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An accurate analytic-expansion unrestricted Hartree-Fock wave function is reported for the 5D state of Fe.
The computed values of the magnetic dipole hyperfine-interaction constants are compared with the experi-
mental values obtained by Childs and Goodman and are in good agreement.

I. INTRODUCTION

IN the restricted Hartree-Fock (RHF) method,! all
the orbitals of a given shell are required to have the
same radial dependence; thus closed shells cannot make
a contribution to magnetic hyperfine interactions or
neutron form factors. Several calculations have been
made wusing an unrestricted Hartree-Fock (UHF)
method for open-shell systems, which allows different
radial functions for the orbitals of a given shell with
different spins?; i.e., Rn1o7 Rnais. In general, these UHF
calculations have given results for hyperfine inter-
actions which are in qualitative and often in fair quanti-
tive agreement with experiment.

In order to compare the predictions of the UHF
model of core polarization with the hyperfine inter-
action constants for the 3D state of Fe experimentally
determined by Childs and Goodman,® we have com-
puted an accurate UHF wave function for this state
of Fe. The UHF Fermi contact interactionc onstant is
also compared to the value obtained from an earlier,
less accurate, UHF calculation of Watson and Free-
man* and is found to be in better agreement with ex-
periment. Wood and Pratt® have also performed an
UHF calculation for Fe; however, they used Slater's
p'/3 approximation® for the exchange potential in the
Fock operator.

In our calculation of the UHF orbitals, we have used
the analytic expansion method. With this method, the
UHF orbitals, ¢nimm,, are given as a linear combination
of basis functions, X p,imm, DY

Crtmm,(X)=2_p Crmy, X p,tmimy(X) (1)
where #nlmim, are the usual one-electron quantum

* Based on work performed under the auspices of the U. S.
Atomic Energy Commission.
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UHF method and extensive references, see A. J. Freeman and
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numbers and x includes space and spin co-ordinates.
The basis functions are given by

Xpsylmims= Rlp(r) Ylm(0,¢)"lm,- (2)

The Yin(0,¢) are the usual normalized spherical har-
monics; the radial functions R;, are normalized node-
less Slater-type orbitals (STO’s), namely,

Rlp(r) = [(anp) !]—l/2(2§-lp)n1p+1/2,»n1p—le—§’1pr; (3)
and the spin function 7, is

Nme=+1/2=0,
77m,=—1/2=ﬁ . (4)

The integer #,, is called the principal quantum number
of the basis function and ¢;, the orbital exponent.
(In the RHF method the additional requirement that
Cnlm.=+1/2,pECnlm,=—1/2,p is imposed')

Our UHF procedure is a direct extension of
Roothaan’s RHF analytic expansion method for open-
shell systems.”® The matrix equations for the orbitals,
obtained from arbitrary variation of the C’s in Eq. (1),
are solved without further approximation. This pro-
cedure can be applied to any open-shell system, pro-
vided that there is no more than one open subshell for
each group /a or /8. Details of the method and computer
program will be given in another paper.

II. RESULTS
A. The UHF Wave Function

The UHF calculation of Fe was performed for the
configuration

15a)'15B)'250)'258) 1 2pa ) *28)*3s5a) 135B) 13 per) 83 pB)*
3da)®3dB)4sa)4sB)!;

the wave function is a single Slater determinant. It is
an eigenfunction of L? Lz, and Sz; L=3 and Mg=2.
The value of M is determined by the choice of -
for the 3dB orbital, M,=m,; the UHF equations for
the radial parts of the orbtials are independent of the
choice of m;. The wave function is not an eigenfunction
of §? but it is very nearly one with S=~2. The value of
(S?) will be given later in this paper.
7C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).

8 C. C. J. Roothaan and P. S. Bagus, Methods in Computational
Pliysics (Academic Press Inc., New York, 1963), Vol. II.
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TasiE 1. Basis functions and expansion coefficients for the UHF orbitals of Fe.

