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The solution of the Boltzmann equation for a phonon gas in terms of the eigenfunction spectrum of the
linearized normal-process collision operator has been investigated by Guyer and Krumhansl. This treatment
is extended to the case when the phonon gas is driven by an acoustic wave. An expression for the acoustic
attenuation F is obtained in the form F ~g(R,O), where g(k,Q) is the dynamic thermal response coefficient
of GriKn. y (R,O) depends upon the thermal conductivity x(h,Q), which in turn depends upon the wave vector
k and frequency Q. An approximation is made for x(R,Q) which leads to expressions for F in the limit Qrz &1
and Q~~ & 1 in agreement with previous investigations. In addition, in the temperature range where second
sound can exist we find three frequency ranges separated by the conditions OWN=1 and 0~+=1 instead of
the usual two separated by Or+=1. (rz and ~& are the relaxation times for non-momentum-conserving
phonon scattering and normal-process scattering, respectively). The acoustic attenuation in the inter-
mediate range, rg '

~& Q ~& v z ', is qualitatively different from that in the ranges Qv z &~ 1 and Qrz &«1.Further,
in this range the possibility of a resonance between first and second sound occurs. The implications of these
results for acoustic attenuation experiments and the light-scattering experiment of GrifBn are discussed.

I. INTRODUCTION

'HE attenuation of 6rst sound (acoustic waves) in
dielectric crystals has been calculated in the limit

Qv«1 by Akhieser' and Khrenreich and Koodruft, ' and
in the limit Qr&&i by Landau and Rumer' and Nava
et al.4 The purpose of this paper is to exhibit a calcula-
tion of acoustic attenuation similar in spirit to that of
Ehrenreich and Woodruff which takes advantage of the
considerable simplification in treatment of the phonon
Boltzmann equation introduced in the recent work of
Guyer and Krumhansl. '

t uyer and Krumhansl have derived a set of macro-
scopic equations for a phonon gas with which it is
possible to treat a number of phonon problems; e.g.,
steady-state thermal conductivity, second sound, ' and
Poiseuille Qow. '%hen the phonon system is coupled to
an acoustic wave (the acoustic wave is regarded as a
driving force) a simple modification of the Boltzmann
equation produces a modified set of macroscopic
equations. These modified equations may be solved to
yield the acoustic attenuation.

Recently a unified approach to interacting-phonon
problems has been developed by Kwok, Martin, and
Miller, Kwok and Martin, and Kwok. In addition to
reproducing most of the results of previous investiga-
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tions'~ of acoustic attenuation, Kwok and Martin have
shown the intimate relation between first sound and
second sound. Both excitations correspond to poles of
the single-particle Green's function and are regarded as
entities of the same kind. The approach to these prob-
lems via a Boltzmann equation can in no sense repro-
duce the complete picture, as is possible with the
procedure of Kwok and Martin. However, the Boltz-
mann-equation approach yields results which permit
discussion of a wide range of phenomena in terms of a
minimum number of phenomenological parameters, and
easy comparison of the results of measurements on
these phenomena.

In Sec. II we set down the Boltzmann equation that
is used to describe the problem. The early stages of the
calculation follow the ideas of Ehrenreich and Kood-
ru6. ' The Boltzmann equation is solved in Sec. III and
the expression for the attenuation is obtained. The
attenuation is found to depend on Imx(k, Q), where
X(k,Q) is the GriKn's dynamic thermal response
coefhcient, " and h and 0 are the wave number and
frequency of the acoustic wave, respectively. Further-
more, X(k,Q) depends primarily on ~(k,Q), the k- and
0-dependent thermal conductivity. The major achieve-
ment of the Boltzmann-equation approach is to provide
a relatively simple expression for «(k,Q) valid over a
wide range of frequencies 0 and temperature T. In
Sec. IV we examine the expression for the attenuation
in the limits Qv«1 and Qr)&1. In the limit Qv«1 we
find the usual result for the attenuation provided that
srWvrr (sr and srz are the velocities of first and second
sound, respectively). For v,~err we Gnd that in the
temperature range where second sound propagates, the
acoustic wave is strongly damped. In the limit Qv)&1
we obtain an acoustic attenuation made up of a syn-
chronous and a nonsynchronous part, in agreement with
the result of Nava et al.4 In Sec. V we consider the
implications of our results for acoustic attenuation

"P.A. GrifBn, Phys. Letters 17, 208 (1965).
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experiments and the light-scattering experiment sug-
gested by Gri6in. "

