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equation has just deomonstrated the equality

A typical term of (»&~&"
I

m*'tJ&) is

( &&0&' &I r, &&'&(f&/r&x )e&'&")= (», /kgT)(8/r&x )Q "'. (C19)

(C20)

Thus, taking (&&00&I on the jth Boltzmann equation and

summing over j yields

(f&~r/f&t)+V 0=0 (C21)

Ke conclude that the presence of several isotropic and

dispersionless branches does not modify the essential

physical conclusion reached in our main discussion.

Dispersion and anisotropy would indeed complicate
the details.
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A variety of phonon-gas phenomena in nonmetals are discussed in a unified manner using a set of macro-

scopic equations developed from the solution of the linearized phonon Boltzmann equation. This set of

macroscopic equations, appropriate for the description of a low-temperature phonon gas, is solved for a
cylindrical sample in the limit )z(&R; ) &) ~*))R'. Here X& is the normal-process mean free path, Xz' is the
mean free path for momentum-loss scattering calculated in the Ziman limit, and R is the radius of the
sample. The solution in this limit exhibits Poiseuille flow of the phonon gas as first discussed by Sussmann
and Thellung. An equation for the thermal conductivity which correctly includes this phenomenon is found.
Using this equation, the possible outcomes of steady-state thermal-conductivity measurements are dis-

cussed in terms of the microscopic scattering rates. Heat-pulse propagation is discussed from a similar point
of view. The existence of Poiseuille Row in steady-state thermal-conductivity measurements bears directly
on the possibility of observing second sound in solids. A quantitative analysis of available data on LiF sug-

gests that the chemical purity of these samples sets very stringent limits on the observation of either of these
effects. The observation of Poiseuille How in solid He' samples by Mezov-Deglin strongly suggests that this
material is a prime subject for investigations of second-sound propagation.

I. INTRODUCTION

N a perfect single crystal of dielectric solid the
- - phonons undergo two distinctly different kinds of
scattering processes, normal processes (Ar-processes) in
which quasimomentum is conserved and umklapp
processes (f/-processes) in which it is not. ' As the tem-
perature of the solid is varied the relative rate of these
scattering processes changes drastically with an attend-
ing change in the transport properties involving
phonons in the solid. The presence in thermal conduc-
tivity of a Ziman limit, ' and the possibilities of Poiseuille

*This work was supported in part by the Army Research
Ofhce (Durham), the National Science Foundation, the Ofhce of
Naval Research, and the U. S. Atomic Energy Commission
(NYO-2391-32).

'R. E. Peierls, Ann. Physik. 3, 1055 (1929). Throughout the
text we use the phrase "U processes" to refer to the case when
umklapp scattering alone occurs. Otherwise we use "R processes"
to refer to the case when a number of resistive scattering mecha-
nisms are operating in the sample.

~ J. M. Ziman, Electrons and Phonons (Oxford University Press,
New York, 1960), Chap. 7.

How3 4 and the second sound" ' in a phonon gas are
consequences of these changes. The purpose of this
paper is to discuss the entire spectrum of possible low-
temperature behavior of a phonon gas from a single
unified point of view.

The starting point of the analysis is the system of
macroscopic equations derived in the previous paper. '
These equations describe the time- and space-dependent
behavior of a phonon gas; they are set down in Sec. II.
Two sets of equations valid in opposite limits (deter-

~ J. A. Sussmann and A. Thellung, Proc. Phys. Soc. (London)
81, 1122 (1963).

R. N. Gurzi, Zh. Eksperim. i Teor. Fiz. 46, 719 {1964)LEnglish
transl. :Soviet Phys. —JETP 19, 490 (1964)j.' J. C. Ward and J. Wilks, Phil. Mag. 43, 48 (1952).' E. %. Prohofsky and J. A. Krumhansl, Phys. Rev. 133, 1.403
(2964).

7R. A. Guyer and J. A. Krurnhansl, Phys. Rev. 133, 1411
(1964).

The previous fPhys. Rev. 148, 766 (1966)j paper is hereafter
referred to as I; the equations from the paper are denoted by
I(—). (The need for symmetrization and the particular choice of
basis is discussed. )
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mined by the relative rates of lY-processes and R-proc-
esses) are required. In Sec. III these equations are
applied to a discussion of steady-state thermal conduc-
tivity which generalizes the results obtained in I to
cover spatially nonuniform heat Row. This leads to the
incorporation of "Poiseuille flow" (Sec. IV) of the pho-
non gas into an equation for the lattice thermal con-
ductivity, thus generalizing Eq. I(44) of the previous

paper (Sec. V). In Sec. VI the equations for time-de-

pendent phenomena are reviewed and then in Sec. VII
we discuss how all of these are interrelated. Included
are: (1) the various experiments which can be done on a
phonon gas, (2) the microscopic scattering rates which
determine where (in temperature and frequency) these
experiments should be done, (3) the fundamental quanti-
ties which can be extracted from the measurements in
each experiment, and the (4) the present experimental
situation with respect to each experiment. In Sec. VIII
we discuss the current situation for solid He4 and LiF.
In an Appendix we show the relation of the system of
macroscopic equations we have obtained to those that
follow from the Callaway equation. 9

and

clap/el&+(OI c Vj l)a, =0, (la)

a&—(1IR* 'I 1)(1jc &IO&ap ——0. (lb)

These equations are equivalent to I(22a) and I(33),
but we briefly restate the physical ideas and meaning
of the notation. In I the solution of the linearized
phonon Boltzmann equation was developed by expand-
ing the the phonon distribution function in terms of a
set of functions, (g„*(q)}, in phonon wave-number
space, q space. The coe%cients ao, a~, ~ depend
upon position x and time t. The q-space functions are
defined in Appendix I.A; particular among them are

I
vo*) = IO) =„x(2sinhx)-~,

I g,.*&=
I
lz&= (~,q,/kaT) (2 sinhx)-~,

where x= heo/ksT, p and X, are normalization constants,
and the q dependence enters through koo(q) as well as
explicitly. I.inear-vector-space notation is employed in
an apparent manner; for example the scalar product

dq px(2 sinh-', x)
—'(X,q, /koT) (2 sinh-', x)-'.