Exponent 1sa 1s8 2s5a 258 3sa 3s8 4sa 458

x1(1s) 38.73300 G 0.02056 0.02057 0.00644 0.00629 —0.00290 —0.00274 0.00035 0.00046
x2(1s) 25.87820 C: 0.95050 0.95050 —0.31094 —0.31144 0.11682 0.11535 —0.02619  —0.02287
x3(2s) 21.33300 Cs 0.04069 0.04071  —0.18016 —0.18129 0.07296 0.07273 —0.01796  —0.01496
x1(2s) 11.01230 C, —0.00497 —0.00501 1.03806 1.04258 —0.42236 —0.41937 0.10017 0.08516
x5(3s) 9.50024 C;s 0.00654 0.00653 0.14489 0.14567 —0.30850 —0.30949 0.07131 0.06729
x6(3s) 6.99020 Cs —0.00554 —0.00554 0.00437 —0.00182 0.36701 0.38109 —0.07413 —0.07917
x7(3s) 4.63797 Cq 0.00277 0.00277 0.00415 0.00475 0.77597 0.75070  —0.24983 —0.19232
xs(4s) 3.92345 Cs —0.00101 —0.00101 —0.00023 —0.00079 0.16592 0.18267 0.01636  —0.00899
x9(4s) 195370 G, 0.00022 0.00022 0.00006 0.00015 0.00769 0.00796 0.52266 0.42196
x10(4s) 1.15237 Cio —0.00015 —0.00015 —0.00002 —0.00009 —0.00393 —0.00415 0.53953 0.57858
x11(4s) 0.80019 Cn 0.00007 0.00007 0.00001 0.00004 0.00166 0.00175 0.03758 0.11002

Exponent 2pa 2p8 3pa 3p8 Exponent 3da 3dB
x12p) 17.02370 C, 0.14292 0.14313 —0.04165 —0.04019 x1(3d) 11.50000 C, 0.03066 0.02931
x2(2p)  10.09200 C. 0.85741 0.86163 —0.35146 —0.34681 x2(3d) 409542 C» 0.26060 0.23644
x3(3p) 6.47648 C; 0.03107 0.02122 —0.12939 —0.10041 x3(3d) 6.00405 C; 0.27315 0.26013
x4(3p) 5.46805 C, 0.00174 0.00589 0.69843 0.65699 x4(3d) 2.61691 Cs 046291 0.42528
x5(3p) 345397 Cs —0.00439 —0.00639 0.48392 0.48070 x5(3d) 144880 Cs 0.13241  0.23606
xs(3p) 2.55178 Cs 0.00238 0.00270 0.06146 0.08245

The UHF wave function was computed using the
basis set obtained by Clementi? for his analytic ex-
pansion RHF calculation on the ®D state of Fe. Clementi
optimized the values of the exponents of the STO’s
used in order to minimize the total RHF energy.
Automatic exponent optimization procedures which
make it possible to obtain very good values of the ex-
ponents are provided by the RHF computer program
that Clementi used.® The exponent variation was
careful enough and the basis set sufficiently large, 11
s-type, 6 p-type, and 5 d-type STO’s, to permit a fairly
good representation of the exact RHF orbitals.® We
believe that this basis set, which very nearly spans
the manifold of RHF orbitals, should also nearly span
the UHF manifold. Almost all of the differences between
the RHF and UHF orbitals can be obtained by allowing
the Crim, » to be different.

In Table I we give the symmetry type, principal
quantum number, and orbital exponent of the STO’s
used and the UHF coefficients, Cnim,,p, obtained.
The principal quantum number and symmetry type of
the STO are given in parentheses after the symbol x.

The orbitals are orthonormal. Since the basis func-
tions used are normalized but not orthogonal, the
condition of orthonormality for the Cpim,,, becomes

)
where Cnim, is a vector formed from the coefficients

Cnim,» and S, is the overlap matrix of the STO’s for
symmetry /,

cnlm,fslcn' Img = Onns )

Slpq=/Rlp(")qu(")’2d’- (6)

9 E. Clementi, IBM J. Res. Develop. Suppl. 9 (1965).

10 A detailed discussion of the accuracy to which analytic ex-
pansion orbitals may represent the exact HF orbitals and tech-
niques of determining this accuracy are given in P. S. Bagus, Ar-
gonne National Laboratory Technical Report No. ANL-6959
(unpublished).

In Table IT we give several properties of the UHF
wave function and compare them with values obtained
from Clementi’s RHF wave function.®!! We include
the total electronic energy E and the virial coefficient
V/T, the ratio of the potential to the kinetic energy.
The nearness of V /T to the value —2 is a measure of
how well the exponents of the STO’s have been opti-
mized.!® The deviation of V/T from —2 is small and
about the same for the RHF and UHF functions. This
supports our belief that the choice of a large, carefully
optimized RHF basis set is satisfactory for a UHF
calculation. The value of (S?) is given to indicate the
deviation of the UHF function from an eigenfunction
of S?%; the RHF function is an eigenfunction of 52
(S)(S+1)=6. For each orbital we give the orbital
energy e and the expectation values of » and 7?; for s
orbitals we give the absolute value of the orbital at
the origin | ¢(0) |, and for d orbitals we give the expecta-
tion value of 1/73.