II. THE BOLTZMANN EQUATION

The point of view of Ehrenreich and Woodruff in
treating the attenuation of first sound is the following:
The attenuation of an acoustic wave in a dielectric
solid is due to the transfer of energy from the wave to
the phonon gas occupying the medium in which the
wave is propagating. The phonon gas in turn transfers
an equal amount of energy (time-averaged) to the
reservoir which is in contact with the sample. The
attenuation is related to the rate at which the acoustic
wave loses energy to the phonons or equivalently to the
rate at which the phonons lose energy to the reservoir. "
Ehxenreich and Woodruff calculated the rate at which
energy is transferred from the phonons to the reservoir.
The fact that the phonons exist in a medium through
which an acoustic wave is propagating is introduced
into the problem by assuming that each phonon has a
Hamiltonian of the form

H'~'= Ho'"'[1+ &(x,t)]= her&"& (q)[1+&(x,t)], (1)

where e(x,t) = eo exp[i(k x—Qt)], k and 0 are the wave
vector and frequency of the acoustic wave, respectively,
l& is a polarization index, and e(x, t) is related to the
displacement of the acoustic wave Ip by

e= iyupk„ (2)

where y is the Griineisen constant. [Equation (2) is
derived in the Appendix of the paper by Ehrenreich
and Woodruff. '] The phonons of polarization X are then
assumed to obey a single-particle Boltzmann equation
with Hamiltonian given by Eq. (1), i.e.,

BN&"&/Bt+[H&"&,N&"&7= (X+&R)N&"&,

where E("& is the phonon distribution function,
[H&"&,N&"&] is the classical Poisson bracket, and X and
6t are the operators for normal (or momentum-con-
serving) phonon scattering processes and non-momen-
tum-conserving scattering processes, respectively. It is
at this point that our analysis departs from that of
Ehrenreich and Woodruff. These authors choose the
Callaway approximation" to the collision operators in
dealing with an equation like (3); we keep the exact
linearized collision operators and deal with Eq. (3) in a
manner very similar to that discussed in detail in I.
Further we choose to deal with a 1-branch phonon gas
for simplicity. " The results for a multipolarization
system differ from those obtained here only in compu-
tational complexity.

"E.I. Blount, Phys. Rev. 114, 418 {1959)."J.Callaway, Phys. Rev. 113, 1046 (1959).
"As long as we are concerned with the structure of the solution

of the Boltzmann equation, we consider only a one-polarization
system. In the computation of collision rates the true anisotropy,
dispersion, and multi-polarization of the phonon spectrum could
be used.

When H given by Eq. (1) is introduced into Eq. (3)
and S is taken to have the form

N = N'(T&&)+ ((BN'/B&) a+r&,

[where $= h&d(&f)/kI&TO and N'(To) is the Bose-Einstein
distribution at the ambient temperature of the solid,

To], we find that e obeys the equation

8 NP l96—+c V n (—X+6&)n+$ —=0,
Bt B$ Bt

where c=Bco/Bq is the velocity of the phonons. The
second term on the right-hand side of Eq. (4) is the
linearized correction to No(To) which follows upon
replacing h&d(&f) by bc'(q)(1+&); the third term repre-
sents further deviation from No(TO) due to induced
temperatures, heat currents, etc. When X and (R are
transformed into the symmetrized operators K* and
(R*, this equation of motion becomes

8—+c V n*—(X*+&R*)n*+-I&,+)=0
at p

where +*=2(sinh~~$)m. We take n* in the form e*
=P„=oa„(x,t)I».*), where the set of &i-space functions

{I
»„*)) are the orthonormal set of eigenfunctions

generated by the X* operator. A detailed treatment of
Boltzmann-equation problems in this basis is given in I.
One of the zero-eigenvalue eigenvectors of X* is I»0*)
[which corresponds to a fluctuation in the phonon
density, see the discussion involving Eq. (8a)7,

I»0*)=p&(2 sinh-', ()—',
so that

KP 8e
2 (sinh —g) g

—=—
I
»o*),

Bt p

where p is the normalization constant for I»0*). The
combination coeKcients a, are functions of x and t.

The solution of Eq. (6) leads to an expression for the
attention.

In earlier work on the steady-state and the k- and
0- dependent thermal conductivity' ' (i.e., when con-
sidering phenomena in which the phonon system was
not driven), the Boltzmann equation

(B/Bi+c V)n* (X*+&R*—)r&*=0

was employed. Ke see that the effect of propagating an
acoustic wave through the medium occupied by the
phonon system is to drive the phonon system in the

I
&0*) mode.