' J. Callaway, Phys. Rev. 113, 1046 (19593. The phrase Calla-
may equation is used to refer to either the basic Boltzmann equa-
tion. containing the Callamay form of the collision term /see
Eq. (A1)j or to the final expression obtained from that equation
for the thermal conductivity.

II. MACROSCOPIC EQUATIONS

In I we showed that in an isotropic-dispersionless
phonon gas when the R-processes are relatively rapid
compared to the cV-processes, ao and ai obey the
equations,

Rearrangement of the hyperbolic functions will show

that in fact these scalar products are identical to the
integrals over the phonon distribution usually en-
countered in phonon calculations.

The meaning of the other quantities in Eqs. (la) and

(lb) is as follows: c= cq/I qj is the velocity of the pho-
nons; the acoustic approximation is used throughout
this paper. The space- and time-dependent coeScients
ao and a~ are proportional to the deviation, eg, of the
local energy density from thermal equilibrium and to
the heat current, Q, respectively'p;

ao= (p/kaT) er,
a =(X /k Tkc')Q, =x,y, -,

where Q is the heat current carried in the n direction.
Equation (la) is the statement of energy conservation;
Eq. (lb) is a generalized thermal-conductivity equation.

I The same correspondence holds for Eqs. (2a) and
(2b) belowJ. The operators R* and N* in Eq. (lb) and
Eq. (2b) (below) are symmetrized linear-scattering
operators for the R processes and the .V processes,
respectively. '

Since the equations are linear we frequently Fourier
analyze the space- and time-dependent coeS.cients
ap, a~ in terms of expi(k. x—Qt). In this expression Q is
the frequency of oscillation of a macroscopic quantity,
as determined experimentally, for example, by applying
heat periodically with frequency Q. Similarly, k refers
to the macroscopic spatial distribution of temperature
or heat current.

Equations (la) and (lb) Lalso Eqs. (2a) and (2b)
below] were derived in such a way that conservation
conditions on collision operators are met exactly. At
this point relaxation times may be introduced without
fear of violating these important conditions. For
Eqs. (la) and (lb) to apply ra, the time which char-
acterizes R-process scattering, must be the shortest
microscopic collision time. Thus, for variation as
expi(k x—Qi), Eq. (lb) is correct up to terms of order
Qv-g i.e., it is valid in the regime Qrg(&1.

When the X-processes are relatively rapid compared
to the R-processes Qr~(i, and the time variation of ao
and a~ is fast compared to the R-processes scattering
rate, Qrg&(1, ao and a~ satisfy different equations
LI(56), (57)$

8ap/W+&Ojc Vj 1)a,=O,

~a~/~t+&I
I
R*I 1&ar—&o I

c &
I »ap

—(1 j
c VN'-'c Vj 1)s,=o.

In this limit r~, the time which characterizes the lV-
process scattering rate, is the shortest microscopic
time; Qv-~&1 is then the condition for a local thermal
description. Equation (2b) is correct up to terms of
order Qr~ and (Qra) '. The intermediate range between

"For a temperature disturbance of the form ex~(k x—Qt), 0
measures the rate of variation in time of a thermodynamic quan-
tity. lt must be possible for equilibrium to take place during this
time.



R. A. GUYE R AND J. A. K RUM HANSL 148

the two limits, (Qra«1, 7 a&&r~) and (Qr~&1, Qra&&1),
cannot easily be treated with the Holtzmann equation
as developed in I.

The Callaway method for treating the phonon
Boltzmann equation has found use as an algebraically
convenient way to include both limits in a single
analysis. %e therefore have re-examined its use for our
present purposes. But as we show in the Appendix it
leads to spurious terms which make its validity suspect
in all but the limiting cases [for which Eqs. (1a) and
(ib) and (2a) and (2b) are validj. Hence we use the
set of macroscopic Eqs. (1a) and (1b) and (2a) and (2b)
in the appropriate limits and treat the intermediate
region with the interpolation which we introduced in
I, [I(44)]. The entire discussion in this paper is in this
framework.

&il r~li)
S=

(il «'I 1)

OO e*
rv(x)x' dx

(e'—1)'

III. STEADY-STATE THERMAL TRANSPORT

In I we discussed steady-state thermal conductivity,
~=~(0,0), using Eqs. (1a) and (1b) and Eqs. (2a) and
(2b) (the time-dependent terms are set equal to zero).
It was found that Eqs. (1a) and (1b) yield an appro-
priate expression for ~ in the limit that R~ —++ ~ and
that Eqs. (2a) and (2b) yield an appropriate expression
for ff: in the opposite limit, N —++ ~, the Ziman limit.
Consideration of how these two cases are added to yield
a single expression for ff led to the idea of switching
factors between the limiting expressions. These are
functions of the relative rates of the two kinds of scat-
tering processes. The choice of

(ib) and (2a) and (2b) give a correct description and
their full hydrodynamic content must be explored.
Conventional, spatially uniform, steady-state heat
current is only one possible solution. An obvious gen-
eralization to be examined is steady "Poiseuille" Row,
which we now discuss.

X [re(q) (c V) (c V)]

which can be reduced to the form

1 1
(olr lo)—

p' (hc)' 4x

where

singd8 dQ

X[cos'8(c V)(c V)],

IV. POISEUILLE FLOW

Consider Eq. (2b) in the form'4

[«lc &N* 'c &I»—&1IR'Ii&ja~ = —&0lc &Ii)ao

The operators I* and R* are again identified with
isotropic relaxation times —r~(q) and —ra(q). For the
first term on the left-hand side of this equation we find

,'r~—[P—+2v(v )ja„.
This result follows from using the definition of the
scalar product to write

(1 I
c VN*-'c W

I
1&

raa(x)x' dx
(ex 1)2

r~(x)x' dx
0 (e*—1)'

in I(44) for the switching parameter yielded an equation
for ~ very much like the Callaway result' [see the dis-
cussion following Eq. (15) below].

