating force constants. The dispersion
relation for this model is obtained explicitly. An optical
mode, in virtue of the anharmonicity, perturbs the
force constants —the perturbation alternates in sign
from linkage to linkage. We can explicitly calculate
bee' for this model for the mode rv'=&do/2 and determine
the perturbation. We shall find that c is reduced by
about QS.

Consider a linear chain of atoms, all of the same mass,
distant a from each other, with harmonic linkages of
force constant c& and P, alternatively. The frequency
of a lattice wave of wave vector k is then readily shown
to be

~+p (~+p)' 4 p .
co = + — sin ka

M M' M'
(19)

When k=o the frequency of the optical mode is

&d,'= 2 (&r+p)/M, (20)

while that of the acoustical branch for small k is given
by

cu'= 2c&P/(n+P)M sin'ka. (21)

Row impose strain e which is +e on every 0. link
and —~ on every P link. The force constants are now

n= no(1+ 2ye),

P=Pp(1 —2p e),
(23)

where y is the same Griineisen constant as in Eq. (11).

At the zone boundary, when sinka=1, the frequencies
of the two branches are given respectively by

cu' = 2&r/M or 2P/M .
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~(~')' 4 o—P)

(oo')' 3 n+P&
(25)

This may be compared with the interaction coefIicient
(11), which is equivalent to

b(~')'/(~')'= (2/%v' (26)

Hence the present model leads to an interaction which
is reduced by a factor

(2/%(L —~]/6 +~j) (27)

and the expressions (12) to (15) for 1/r are reduced by
the square of this factor.

The present model yields a relaxation rate which is
very sensitive to the ratio of the force constants a:P.
This ratio, in the case of the linear chain, can be related
to the dispersion curve. In Eq. (22) the frequencies of
the acoustical and optical branch at the zone boundary
were in the ratio (8/a)'I'. If we assume that the same
ratio of frequencies gives an effective value of (P/a)'lo
also in the case of three dimensions, we can estimate
the ratio n. P, and hence the strength of the interaction.

Thus in the case of silicon in the L111$ direction,
where the dispersion curve resembles that of a linear
chain, ' the frequencies of the two branches at the zone
boundary are in the ratio 11/15, so that a/P=1. 85.
This makes (a P)/(n+—P)=0.30 and the square of
the ratio (27) becomes 0.12. Thus the relaxation rate
at T=O for the optical mode can be expressed in the
same form as (15) and becomes

In the expression (19), terms in aP are unchanged to
first order in e, and

&+f1= («+Po)D+ C (& ff—)/(&+P)]2V oj (24)

Substituting this into (19) for the case ~'=&so/2, where
coo is now the optical mode frequency (20) at k=0,
one Gnds the following change in co' due to the changes
(23):

IV. TEMPERATURE DEPENDENCE OF
THE INVERSE LIFETIME

The relaxation rate (5) contains the factor

L1+1V'+ X "g, (29)

where Ã' and Ã" are the equilibrium occupation num-
bers of the modes k' and h" interacting with the
optical mode. In the approximation when a&'= co"= a&o/2,

the relaxation rate at temperature T is given by the
rate at T=O, multiplied by the factor

where x= hrao/2KT.

1+2/(e' —1), (30)

Dco= 1/r. (31)

Multiplying 1/r of (28) by the factor (30), one obtains
a theoretical half-width

ha&= 1/r = 1.74X 7 X 10 'a&o ——0012(so, (32)

so that the theoretically predicted half-width is a
little more than 1% of frequency. In view of the crude
approximations involved in the present calculations,
this agreement, while satisfactory, is certainly fortuitous.

Cowley' had similarly calculated the half-width of
this line at 300'K to be about 4% of its frequency.
Since his calculations are apparently quite different in
detail, even though the basic principles are naturally
the same, the disagreement between the two calcula-
tions cannot be regarded as very serious.
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V. COMPARISON WITH OBSERVATION

Parker and Feldman' observed the 6rst-order Raman
line in silicon, situated at 522 cm, to have a half-width
of 5 cm ' at room temperature. In other words, the
half-width is a little less than 1% of the frequency.

A simple theory of line broadening' leads to a half-
width, when frequencies are expressed in rad/sec, of

1/r =0.007')o. (28)
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