III. SOLUTION OF THE BOLTZMANN
EQUATION

The Boltzmann equation for describing the phonon
system in the undriven case, Eq. (7), leads to a set of
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Q.=kksT(c'/) )a&. , a=x, y, s

(Sa)

(Sb)

for the energy-density Quctuation and heat current,
respectively; (pp)=CrTp/4, p and X are the normaliza-
tion constants for ~gp*) and ~rt~~*). Starting with the
expression for the attenuation coefficient I' from
Ehrenreich and Woodruff, we can show that I' is given
by [their Eqs. (3.7), (3.9), and 3.10)]

homogeneous equations for the space-time —dependent
coefficients a„(x,t). We have shown that two of these,
ap and a&, are simply related to quantities of physical
interest. ' The local Quctuation of the energy density is
proportional to ap, and the heat current density is
proportional to a&. Explicitly, we found

where

I'= —-,'y'[C, (T,)T,/pv'7Q ImX(k, Q), (16)

We define r(k, Q) =1/r ' so that «(k,Q) has a simple
form

«(k,Q) =-',C„(Tp)c'r(k, Q). (14)

The solution of Eqs. (10a) and (10b) for ap when
p&0 (an acoustic wave is driving the phonon system)
yields

p (Oiik ci1)(1iik ci0)
ap= —— 1+ r(k, Q) . (15)

p iQ

Substituting this result into Eq. (9) yields an expression
for the attenuation coefFicient I'

C„(Tp)Tp pap*
I'= —~y' Qp, Im

pp3
(9)

k'. (k,Q)
--~

X(k,Q) = 1——
iQ C, (Tp)

(17)

and «(k,Q) is given by Eq. (14). The quantity X(k,Q) is
the dynamic thermal response coefficient. GrifBn has
shown that the existence of a natural thermal mode
(second sound) depends upon the singularities of
X(k,Q). Calculation of the attenuation of an acoustic
wave involves studying the imaginary part of X. We
carry out such a calculation in the following sections.
It is clear from Eq. (17) that «(k,Q) plays a role of
primary importance; this quantity is discussed in detail
in Appendix B.

We understand the result, Eq. (16), in the following
way:

where p=Q/k is the velocity of the acoustic wave.
Hence, calculation of I' depends simply upon knowl-
edge of ap.

We solve the equation of motion (6) in the same
manner as Eq. (7) was solved in I. The solution of Eq.
(6) leads to two macroscopic equations relating ap and
the magnitude of a~. These are

op+ (0
~

c V
~
1)a|+p/p =0, (10a)

(1
~
c ' +

~
0)ap+ r ar (10b)

where we use the shorthand ~0) and ~1) for ~gp*) snd

~
p&*), respectively, and r ' is an inner product involving

a rather complicated combination of operators; it is
given by

(a) The factor y'C. (Tp)Tp/pv' is the ratio of the
thermal energy density induced in the phonon system
by the acoustic wave ppC, (Tp)Tp to the energy density
in the acoustic wave pe'. The Gruneisen constant
measures the coupling of the acoustic wave to the
phonons.

(b) The factor ImX is proportional to the damping
of the temperature wave induced by the acoustic wave.

.-'= (1
~
(D—61*)
—(D—IR")(D—tR*—K*) '(D —(R*)

i 1), (11)

where D=B/ttt+c V. This expression is discussed in
detail in I as well as in Appendix B.

Equations (10a) and (10b) are identical with those
of I for p= 0. To calculate the (k,Q)-dependent thermal
conductivity using (10a) and (10b), we set p=O and
assume that ap and a~ depend upon x and t in the form
exp[i(k. x—Qt)]. Then a~ ———(1~ik c~0)ap/r ' and
Eqs. (Sa) and (8b) yield

IV. THE ACOUSTIC ATTENUATION

To calculate I' we must evaluate ImX; we write this
quantity in the form

Ak Toc' (1iik c~0)
Q (k,Q)=- ap)

Imx = Im([1+ 'p(c'/p') iQr (kQ)] ') (18a,)

where p=Q/k and for r(k, Q) given by Eq. (11) we
(12) choose the following approximation:

or
pic'(1~ik c~0)

Q (k,Q)=- 6p

r(k, Q) '=(0~ra '~0)—iQ+[s+(1~ik c~0)g

1 1
X(0i i(k c—Q)+—+— i0)

If (p) —(pp) is taken to be C, (Tp)5Tp exp[i(k x—Qt) j„
Eq. (12) yields an explicit expression for the generalized
thermal conductivity, Q (k,Q) = ik «(k,Q)bT, — XP+(O~ik c~ 1)j. (18b)

«(k, Q) =-', C„(Tp)c'(1/r ').
In Eq. (11) D has been replaced by i(k c—Q), X* and

(13) (R* have been approximated by the isotropic (in q space)
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scalars —re(q) '—and —ra(q) ', and s is a parameter
which affects r(k, Q) only in the 0~0, k ~0 limit,
where it ensures that r(0,0) goes to the correct com-
bination of relaxation times to give the steady-state
thermal conductivity. That is, r (0,0) -+ r p, where
Iz(0,0)=-',C, (Tp)c'rp. A method for choosing s is dis-
cussed in I and in Appendix B.As an illustration of the
notation that is being used, the definition of IqpP) given
earlier leads to

=VSAQ/c, i.e., propagating thermal modes. Using Eq.
(21) in Eq. (18a), we find

ImX= Im([1—P'(1—ih)) z)~, (23)
[1—p')'

where p'=c'/3p &1 is the square of the ratio of the
second sound velocity vzz ——c/vS to the first-sound
velocity vz=v. For p=1 we find ImX —6 '. The
acoustic attenuation is given by

(Olrzz
—'IO)=

C.(Tp) Tp p'
I'=-zpy' 0 6, P/1,

z" L1—p')'
(24a)

(c'—1)' p=l (24b)

where r, is the average of v g over the phonon spectrum
corresponding to the Ziman limit.