The development given in I did not deal in an ex-
plicit manner with boundary sects. These are im-
portant experimentally so we now discuss them. Tra-
ditionally, in the very low-temperature limit the
Casimir model"" has been used to treat thermal con-
duction. In the context of the phonon-gas description
this is equivalent to "Knudsen Row" or "ballistic
transport" and is applicable when the bulk phonon
mean free path" is large compared to the sample
diameter.

On the other hand when the mean free path is sig-
nificantly less than sample dimensions, Eqs. (1a) and

"H. B.G. Casimir, Physica 5, 495 (1938).
'~ P. A. Carruthers, Rev. Mod. Phys. 33, 92 (1961).This paper

also contains an excellent review of low-temperature thermal
conductivity.~ For scattering from isotopic impurities or the anharmonic
potential the scattering takes place continually throughout the
bulk of the sample.

x4 dx.
(ee 1)2

The angular integral in this equation yields

(1/15)c'[7 +2V(V )j.
From the normalization of IO) and I1) we have
X,m/h'c'p'=3. The combination of these results yields
Eq. (3).

For the second term on the left-hand-side of Eq. (2b)
(as written above) we have

&1 I
R*l 1)= —

&1 l.„(q)-
I
1&= —&01.,(q)-

I 0&,

where the second of these equalities follows from the
isotropic nature of ra(q). Again from the definition of

"%'e are concerned with one-dimensional heat How and there-
fore specialize Eq. (2b) to this case. However, in calculating the
matrix element which gives the operator on ai in Eq. (2b) we do
not specialize to one dimension. Hence, Eq. (4) may be generalized
by replacing ai, by ai.
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I0) and the scalar product

(1 I
lV I1)= —(0 I rs(q) 'I 0)

00 e
rg(X) 4X dS

0 (e-—1)'
x' — dx.

o (eo—1)'

This average of the relaxation time rather than the re-

laxation time shall be referred to as the Ziman limit.
Hence, we write (1IR I1)=—(Ol r44(q) 'I0)= r, —'

These results are combined to write Eq. (2b) in the
fol m

a,. (olc VI1&
Pa4,+2V(V a„)—=5 — ao,

FIG. 1. The geometrical factor
g(r) as a function of r. Curves A-D
are plots of g(r) in the particularly
sensitive region near the thermal-
conductivity maximum: curve A,
T=0.76'K, ) =0.10; curve B,
1'=0.68'K, X =030; curve C,
T=0.64'K, ) =0.60; curve D,
T=0.62'K, X=1.0. The value of
g(r) at r =0 is g(0) =R'/4)P for X&)R.

I.OO

g(r)
0.50

ODO +0.50 l.00
r (crn)

where X'= c'r~r, /5.
We may now solve the problem of steady-state heat

current in a long cylindrical sample of radius R. When
V@0 and a~ have 2' components only, u~, depends on r
only; Eq. (4) becomes where

«= («./4rR') 2«rg(r)dr=«Q(a),

The averaged thermal conductivity across the sample

Pa4, —a~./X'= 5(0I c V I1&ao/c'rN G(4) =1—2J, (iR/X)/(iR/X) Jo(iR/X). (9)

which has the solution

a4.(r) =c~Jo(ir/x) —r.(0 I
c.&

I 1)ao.

If we require that the heat current is zero at the walls,

a~. (R) =0 and c~ may be determined. "It is found that

a~.(r) =,(0I c V
I 1&uog(r),

where g(r) = 1—Jo(ir/X)/Jo(iR/X). Thus

Q, (r) = X,(C„T/3h)a4, (r) (5)

and the definition of the inner product and the relation
between co and the local energy density yield

X.(C,T/3h)(OI c V
I 1)ao gc'(Bor——/Bz) .

For a steady heat current along the s axis we have
(&or/Bz) = C,(8T/8z). H—ence, Eq. (5) reduces to

Q, (r) = ,'C„c'r.g (r) (BT/B—z)-.

The thermal conductivity of the cylindrical lamina of
radius r rs

«(r) = ',C.c'r,g(r) =«,g(r) . - (6)

The thermal conductivity is thus given by the Ziman
limit «, multiplied by a geometrical factor g(r) which
embodies all effects due to ffow pattern in a hnite
sample.

When r, ~+ go(or) ~ 5 (R' r')/4c'r~r. a—nd r.
drops out of Eq. (6) which reduces to the result of
Sussmann and Thellung. ' When R»X, the solution of
Eq. (5) has the asymptotic form e—"I" and g(r) becomes

g(r) 1—exp( —(R—r)/X}. (7)

The heat current then differs from the prediction of the
Ziman limit only within a mean free path of the bound-
ary. In Fig. 1 we plot g(r) versus R for typical values of
R and X for solid He4 at 19.5 cm'/mole.

in agreement with the result of Sussmann and Thellung
and of Gurzi for Poiseuille ffow of a phonon gas.

This experimentally effective thermal conductivity,
Eq. (10), is understood by the following argument; the
heat current carried by a phonon gas is proportional to

X(q)1Vo= r(q)c VTBVo/8T, (11)

where the relaxation time r(q) is the average lifetime
for momentum in state q. When P ~&(R and ) ~&&R, the
principal mechanism for momentum loss is collision at
the walls of the sample. However, the phonons do not
ffy directly to the walls as in the Casimir theory where

r(q) R/c, they diffuse to the walls, taking an average
time rD given by

7D (R/XN)'r~ R'/c'r~—— (12)

When this time is inserted in Eq. (11) a thermal con-
ductivity qualitatively like that of Eq. (10) results.