All units used in Table IT are atomic units. The unit
of energy is the Hartree, 1 Hartree=27.211 eV; the unit
of length, the Bohr (a), 1 Bohr=0.52917X10"8 cm;
and the unit of angular momentum #.

B. The Hyperfine Interaction Constants

The Fermi contact interaction is given by

H.,= (87r/3)ge#egI#N 2 a(ri)si‘ly (7)

where g,=2 and g; are the electronic and nuclear g
factors, respectively; u. and uy are the electronic and
nuclear magnetons (note that u.= |e|#%/2mc), I is the
nuclear spin, and s; the spin of the ith electron. If LS
coupling is assumed and if matrix elements are taken

_11In order to obtain properties of the RHF wave function not
given in Ref. 9, we have recomputed the function with our com-
puter programs using Clementi’s basis set. Properties given in
Table II but not available from Ref. 9 were obtained from our
recalculation.
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only between the degenerate states of the electrostatic
Hamiltonian (different values of M, and M for a
given term), then the contact contribution to the hyper-
fine splitting may be written as'®!3

E.=c1-S=¢(gs;— DI J=cI-J, (8)
where
NUT+HD+S)(S+1)—(L)(L+1)
gr=1+ ) %)
2()(J+1)
8w elle N
_yg#gm (LS; Mi,Ms=>5]|

XZZ 5(1‘4)524," LS; ML,MS=S> . (10)

If a UHF wave function is used to evaluate the

TasLe II. Properties of the UHF wave function for Fe and
a comparison with RHF values. (All values in atomic units;
1 Hartree=27.211 eV, 1 Bohr=0.52917 A.)

UHF RHF»
E —1262.4484 —1262.4425
v/T —2.000009 —2.000009
(S?) 6.01808 6
1sa 158 1s
€ —261.37445 —261.37484 —261.37311
| ¢(0) | 73.39271 73.39303 73.39286
(r) 0.05911 0.05911 0.05911
(r?) 0.004686 0.004686 0.004686
2sa 258 2s
€ —31.99928 —31.87643 —31.93623
| ¢(0) | 22.21865 22.27583 22.24735
(r) 0.2688 0.2681 0.2685
(r?) 0.08526 0.08471 0.08498
3sa 3sB 3s
€ —4.34862 —3.99403 —4.16972
| ¢(0) | 8.28171 8.19521 8.23853
(r) 0.8176 0.8209 0.8192
(r?) 0.7700 0.7767 0.7733
4sa 458 4s
—0.27719 —0.24221 —0.25832
| ¢>(0) | 1.89744 1.63679 1.76340
(r) 3.1258 3.3927 3.2577
(r?) 11.3694 13.4276 12.3672
2pa 298 2p
€ —27.47531 —27.35667 —27.41431
(r) 0.2367 0.2356 0.2361
(r?) 0.06875 0.06802 0.06838
3per 3p8 3p
€ —2.95830 —2.52954 —2.74242
(r) 0.8617 0.8704 0.8658
(r?) 0.8735 0.8929 0.8827
3da 3dB 3d
€ —0.68803 —0.46872 —0.64710
(r3) 5.0662 4.5522 4.9780
(r) 1.0580 1.1596 1.0734
{r?) 1.4449 1.7908 1.4948

a The RHF values are obtained from Clementi's calculation on Fe;
see Refs. 9 and 11.

12R. E. Trees, Phys. Rev. 92, 308 (1933).
13 A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc. Roy.
Soc. (London) A230, 169 (1955).
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TasLe ITI. Values of the contact hyperfine-interaction constants
x and ¢ for the 5D state of Fe’ (x in atomic units).

Difference
¢ of ¢ with
X (Mc/sec) experiment
Childs and Goodman
Experimental results® —-5.1
Present UHF
Calculation —0.768 —4.4b 147%,
Watson and Freeman
UHF Calculation © —0.59 —3.4b 33%
a See Ref. 3.
b Obtained from x for g; = +0.1806.
¢ See Ref. 4.
matrix element in Eq. (10), we obtain
¢’ =3geleILNX , (11)
x=27/S) i (lew0)|*—|ep0)]?). (12)
8 orbitals

It should be recalled that the UHF wave function
used to evaluate the matrix element in Eq. (10) is not
an eigenfunction of S2. An eigenfunction of S? may be
obtained by projection from the UHF wave function.
However, the value of x calculated with the projected
wave function is likely to be significantly different from
the x calculated directly with the UHF function; and
it is not certain that the use of the projected x is to be-
preferred to the use of the UHF x.!* Heine!® has sug-
gested an alternative procedure for forming an eigen-
function of S? which should produce only a small
change in the value of x. In this procedure, the UHF
function is augmented only with determinants which
are small. Because of the computational difficulties in
obtaining these eigenfunctions of S?, we only give the
value of x for the UHF function.