An extensive discussion of the above approximation
for r(lz, Q) is given in Appendix 3.

1. Qr«1. In this limit we consider two cases: (a)
OTg((1, the limit in which thermal fluctuations decay
as diffusion modes, and (b) Qr~&&1, Qrzz))1, the limit
in which thermal fluctuations decay as propagating
modes.

Case (a):Qrzz«1. In I it was shown that in this limit
[see Eq. (39))

r(k, Q) = r(0,0)+0(QrR)+. ™rp, (19)

where vo is the relaxation time which characterizes the
steady-state thermal conductivity. Further it was
shown in I that examination of X. '=0 to learn the
character of the thermal modes leads to Rek=Imk
=0(3/20rp)'"/c. Using Kq. (19) for r (k,Q) in Eq. (18a)
leads to ImX= c'Qrp/3e' and—an acoustic attenuation
given by

zzp ———(p/zz) x (k,Q) . (25)

Hence, when the phonon system is driven by an acoustic
wave having the velocity of second sound, a resonance
in the amplitude of the induced thermal wave leads to
a large transfer of energy from the acoustic wave to the
phonon system.

Z. Qv))i. In order to make calculations in this limit
somewhat simpler, we assume that the normal processes
are the dominant phonon-scattering process. For
r(k, Q) in this limit we have [see Eq. (312))

.(k,Q)= —e—(Olil cl1)

A resonance appears in the acoustic attenuation for an
acoustic wave propagating with the velocity of second
sound. The possible experimental implications of this
result are discussed in Sec. V. For an explanation of this
resonance we note that Kq. (15) for ap can be written in
the form

I'= —zpy'(Tpzzp/pa')0'. (20)

This result is similar to Eq. (4.13) in the paper by
Ehrenreich and Woodru8. "

Case (b):Qrzr«1, Qrzz))1. As with the case discussed
above, this limit of the expressions for ~(k,Q) and
r(k, Q) has been worked out in I. It was found that
[see Eq. (311))

X(OI i(k c—0)+— 10)(0lik cl1) . (26)
'rN-

Using Eq. (26) for r(k, Q) in Eq. (18a) we find

(27)

where
r(k, Q) =[e(1—iS)]-',

a=-P,Qr +(0..)-'.
(21)

(22)

with
sin8d8

M(r, p') =-,'(Ol
(r cose—1)—ip

(28)

Here re stands for an average of r~(q) over the phonon
spectrum (see Appendix 3). The expression for 5 see
below) can be modified to include the effect of Poiseuille
flow. In I it was shown that examination of X =0
using Eq. (21) for r(k, Q) leads to Rek=u30/c, Imk

"In fact this equation is something of a generalization of
Ehrenreich and W'oodru8's (Ref. 2) Eq. (4.13); the relaxation
time which they identify with the thermal conductivity relaxation
time is that only at high temperature. Their Eq. (4.13) is more
general thorn its derivation.

1—ImM(r, p') =—+(Ol tan ' —

I I 0), (29a)
2r 1 rP Qr~)—

IznM(r, p') =
r' 1~

(Ol «n-' ——
II 0). (29b)

r' —1 Qrzr]

where r=kc/0, c'= [Qrzr(q)) '. For the imaginary part
of M(r, p'), we find
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The term «/2r in ImM for r) 1 is due to a pole in the
integrand of Eq. (28) which moves inside the contour.
This term gives the damping of the acoustic waves due
to synchronous absorption of energy by phonons which
travel along with the wave, i.e., such that r cos8=1."
(A physical model of this absorption mechanism has
been developed by Nava et al.') In the present limit the
acoustic attenuation is given by

C, (Tp) Tp
r =-'~2 Qp4

pP

10

10

1P-4

O 5 '~///+ g

102

- lp'

Q
(sec} '

~1' - 105

- 10'

r' 1y
&c ~. +«1«n 'I IIo) (3o)

2r &I1—r'I Qr~i

The first term in curly brackets should be weighted by
the ratio of the specific heat of those phonons with
r&1 to the total specific heat; the second term in curly
brackets goes as (OI (Qr~)

—'IO) for Qr~~+ pp in
agreement with the result of Nava et ul.