The fact that G(44) is a function of the combination
of variables R'/4XNXa is understood by arguing that in
order for 7 ~ to be the relevant time for momentum loss
it must be shorter than the time for momentum loss due
to R processes in the bulk, i.e.,

hD= cTD R/XNC(XR ~—(13)

Inasmuch as this condition will play a critical role in
discussing the experimental situation we re-emphasize

G(44) is a natural function of R and ) in the form
R'/4X'=44. A plot of G(u) as a function of u is shown in

Fig. 2. In the limit p«1, G(p) approaches zero as 44/2.

In the limit u))1, G(44) approaches 1 as 1—1/4u. Rapid
variation of G(44) with p. occurs for a&1. In the limit

p((1 the thermal conductivity given by Eq. (8) is

«= «, lim G(14) = ',C,c'(5/4)-R'/c'r~
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FIG. 2. The geometrical factor G(iM} as a function of p, .

X~&A )

XX'g)&E.'.
(14a,)

(14b)

The notion of a Poiseuille Aow window in the micro-
scopic relaxation-rate spectrum is made explicit.

by notation X& —+ X&* that the E process mean free path
is computed in the Ziman limit. Hence the combination
of variables R'/ 4X iXrR* properly describes Poiseuille
Qow. This important condition cannot be obtained from
Sussmann and Thellung.

Finally, the macroscopic equations employed in this
discussion are valid only so long as X~pE, i.e., there is
a suSciently large number of phonon-phonon inter-
actions to permit a macroscopic description over the
cross section of the sample. Thus Poiseuille Row may
contribute to the thermal conductivity only under the
following conditions:

naturally appears as the argument of the kinetic term
when X~))E, i.e., 7'~))7 g

2. But the relaxation time which characterizes mo-

mentum loss processes when 'A~&X is
+rI '+ . - - ' this summation of relaxation rates which

gives r. in (15), does not include boundary relaxation
v~. The boundary effect in the "Ziman term" resides in

G(u)
We believe Eq. (15) to be a necessary modification

of I(44) or the usual Callaway expression for the
purpose of analyzing thermal-conductivity data. It is
simple to handle numerically, it is amenable to inter-
pretation in terms of its two components, and becomes
absolutely essential when Poiseuille phonon Bow is a
contributing factor.

The considerations of this section arose from our
attempt to apply the Callaway method as in Ref. 7 to
understand Poiseuille Qow as discussed by Sussmann
and Thellung. We exploit this generalization to discuss
various experiments and show their interrelations.

In most cases the results we have obtained agree with
those found independently by Gurzi. 4

VI. TIME-DEPENDENT THERMAL
CONDUCTIVITY

We found in I that the two sets of macroscopic equa-
tions lead to two distinctively different kinds of be-
havior for time-dependent thermal disturbances. In the
limit that Eqs. (1a) and (1b) are valid the tempera, ture
obeys the Fourier heat la.w, Eq. (52) of I. An
expi(k x—Ql) temperature disturbance has the dis-
persion relation

V. THERMAL CONDUCTIVITY (GENERAL) —iQ+(x/C„)ik ik=o. (16)
We may use these results to generalize I(44), thus

obtaining for the thermal conductivity:

it = 3iC„c'L(1I rRRI 1)(1—Zl+r, G(p)Z], (15)

whel e
Z = 1/(1+s),
~=(1I I»/(Iir Ri1),

and a boundary scattering augmented E-process rate
has been dined to account for Casimir surface scatter-
ing as follows

(rR ) rR +rR y

rR '~c/R.

In analogy with kinetic theory we now refer to the term
(1lrRRI1) in the bracket of Eq. (15) as the "kinetic
term" and as noted before the term r.G(u) is called the
"Ziman term. "Equation (15) follows from I except for
two important changes:

1. The switching factors are functions of v~ and 7~~
through the switching parameter s= (1I rNI 1)/
(1lrRRI1). The relaxation time which characterizes
momentum loss, (1I rRR

I 1), includes the Casimir
boundary-relaxation time. This relaxation time

In the opposite limit, Eqs. (2a) and (2b) are valid,
temperature obeys a propagating equation of motion,
Eq. I(57), with the dispersion relation

(17)

where A=-', Orig+I r.G(y)Q] ' measures the damping
of the propagating temperature waves, second sound.
The damping of second sound is due to second viscosity
(the term flrR) and to the momentum loss scattering
processes (the term I Qr,G(p)] '). If second sound is
propagated in a sample in which Poiseuille Qow can
occur the limiting momentum loss process is diffusion
to the sample walls. The existence of Poiseuille Qow con-
siderably eases the restrictions on sample size for which
second sound can be detected. This point is discussed
further in the next section.

VII. DISCUSSION

A. Steady-State Measurements

There are four different temperature regions in which
steady-state thermal-conductivity measurements can
be accomplished. These are shown schematically in
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Fig. 3. In Fig. 3: (1) the dashed curve 1 is the thermal

conductivity given by the kinetic term of Eq. (15) alone
without the switching factor; (2) the dashed curve 2 is
the thermal conductivity given by the Ziman term alone
without the geometrical factor G(ts) or the switching
factor; (3) the dotted curve 3 is the thermal conduc-
tivity which results when the geometrical factor G(u)
is included in the Ziman term (thes witching factor is
still not included); (4) the solid curve is the expected
measured thermal conductivity as a function of tem-
perature, it is the superposition of the kinetic term and
the Ziman term Lincluding G(p) j with the appropria, te
switching factors.

In Fig. 4 we have plotted the various mean free
paths which define the regions of I'"ig. 3. Above the
temperature TII at which X~ X~~ X~, the kinetic
term dominates the expression for the thermal con-
ductivity; at intermediate temperatures, TI,&T&TII,
the E processes are relatively rapid compared to the R
processes and the Ziman term dominates in Eq. (15);
below the temperature TI, at which X~~X~~~R the
kinetic term again dominates the expression for the
thermal conductivity. The temperature T is the tem-
perature at which the conventional thermal conduc-
tivity maximum occurs, X~'~R.