In Table IIT we give the value of x obtained from our
values of | ¢(0)], listed in Table II, together with the x
obtained by Watson and Freeman* from their earlier
UHF calculation. Using the value!$ of gr=-0.1806
for Fe®?, we also give in Table III the values of ¢ ob-
tained from our calculation and Watson and Freeman’s
calculation together with the value obtained from ex-
perimental data by Childs and Goodman.? Our value
of the contact hfs constant is in good agreement with
experiment and in rather better agreement than that
obtained from Watson and Freeman.

The remaining contribution to the magnetic dipole
hyperfine interaction is

L1 3(sgr)(r;-I)—
111=geglll-elll(2i 3+

£ 1'1'5

(ri-r)s; 1
). (13)

4 For a review of these problems see Sec. ITL.5 of the article
by A. J. Freeman and R. E. Watson in Magnetism, cited in Ref. 2.
18V, Heine, Phys. Rev. 107, 1002 (1957).
(1;';(()_‘; W. Ludmg and H. H.'W oodbury, Phys. Rev. 117, 1286
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With the same assumptions as before about LS coupling
and the matrix elements taken and using the notation
and expressions given by Trees,'*> we obtain for the °D
state of Fe

E;——-rJaLI-J (14)
ar=gegrupr(3dB|1/r*| 3dB), (15)

where 77 depends only on J, L, and S. Using the value
of (3dB|1/r%|3dB) given in Table II, we obtain a;=78.4
Mc/sec. The value obtained from experimental data by
Childs and Goodman? is a;=74.8 Mc/sec; the error of
the UHF value is 59%,.

Because the UHF wave function is not an eigen-
function of 52, equivalent expressions for £; will give
different results when evaluated with an UHF function.?
The results will involve different combinations of
(3da|1/73|3da) and (3dB|1/r3|3dB) in the expression
for E;. However, since these integrals have nearly the

17D. A. Goodings, Phys. Rev. 123, 1706 (1961).
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same value (see Table II), the numerical results for %,
will be nearly the same, and we will not pursue the
matter further.

III. CONCLUSION

Good agreement between the magnetic dipole
hyperfine-interaction constants obtained from an UHF
calculation and from experimental data? has been found.
In particular, the agreement for the Fermi contact in-
teraction constant (149;) supports the model of ex-
change core-polarization used in the UHF method.
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The effect of excited-state mixing on the optical pumping of alkali-metal vapors is considered for the case
where the energy separation between the 2Py, and 2Py, first excited states is relatively large, allowing the
isolation of mixing effects within a particular J level. Two models for the mixing process are proposed, one
a random reorientation of the total electronic angular momentum J, and the other a reorientation of J sub-
ject to the selection rule Am;=0, &2. The probabilities for mixing transitions among J-state sublevels
have been calculated for an alkali atom of nuclear spin $, and can be used to calculate the optical-pumping
transition probabilities for a vapor subject to any degree of excited-state mixing. Several possible experi-
ments suggested by these calculations are discussed.

I. INTRODUCTION

HE primary purpose of this paper is to analyze the

role that excited-state interactions play in the
optical pumping of alkali-metal vapors. In an experi-
ment typical of those to be considered,! a beam of
circularly polarized D;(251/2 <> 2P1/2) photons is passed
through a cell containing the vapor to be studied. Since
the prevailing selection rules are Amr=-+1 for absorp-
tion, and Amp=-1, O for re-emission, the vapor is
gradually pumped from ground-state sublevels of low to

* National Science Foundation Postdoctoral Fellow.

1 Comprehensive surveys of optical pumping techniques can be
found in: G. V. Skrotskii and T. G. Izyumova, Usp. Fiz. Nauk 73,
423 (1961) [English transl., Soviet Phys.—Uspekhi 4, 177 (1961)];
and R. Benumof, Am. J. Phys. 33, 151 (1965%

high (F,mp), with all atoms ultimately being forced
into the highest sublevel if there is no ground-state
relaxation. In practice, of course, relaxation exists,
being caused by collisions of the alkali atoms with
buffer gas molecules, impurity atoms, or the walls of the
cell. Collisional interactions can also disrupt the optical
pumping process by transferring or mixing atoms among
excited-state sublevels prior to de-excitation. The
equilibrium population distribution in the ground state
Is thus determined both by the strengths and char-
acteristics of the relaxation mechanisms involved, and
by the various perturbations that the alkali atoms may
suffer while in the excited state.

In order to calculate the equilibrium electronic and
nuclear spin polarizations, and to describe the transient