1PI
4' ~A

, 7+ i TIT&Tpi $Ar, p i (o
O. I O. 2 0.5 1.0 2.0 5.0 lp,p

T( K)

FxG. 1. Relaxation times versus temperature. The relaxation
times for the various phonon-scattering mechanisms are computed
from the results of the analysis of the steady-state thermal-
conductivity data of Bertman et al. I Phys. Rev. 142, 89 (1966)j.
rg is for a crystal of typical dimension 1 cm; v, ff is the eEfective
momentum-loss relaxation time of Poiseuille Bow. (See Ref. 6.)

V. DISCUSSION

Our primary purpose in the preceding section has
been to exhibit the results of the application of Eq. (16)
for the acoustic attenuation to the full range of possible
experimental situations Qr&1 and 07&1. Most of the
results we have obtained are not new. However, they
have been obtained from a single relatively simple
expression, Eq. (16). The major statement of physical
consequence in the application of this expression is the
approximation Eq. (18b) for the k- and Q-dependent
thermal conductivity ~(k,Q) or equivalently r(k, Q). The
success of these calculations suggests that the approxi-
mation is adequate. The parameters which characterize
it and thus enter the various expressions for the acoustic
attenuation also characterize the wide class of thermal
transport phenomena that has been discussed previously
using the same approximation. "Direct comparison of
experimental investigations of these various phenomena
is thereby facilitated.

The major new contribution of this paper is in the
treatment of acoustic attenuation in the second-sound
region, i.e., the temperature and frequency region in
which Qry&&1 and Qrg&&1 are satisfied. In Fig. 1 we
illustrate the qualitative Q and Tp dependence of the
second-sound region for solid He' at 19.5 cm'/mole. We
consider here the possible consequences of acoustic
attenuation experiments performed in this region.
There are two results of interest:

(a) The condition Qr=1 is double-valued in the
second-sound region: Qv~= 1, where r~ is the time which
characterizes the rate of normal-process scattering (see
curve 1 on Fig. 1), and QrR 1, where rs is——the time
which characterizes non-momentum-conserving scatter-

'~ This energy-loss mechanism is the analog of Landau damping
or an electron gas.

A. Acoustic Attenuation in the Second-
Sound Region

Consider an acoustic-attenuation experiment done at
constant temperature over a wide range of frequencies
(e.g. , along the line 8 in Fig. 1). For very low fre-
quencies Q&10' sec ', I' is given by Eq. (20), and the
attenuation is of the form

— =Q7.p,
QA

(31a)

where A=y'C, (Tp)Tp/3pv', and rp is the time which
characterizes the steady-state thermal conductivity,
i.e., the momentum-non-conserving scattering processes.
For frequencies between 10' sec ' and 10' sec ', F is
given by Eq. (24a):

I' 1
+~Q(ol. Io).

QA Qrp
(31b)

Finally, for frequencies greater than 10' sec ' (for which
Qrz 1), the attenuation is given by Eq. (30),

r 1
=-(o

I
r~ 'I o)

QA Q
(31c)

ing (see curve 2 on Fig. 1). For frequencies satisfying
the condition 1/r~&~Q&~1/r~ (the shaded region in
Fig. 1), the acoustic attenuation behaves differently
from previous predictions. For temperatures in the
second-sound region there are 3 distinct frequency
ranges in which the acoustic attenuation has qualita-
tively different behavior.

(b) Acoustic waves which propagate with velocities
near the second-sound velocity are strongly damped.

Ke discuss these items separately.
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In Fig. 2 we illustrate the qualitative behavior of
F/QA as a function of 0 for two temperatures: Tii,
which passes through the second-sound region, and

T~, which is at higher temperature and should show the
conventional behavior.

Consider an attenuation experiment done at constant
frequency in which the temperature is swept through
the second-sound region, e.g. , along line 8' in Fig. 1.
For temperatures above TI the attenuation will be
given by Eq. (31a); in the intermediate temperature
range, T4& T& Ti, it is given by Eq. (31b); at low
temperatures it is given by Eq. (31c). In Fig. 3 we

illustrate the qualitative behavior predicted by these
equations for j. over the full temperature range. The
existence of the double-valued Qr condition leads to the
"cusp" in the behavior of F as a function of T and Q.
The qualitative changes in the propagation properties
of the thermal wave induced by the acoustic wave which
occur at Q~~ ——1 and Qro= 1. are reflected in the acoustic
attenuation and lead to this "cusp."

Certainly, if there is a reasonable concentration of
chemical and isotopic impurities these results are
modi6ed in an obvious way. An extensive discussion of
materials in which second sound might be observed is
contained in Ref. 6; the result of that discussion is that
solid He4 is by far the best material in which to look for
propagating temperature wave eBects.

I I I I

IO' IO' IO' IO' IO IO' IOI

Q (sec) '

FIG. 2. Acoustic attenuation versus frequency. At temperature
Tg the Q~ =1 condition is single-valued; at T~, Qr = 1 is satisfied
twice.