Region I (Casimir or Ballistic Region):
P g~~R, X~~&R; T&TJ.

In this region the principal mechanism for momentum
loss by the phonon gas is direct flight of the phonons to
the boundaries of the sample. The Casimir boundary
scattering theory gives the correct description of the
phonon gas. The result of the Casimir theory is included
in Eq. (15), through re R/e in the kinetic term.
Thermal-conductivity measurements in the ballistic
region thus can yield information about specular and/or
disuse reflection at the boundaries as well as informa-
tion about the crystallite size and quality of the sample
being investigated. This latter information is par-
ticularly important in dealing with solid helium
crystals. Because of their isotopic and chemical purity
solid helium crystals may well become the proving
ground for the basic ideas regarding the behavior of a
phonon gas (see Ref. 15).

1'IG. 3. Thermal
conductivity as a
function of tempera-
ture (see Sec. VI).

log T

and III merge. But if region II exists the principal
mechanism of momentum loss is di6usion to the
boundaries of the sample. The thermal conductivity is
given by the Ziman term of Eq. (15), including G(p).

It is clear from Eq. (15) that in the absence of the
Poiseuille flow window (i.e., for a sample in which the
required inequalities cannot be satisfied) tV processes
make themselves known only through the switching
factors. This relatively subtle influence is very hard to
extract from the analysis of data. On the other hand we
expect that if the Poiseuille region is observed free from
the influence of the switching factors a clear-cut and
simple measurement of rv results, Eq. (10). There is
every reason to believe that the recent steady-state
thermal-conductivity experiment by M ezov-Deglin"'

Region II (The I'oiseuille Region):
X~JR, X~Xg'&)R') Tg& T& T~

These conditions are rather stringent and it is possible
that a "window" does not exist, in which case regions I
"The formal basis of the present development rests to an extent

on treatment of the anharmonic interactions as "collisions. " This
is particularly implied when the terms "r&" and "mean free path
) ~" are used in the sense of time or space intervals between un-
correlated collisions. In strongly anharmonic materials like helium
such a Markofhan treatment may not be valid. Nonetheless the
conservation theorems on which the phenomena depend are of
very general validity so that the effects discussed here probably
v ill still occur. However, we note that the values of w~ computed
from the experiment of Mezov-Deglin on He4 are of the same order
of magnitude as a function of reduced temperature, T/O~, as those

TL

log T

FIG. 4. The mean free paths as a function of temperature
(see Sec. VI).

found by Berman and Brock for LiF at the corresponding reduced
temperature."L.P. Mezov-Deglin, Zh. Eksperim. i Teor. Fiz. 49, 66 (1965)
LEnglish transl. : Soviet Phys. —JETP 22, 47 (1966)g. Measure-
ments of the thermal conductivity of carefully grown large crystals
of solid He' show a very high thermal conductivity which varies
as T' g below the maximum. This experiment definitely demon-
strates Poiseuille phonon Qow. This phenomena was suggested in
earlier data of Mezov-Deglin, Zh. Eksperim. i Teor. Fiz. 46, 1926
(1964) I English transl. : Soviet Phys. —JETP 19, 1297 (1964)j
and of M. Crooks, thesis, Yale University, 1962 (unpublished).
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TABLE I. Steady-state experiments. For each of the regions discussed in the text, columns (a), (b), {c),and (d) show the microscopic
scattering rates which define the region, the probable temperature range, the expression for the thermal conductivity in each region,
and the relevant experiments, respectively.

Region

I.
(8al.hstic)
II.
(Poiseuille)

III.
(Normal

Ziman)

IV.
(ICinetic)

Definition;
microscopic parameters

)I.y»R, Z ~ 0
Xg»R.
)N«R, z ~ 1

Xyhg*»R'.

X~&&X~, Z ~ 1
Xtvhg'«R~. p&&1

X~&~Kg, Z ~ 0
Xg«R.

(b)
Temperature

range

T&TI.
TT. 0.0150
TI, &T(T
T 0.0250

T~(T C TH
T~ 0.0350~

(c)
Expression for thermal

conductivity

tt = ~C&c nR/c
u~i

R'
a =~sCvc'(5/4)—

c T,y2

~=-'c,c'i1(R~'(1l

(d)

Experiments

a
Ref. 21

Ref. 16

b
Ref. 23
Ref. 19
Ref. 21
Ref. 19
Ref. 21

a R. Berman, E. Foster, and J. Ziman, Proc. Roy. Soc. (London) A237, 344 (1956); and P. Thacher, thesis, Cornell, University. 1965 (unpublished).
b J. Callaway, Phys. Rev. 122, 787 (1961).

accomplishes this and therefore is fundamentally more strongly frequency-dependent the transition between
definitive than any other previous indirect measure- III and IV will be pronounced. "
ments of r~.

Region IV (the Kinetic Region): Xa«X~&&R; T& TIr

Region III (The Ziman Norma/ Region):
P ~&.Xg', X~X~'((R2; T & T& T~

In this region the Poiseuille fIow condition can no
longer be met because of the increased rate of R-process
scattering. The scattering centers distributed through
the bulk of the sample now become the important
mechanism for momentum loss. The thermal conduc-
tivity is given by the normal bulk Ziman term with
G(p) 1. It is well known that the thermal conduc-
tivity given by the Ziman term can be substantially
less than that given by the corresponding kinetic term
due to the enhancement of the effectiveness of the R
processes brought about by the rapid Ã processes. A
measurement of the thermal conductivity in the
extreme Ziman limit r~~0 yields information about
the fI.ow component of the R-process scattering opera-
tor. Further, if the R-process scattering mechanism is

In this region the principal mechanism of momentum
loss continues to be the scattering distributed through
the bulk of the sample. The kinetic term of Eq. (15)
dominates. Measurement of the thermal conductivity
in this region yields information about (1~R* '~1).