According to Griffin, $(q,co) for a. light beam scattered
by a dielectric solid is given by

s'r' 1 r

S(q,~o) =
(~2 ppq2)2p (qpr2pi)a

&'rr'q'~rr

(M —Vrl q ) + (qVII VII)

where A'=1 —C&/C&, and k~ and kq are the energy
transfer and momentum transfer to the probe particle
respectively. Eq. (32) is GrifFin s Eq. (6) specialized to
the region where second sound propagates. The first
term in this equation is the usual result for light
scattering from a medium whose density fluctuations
propagate as 6rst sound; the second term is due to light
scattering from density fluctuations which accompany
props. gating thermal Ructuations (second sound). The
propagating thermal fluctuations are the source of these
density fluctuations through n= (1/V) (BV/BT)p, these
"induced" density fluctuations obey the dispersion
relation for second sound.

The amplitude of the scattering from normal density
fluctuations is proportional to ((AV)r'), =kaTVPr,
where P~ is the isothermal compressibility of the solid.
The amplitude of the thermally induced density fluctu-
ations is proportional to ((AV)p'), = V'(&V/BT)s'
((gT)'),„;((AT)'),„=k&T'/Cv. Hence, the ratio of the
amplitude of thermally induced density fluctuations to
normal density fluctuations is

((AV)i')., n'VT Cp Cv=——1 1——=A', (33)
((~V)r'). CvPr Cr Ci

where we have used the thermodynamic identity
Cp Cy =a'TV/N—Pr.

From Eq. (24a) the attenuation of first sound in the
second-sound region (off resonance) is

r;was.

IO2 = ALoNG 8
Q Q

IO

B. Light-Scattering Experiments

GrifFin" has recently suggested the possibility of
detecting second sound in a dielectric solid using a
light-scattering experiment. LThe principle which
permits 6rst sound to be detected by such experiments
is well knowni6]. This is the context in which we discuss
the resonance in the acoustic attenuation for ur err,
although it is quite possible that it can be observed in a
direct attenuation experiment.

I.O-

QA, ,

IO

IO

IO-' I I I I I

O. I 0.2 0.5 l.o 2.0 5.0 Io.o
T('K)

J. Frenkel, Eidetic Theory of L,iqnids (Clarendon Press, FIG. 3. Acoustic attenuation versus temperature. At QA the QT = 1
Oxford, England, 1946). condition is single-valued; at O~ 07 =1 is satisfied twice.
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In the same region second sound, and hence the first
sound induced by it, is damped according to '

I'ii Qh.

The ratio of I'zz/I'z is of interest; we find

r„
v'Cv(&0) To

for a solid which obeys the Griineisen relation. " The
linewidths of the first- and second-sound peaks are in

the inverse ratio of their amplitudes. This result is

simply understood when one considers that the ampli-
tudes of the two components of 5(q,co) differ by the
coupling between temperature and displacement and
that the dampings of first and second sound diRer by
the same coupling. In the second-sound region the
qualitative behavior of S(q,cv) is adequately represented
in the form

reach the resonance. On the other hand, oR resonance

I
where Eq. (24a) applies] the factor f=p'/(1 —p')'

varies from p'~0. 2, f 0 3al.ong the (111)direction to
p 2~0.6, f 6 along the (110) direction. Hence, a
variation of a factor of 20 in the width of the first-sound
peak. is possible as the direction of the scattering
acoustic wave changes from I 111] to L110]. As re-
marked earlier' the full eRect of the resonance can be
a factor as great as 100 in the width of the first-sound
peak. It is clear from the above discussion that in order
to take advantage of the possibility of observing the
full resonance we must have materials with considerably
more longitudinal specific heat than He4 and at least as
great an anisotropy.

APPENDIX A

In this Appendix we review briefly the results re-
ported in I for the solution of the Boltzmann equation,
Eq. (3), using the set of eigenfunctions generated by the
symmetrized normal-process collision operator.

The Boltzmann equation
S(zl,~) =—

(~~—@PE~)2+ (zjziz2+ A)'-' a~*/at+e V~*= (X*+e*)~* (A1)
vip'pe 6
2 2)2+ ( „, ,2&)2 is solved by writing n*=g„u„(x,t) Izt„*), where the set of

q-space eigenfunctions {p„*)obey the equations

Finally, we mention the possibility of detecting
second sound by observing the velocity dependence of
the damping of first sound. We have discussed this
possibility in a brief note which has been already
published. ' We amend that discussion. as follows: For
hcp He' at molar volume 19.5 cm'/mole, the average
transverse phonon velocity is on the order of -', the
average longitudinal velocity. " Hence, the second-
sound velocity, given by the average"

s '=-'(C '+2C ')/(C '+2C ')

is on the order of Cz/v3~200 m/sec. From the calcu-
lation of Nosanow and Werthamer, " we might expect
the lowest velocity of a transverse acoustic wave to be
on the order of 250 m/sec, i.e., it may not be possible to

'7 Solid He' obeys the Gruneisen relation extremely well
(J. Jarvis, private communication}.

'8 R. A. Guyer, Phys. Letters 19, 261 (1965).
'9 J. H. Vignos and H. A. Fairbank, in Proceedings of the Eighth

InternationcL Conference on Low Temperutlre Physics, London,
196Z, edited by R. 0. Davis (Butterworth Scientihc Publications,
Ltd. , London, 1962). F. P. Lipschultz and D. M. Lee, Phys. Rev.
Letters 14, 1017 (1965).The procedure for forming the sample in
both of these experiments was such that it is highly probable that
they are done on polycrystalline samples.

"The major contribution of a multipolarization system in
modifying the results obtained is in the expression for the second-
sound velocity. See, for example, J. A. Sussmann and A. Thellung,
Proc. Phys. Soc. 81, 1122 (1963}.

~' L. H. Nosanow and N. R. %'erthamer, Phys, Rev. Letters 15,
618 (1965).

Since the normal processes conserve energy and
momentum, there are 4 eigenfunctions of X*which have
zero eigenvalue. These are

I
go*)=p&(2 sinh-', &)

—',

Inz-*) = (~-V-/&sT) (2 sinhk&)-z.

(A2)

(A2)

As we have reported in the text, the energy density
fluctuation and heat-current components are directly
proportional to ao and ai respectively, i.e., to

(~,*l~*)=a, and (~z.*In*) oz. =

The solution of Eq. (A1) takes the form of two
macroscopic equations; these are

and
do+(0I c &

I
1)hz=0

(lie. vl0)ao+r zzzz ——0.

(A3a)

(A3b)

The first of these equations is the energy conservation
equation; the second is a generalized thermal con-
ductivity relation Lsee Eqs. (12) and (13) of the text].
The nontrivial physical content of these equations is in
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the specification of v . In dee s
' ' ' I detail r ' is given by

GU~«

Using the definition of lap ) and gi~ we liave

@=2jib=2

x (v
I
(D—(R*—or*)—'I p, )(p ID—(R*l 1), (A4)

where D=8 Bi+c V. The sums on v anand start at
i.e. none of the null-space components of

believe preserves the essentia p y
'

1 h sical content o
Eq. (A4) is discussed in Appendix

APPENDIX B

The explicit equation for r(k,Q& &s

,(l Q)- =(&,.
I

—Q+,-'I~,. )

— P (&,.*Iil c+r I&„*)
21 v=2

1 1
x(g„*l i(k c Q)+— +——

~8 &iV-

x&~„*lik c+r I~,.*&, (81)

where D has been replaced by i(k. c
' k. c—Q, and the scat-

* and X* have been replaced by thetering operators R an
isotropic scalar functions of q, —v~qq& an —r& q,

—+ 0 E . (81) takes the formIn the limit as Ikl ~Q~, q.

e
x' rg (—x) 'dx-

(e*—1)'

X4 dX
( *—1)'

(84)

i.e., the resistive relaxation time co pom uted in the Ziman
limit, and

ee
(gp*l r. I

gp*) = x' r, (x)dx
e*—1 '

X4 dX.
(e*—1)'

(85)

W k that in the Ziman limit 7 ~ ~ 0 andWe now a
83 . In theg0,0~ . This is in agreement wit q.

o osite limit (the Debye limit) rz ~ 0, we know
physical considerations that v

e
x' rg(x)dx

(e*—1)-'

e
x4 dx. (86)

(e*—1)'

(87)

We choose the parameter s in such a w ywa as to ensure
that rg-+0 Eq. (83) leads to r(0,0) —+ rD. This
requirement determines s. W. We find

1 1— E &n,.*l"-I..*)&'*I —+-
x(&„'I..—I„.*&. (82)

An acceptable approximation
'

n to this result was found
in I; there a single vector rep ace.aced the sum over v an
p, , i.e.,

1 1
&»-*I« 'lz&&zl —+— lz)&zl» 'I».*)

—&8

where we have defined s= (q~~
~
rg ',*Irg 'l2) a parameter to

d b h sical considerations. T e matrix
element (2lr, l2) has been approximated by (ol r,

l );
r. '=rg '+r~ ' Equation (82) t.akes the form

r(0,0)—'=(qr 'lrg-'ling ')—s'(qp (r, ~gp, 83
or upon computing the matrix elements

r(k, Q)
—'= —iQ(1 —iA), (811)

so that r(0,0) becomes.(o,o) = II &olr -'lo)(1 —s.)+ &olr, lo&-~s.)-', (88)
where s.=(0lr.