If we are dealing with an isotropically pure single
crystal then this discussion must be modified somewhat.
In a pure single crystal the only R process which exists
at high temperature are the umklapp processes. The
analysis of E and U processes at high frequencies is so
complex that it is impossible to draw any general con-
clusion except that they are comparable in rate. Hence
for a pure single crystal the limit corresponding to
region IV may never be reached.

This discussion of steady-state measurements is sum-
marized in Table I. In column (d) of that table we have
indicated the experiments which we believe define the
state of experimental knowledge about each region.

O

log T

Fzo. 5. The scattering
frequency as a function
of temperature. The
conditions for second-
sound propagation are
fulfilled in the shaded
region. The double
cross-hatched part of
the shaded region is the
Poiseuille region when
0 is translated into
mean free path.

3. Time-Dependent Measurements

Time-dependent measurements can be made on heat
pulses or continuous waves. The velocity of the waves
and the distortion of their shape (due to dispersion
andior attenuation) are their most easily measured
characteristics. The possible outcomes of heat-pulse
measurements depend upon the temperature and its
frequency of variation. Ke consider first an isotopically
pure crystal. As with the case of steady-state measure-
ments it is convenient to break up the temperature
range into several regions. These are shown schemati-
"The conventional procedure for learning v& from a Callaway

analysis of thermal-conductivity data depends upon the R-
process scattering mechanism being frequency-dependent. If it is
not, then the Ziman term is effectively indistinguishable from the
kinetic term.
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TABLE II. Time-dependent experiments. For each region discussed in the text, columns (a), (b), (c), and (d) show the microscopic
scattering rate which defines the region, the probable temperature range, the quantity most easily extracted from measurements, and
the relevant experiments, respectively.

Region

(a)
Definltlon:

microscopic parameters

X~ (XN,' Or g&&1
org«1

XN«Xg, Or g«1. Ov g»1
Ov g«1, O7.g ~& 1)

»1f
pi o7g ~&1

7'8 ~& 'rN

(b)
Temperature

range

T (Tl.

Tl &T&T~

(c)

Detected

ener y velocity
(1 R+-'~ 1)

second-sound velocity
{rN or

(1[R~-'[1)

(d)

Experiments

Ref. 22

' B. Abeles, G. Cody, and D. Beers, J. Appl. Phys. 31, 1$8$ (1960).

cally on Fig. 5 in which we have plotted the frequency
of the various relaxation mechanisms as a function of
temperature. In this figure curves 1, 2, 3, and 4 are the
X-process scattering rate, the U-process scattering
limit of r„ the efI'ective momentum loss scattering rate
Pr.G(p)] in the Poiseuille region, and the Casimir
boundary scattering rate, respectively.

Region I: rss~R/c&&rN, T&TI,

In this region direct fiight of phonons to the bound-
aries of the sample is the dominant mode of momentum
loss, assuming diffuse scattering. Further the lV proc-
esses are slow compared to the boundary-scattering
processes. High-frequency pulses cannot thermalize
(region I-a) and thus traverse the sample ballistically,
as phonon bursts; low-frequency disturbances are
strongly damped in much less than a wavelength
(region I-b).

Region II: Lr,G(p) j '«Q«rn ',' Tl (T&Tn
The fundamental characteristic of this region is that

everywhere the E-process scattering rate is faster than
the e6'ective R-process scattering rate. This is the
second-sound region; it is shown shaded in Fig. 5. In
this region heat pulses propagate as a superposition of
second-sound waves. The dispersion relation, for these
waves is given by Eq. (17). Detection of second-sound
pulses will permit measurement of their velocities and
attenuation. Second-sound pulses should propagate
relatively undamped in the shaded region of Fig. 5. An
experiment which sweeps 0 at fixed T and T at fixed 0
should be able to map out the boundaries of this region.
The attenuation of high-frequency pulses Dr~ j
(along the upper boundary of the shaded region) is due
to second viscosity, Qr N, and measures r~, (region II-a).
The attenuation of low-frequency pulses Qr,G(p)~1
(along the lower boundary of the shaded region) is due
to R-process scattering. The existence of Poiseuille How
extends the second-sound region to lower frequencies
than a Casimir restriction in the temperature range
TI,&T&T . In this temperature range, low-frequency

attenuation measurements should detect r~ through
the damping factor (QR'/c' r)n', (region II-a). In the
temperature range T & T& T& low-frequency-attenu-
ation measurements detect (1~R*~1), the Ziman limit
of the R-process scattering operator (region II-c).

Measurements of second-sound attenuation should
produce corroborative evidence for the results of
Poiseuille-Bow experiments.

Region III: X~&~kg, 07.g&~1; T) T'0

In this region the Fourier heat law is obeyed. Heat
pulses propagate as a superposition of disuse modes
with the dispersion relation given by Eq. (16). Meas-
urements on the velocity of diffusion and the attenuation
yield information about (1~ R* '~ 1).

The discussion we have given is modified in an
obvious way if impurity scattering becomes important
in the Ziman region. "In Fig. 6 we show the modification
of Fig. 5 which results from a low concentration of im-
purities. The shaded region in this figure corresponds to
the "new" second-sound region. The Ziman limit of the
isotope-scattering rate now must be considered in the

Fxo. 6. The scattering
frequency as a function
of temperature. The
conditions for second-
sound propagation are
fulfilled in the shaded
region. The presence
of isotope scattering
in the Ziman limit
severely restricts this
region.

log T

"Isotope scattering has about the same effective temperature
dependence as E-process scattering. Hence if the two scattering
mechanisms are at a]l comparable at some temperature they
remain comparable at almost all temperatures (see Ref. 27).
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condition 07-g&(1; this condition becomes much harder
to fulfill.

The results of this discussion of heat pulses are sum-
marized in Table II. Again we have indicated
[column (d)] the work which we believe defines the
status of each experiment.

VIII. LiF and He4

Recently a number of thermal-conductivity experi-
ments have been performed and carefully analyzed.
These analyses yield information which permits one to
make quantitative statements about the various experi-
ments discussed above.

A. LiF

Recently Herman and Brock" analyzed data on
isotopic mixtures of LiF over a wide range of tempera-
tures and concentrations. These authors found that the
isotopic scattering strength predicted by Klemens' was
entirely satisfactory and hence, by using the Callaway
expression for the thermal conductivity were able to
evaluate the strength of umklapp- and normal-process
scattering with considerable confidence. We have taken
the values of their parameters Pv and (Pq. ,a) and used
them to compute the mean free paths; X~, X&~', and Xl'
for a sample eRective isotope concentration x=0.001,
i.e., 0.1'%%uo, corresponding to the best LiF crystal of
Thacher"

Applying the criteria of the previous section we are
then able to reach the following conclusions. (1) For the
best presently available sample of LiF the optimum
radius for an experiment to observe Poiseuille flow is
8~0.3 mm. But even in such a sample Poiseuille flow
should lead to a negligible contribution to the thermal
conductivity. For Thacher's LiF sample with x=0.001
the maximum efI'ective Poiseuille mean free path is 0.09
mm compared to a sample radius of ~0.3 mm. Poiseuille
flow will contribute only if the effective mean free path
is larger than the sample radius.

The difFiculty with the very excellent LiF crystals
available is the still too large effective isotope concen-
tration. The strongly frequency-dependent isotope
scattering makes it impossible to get Xl' large enough to
satisfy the inequality Xr»R'/X& required for Poiseuille
flow. If the eGective isotope concentration could be re-
duced by a factor of 10 the outlook for Poiseuille flow
in LiF would be brightened.

We regard LiF as typical of a large number of solid
samples in which thermal-conductivity measurements
have been made. The failure of Poiseuille flow to be a
well-known experimental phenomena is principally due
to the imperfect condition of the crystals.

By contrast, the outlook for second-sound observa-

"R.Berman and J. Brock (to be published}.
2' P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955)."P. Thacher, thesis, Cornell University, 1965 (unpublished).

tion in LiF is not so dim. The conditions for propagation
of second sound of wavelength k~2sc/%30 arer

X.y&('A )

Xg'))X.

Using the numerical calculations discussed above we
find that for a LiF sample of radius E 2.0 mm the
effective mean free path for momentum loss at 20'K is
2.0 mm, i.e., P~'~A~X whereas the .'V-process mean
free path is ~0.2 mm. The above inequalities are ap-
proximately satisfied in samples of presently attainable
dimensions. Because of the impurity-scattering limita-
tions in available LiF samples the absence of Poiseuille
flow does not preclude the possibility of propagating
second sound.

The failure of the experiments by Nethercot and von
Gutfeld" to detect second sound could possibly be
ascribed to the poor chemical condition of the samples
investigated, but also the frequency and temperatures
chosen were extremely unlikely to meet the required
"window" conditions. "

B. He4

Recently Bertman et al." and Rogers et al. ,
'4 have

measured the thermal conductivity of He'-He4 mixtures.
Both of these groups have analyzed their measurements
using the Callaway equation; they reached very dif-
ferent conclusions with regard to the strength of A-
process scattering and lattice distortion scattering. We
have again carried out the numerical calculations for
isotopically pure, single He' crystals, using the parame-
ters P~ and (P„,u) from the analysis of both experi-
ments, to obtain two sets of mean free paths: X~ and

with which to examine the criteria for Poiseuille
flow and second sound. The major quantitative dif-
ference in these two sets of mean free paths is in the
iV-process mean free path. Quantitative commentary
on the possibility of Poiseuille flow and second sound is
possible from these calculations.

However, there has been a fundamentally new experi-
mental development in this whole subject, through the
observation by Mezov-Deglin' of Poiseuille flow in
single crystals of pure He4. We believe that this experi-
mental approach provides a direct method of measuring
7~. 3 priori, then, 7~ obtained from a Poiseuille-Bow
experiment must be regarded as "directly measured
"while that obtained from the conventional thermal-
conductivity analysis is "indirectly determined, " since

is extracted in combination with many other
quantities.

~ R. J. von Gutfeld and A. H. Nethercot, Phys. Rev. Letters
12, 641 (1964)."B.Bertman, H. A. Fairbank, R. A. Guyer, and C. %. White
(to be published).

'4R. Berman, J. Rogers, and C. Bounds (to be published);
hereafter this article is referred to as Rogers et al. , to distinguish
it from Ref. 23.
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TAax.K III. Normal-process relaxation times. The normal-
process relaxation times are computed from the results of the
experiments of Mezov-Deglin (Ref. 16), Bertman et al., (Ref. 23),
and Rogers et al. , (Ref. 24).

this manuscript second sound has been oh.'erved in

solid He' by Ackerman el al. [C. C. Ackerman, B.
Bertman, H. A. Fairbank, and R. A. Guyer, Phys. Rev.
Letters 16, 789 (1966)].

0.5
0.6
0.7
O.g
0.9

(a)
Mezov-Deglin

(Ref. 16}
(psec}

1.0
0.7
0.4
0.3

(b)
Sertman et al.

(Ref. 23)
(p,sec)

1.2
0.5
0.2
0.1
0.06

(c)
Rogers et al.

{Ref.24)
{p,sec)

0.05
0.02
0.01
0.007
0.004
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APPENDIX A

Since our analysis is applicable to the Mezov-Deglin
experiment we computed mean free paths XN from his
results" for various conditions of pressure and tempera-
ture. Effective sound velocities and Debye tempera-
tures were based on the results of Heltemes and
Swenson. "The results for TN are given in Table III for
a Heq sample of about 19.5 cm'/mole. Table III also
shows the "indirectly determined" 7N from Bertman
et al. , and from Rogers et al. , for a similar sample. The
discrepancies are apparent, so we comment further on
this.