l )/0( lorgl ).0This result is similar to
but not the same as that in I. We suggest that the
present experimen a sit 1 ituation with respect to stea y-
t t thermal conductivity is not suKciently c ean to

discriminate between a number of qualitat'v yi el similar

characterizes t e s ea y-h t dy-state thermal conductivity,
x(0 0) =-'Cv(Tp)c'r(0, 0) =-p'Cv(Tp)c'rp.i.e., K

from the Q ~ 0W are interested in r(k, Q) away r
1' t. For example consider the hmit QTg« .

e
1. We findimit. or exam

that in this limit r(k, Q) is different from r, y7. 00 onl in
order Qrg Hence, (for.Qrg«1)

r (k,Q) = r (0,0)+0(Qrg)+ . . (89)
On the other hand, if Qrz&)1 but Qv &«1, a very difer-
ent circumstance exists. In the spirit of the approxi-
ma. tion made above, Eq. (81) becomes

r(k Q)-~= —m+r. —(1 Iik clO)(Ol.„lo)(Olik cl 1),)

(810)
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where
6=SQr~+(Qr. ) '.

can be conveniently summarized in a single approximate
expression for r(k, Q). This expression is

In the limit QvN»1, vR»vN, the above approxi-
mation leads to

r(k,Q)= —e—

(lunik

ego)

X(0~ i(k c—Q)+— (0)(O~ik c~1). (812)

Equations (88), (89), (811), and (812) are the ex-

pressions for r(k,Q) which are used in the text. They

r(k,Q) '= iQ—+r,+(s+(1~ik c~0)j'

1 1
X(Oi i(k c—Q)+—+— i0) (813)

tN TR

where s=(0~ r~~0)/(0~ ra(0). It is this approximation
to r(k, Q) or equivalently ~(k,Q) which leads to a correct
expression for steady-state thermal conductivity, the
existence of second sound, and the wide range of
acoustic damping phenomena discussed in the text.
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F-Aggregate Centers in NaC1: Vibronic Structure and Symmetry Properties*
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Most color-center bands associated with F-aggregate centers in alkali halides show relatively strong
0-phonon lines and vibronic structure when observed at low temperature. The vibronic peak energies caIl in
almost all cases be closely correlated on an empirical basis with zone-boundary critical-point energies of
normal lattice phonon modes. However, without detailed knowledge of the defect geometries and electronic
states involved, it is impossible to predict what the electron-phonon coupling should be. %e present the
observed vibronic spectrum for all the centers in NaCl which we have found to show Gne structure, and
discuss the apparent electron-phonon coupling seen. As a Grst step toward developing models for these
centers, we also present results of stress splitting measurements on the 0-phonon lines in each case. The
0-phonon lines we have studied, their band assignments, and their observed symmetry as interpreted in
terms of removal of orientational degeneracy, are as follows: 6329 A, R2, trigonal; 8375 A,¹,monoclinic I;
8681 A,¹,monoclinic I; 1.219 p, , ?, monoclinic I; 1.306 p, , M, monoclinic I; 1.404 p, , impurity, rhombic I;
1.549 p, ?, rhombic I. In several cases the relative intensities of the line components can be analyzed to give
the orientation of the dipole moment involved in the 0-phonon transition. %here it is possible to propose
models by combining our stress measurements with the results of other experiments, we do so, with dis-
cussion as to the probable merit of each model.

I. INTRODUCTION

HE present state of knowledge of the group of
color centers in the alkali halides known as the

F-aggregate centers is quite meager. Kith the exception
of the simplest of them, the E and M centers, this lack
of knowledge extends even to almost complete un-
certainty concerning the number and geometrical ar-
rangement of the F centers which are assumed to
coalesce to form them. ' In addition, almost nothing is
known about the details of their interaction with the
surrounding lattice and each other. However, a par-
ticularly attractive approach to obtaining much of this
information is available. This is due to the fact that

*This work was supported by the U. S. Atomic Energy
Commission.

f Now at Department of Physics, Williams College, Killiams-
town, Massachusetts.

' For a recent survey of this Geld see, e.g., %.Dale Compton and
Herbert Rabin, Solid State J'hysics {Academic Press Inc. , New
York, 1964), Pol. 16, p. 121.

many of the centers in this group are coupled to the
lattice with an intermediate strength such that a rela-
tively strong 0-phonon line and more or less detailed
vibrational side-band structure is visible at low tem-
perature. The presence of this one structure makes a
number of measurements feasible which are not pos-
sible with the usual broad band alone.

It has been observed in all cases where 6ne structure
is present on the F-aggregate bands of the alkali
halides that the numerical values of almost all of the
vibrational peak, energies, measured with respect to the
0-phonon line positions, correspond very closely to
normal lattice phonon mode energies near Brillouin
zone boundary critical points in high-symmetry direc-
tions. ' This strongly suggests that the electron-phonon
interaction at these centers is primarily with normal
lattice modes rather than local modes, and that the
coupling parameters are strongly peaked at the critical

' C. B. Pierce, Phys. Rev. 135, A83 {1964).