Bertman et al. chose TN to be of the form'-'

This Appendix contains a commentary on the appli-
cation of the Callaway equation to the class of phe-
nomena which are discussed in this paper.

The Callaway-Boltzmann equation is

p)q cq) ( +c q=)N—cq)

1
[JV (q—) —IVo(T+—bT, A.)]

1——[.V(q) —Sp(T+)1T, 0)], (A1)
T y =P,@CO"T (18) TR

and found Pq 10 )o sec('K) '. Rogers et al. chose r~
with the somewhat milder temperature dependence

—)—P ~2T2 (19)

"M7e estimate that for the 60- and 85-atm data of Mezov-
Deglin, near the thermal-conductivity maximum, the effect of the
kinetic term is less than 10ff). Hence the raw data alone should
yield a good approximation to 7&."E.C. Heltemes and C. A. Swenson, Phys. Rev. 128, 1512
(1962)."Each co in the expression for 7 (q) leads to a T in the average
of T over the phonon spectrum. Hence, Sertman et a/. have a r~
proportional to T ', that of Rogers et al. goes as T 4. These .V-
process power laws lead to T' or T' temperature dependence in
the Poiseuille region. The experiment of Mezov-Deglin cannot dis-
tinguish between these. The experiment of Mezov-Deglin shows a
dependence of T~ on pressure in qualitative agreement with that
found by Rogers et a/. , i.e., as pressure increases, 7,& increases at
6xed TjO. The solid is relatively less anharmonic as pressure
increases.

and found PN 10 "sec('K) '. Hence at temperatures
between 1 and 0.5'K the lY-process mean free path from
Eqs. (18) and (19) diGer by a factor of 10 to 20. This
difference would profoundly affect conditions for
Poiseuille How. In view of the greater significance of the
direct measurement of rN, we regard the rather close
agreement of Bertman et al. with Mezov-Deglin as of
some interest, and at the same time can note that the
discrepancies with Rogers et cl. is typical of the large
uncertainties characteristic in conventional analysis of
thermal-conductivity data.

Note added irt Proof. Since the original preparation of

where )Yp(T, A) = [exp(ttp)+A. q)/keT —1] '. The lore
of this equation is found in a number of recent
articles. ' " The solution of this equation is easily de-
veloped from the form

6T
&V(q) =tVp(T, O)+up ——+—c I3 r,DiV (q),—(A2)

T TN

where 1Vp(T+8T, A) has been linearized in deviation
from cVo(T,O)) Np=BXp/otx, x=kp)/krqT, A. =Ac'II and
r, '= rrq '+rv '. The iterative solution of (A2) is

E(q) =Xo(T,O)+tqo[1 —r.D+ r.Dr.D+ .]
Sl'

X ——+—c II
T TN

or
5'1 7,.V(q) =1V (Tp, )+0(t1tp+ r.D) ' ——+—c II . (A3)

TN

T,D appears as a natural expansion parameter for the
solution. The various moments of Eq. (A1) with the
solution (A3) lead to

Z ~(q)D~V(q) =E ~(q)(1+r.D) 'D

6T T(
X ——+—c iI (.N)

T TN
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from the left-hand-side of (A1) and

1
2 A (q) ——P'(q) —&p(T+&T, A))

Q TN

1
$—$—(q) Sp—(T+bT, 0))

Momentum Conservation

rc a
Q Aqup — (c V)+2r.—(c V)

TN- Bt

+„(cv)
~

—
I

1
=g A(q) ——[(1+„D)-—1)

rc
5T

X ——+—c g
T TN

from the right-hand-side; these expressions are equal
except that, when the collision term (A5) is used to
obtain a conservation law, in order to make the law
consistent with that obtained from the drift term (A4)
one higher order must be kept in the expansion of X(q).

Equations (A4) and (AS) can be combined to obtain
the conservation laws in the convenient form

Tc bT r, — cg
P A(q)gp —I (1+r.D) 'D ——+——c g + =0.,Nl T

(A6)

We may use this equation to 6nd the macroscopic
equations which result from the requirement of energy
and momentum conservation. The results are:

Energy Conservation

Tc
g hcoup ———r.——r. (c V)'

Bt Bt

a 5T
+3r p—(c V)&

Bt T

rc 8
+—(c V)+2r,—(c V)

TN at

+r,'(c v)' (c g) =0. (A7)

rc
+— —r. —r, (c V)'

rN Bt Bt2

8
+3r,'—(c V)' (c y)+

Bt

c g =0. (AS)
TR

These equations are consistent including terms of order

y =Qr„where 0 denotes the time dependence of bT and
g. It is quite possible that r, (8/Bt) and r.(c V) are of
diGerent order. Then it is convenient to choose y=QT,
and p=k. c/0 (k characterizes the space variation of
bT and g) as parameters to denote the order of the con-
tribution of various terms in $(q). In the second-sound
region p 1 and & alone may be used for ordering. In
the region where the Fourier heat law is obeyed,
p y "' and the higher order (c V) terms in these
equations can be important.

All of the results obtained in the text can also be de-
rived from Eqs. (A7) and (AS).

Comparison of Eqs. (A7) and (AS) with Kqs. (1a)
and (1b) and (2a) and (2b) of the text lead to the
following conclusion: The energy-conservation equa-
tion (1a) or (2a) is the same in both limits R*~+~
or 1V*~+~. All but the leading terms in Eq. (A7) are
spurious. These terms are a consequence of the relaxa-
tion-time approximation to S*in the Boltzmann equa-
tion not preserving the known properties of that opera-
tor. No doubt also a number of the terms in Kq. (AS)
are also spurious. We strongly believe that the use of
the Callaway equation or equivalently Eqs. (A7) and
(AS) in all but the limiting cases, where it corresponds
to Eqs. (1a) and (1b) and (2a) and (2b), can lead to
erroneous conclusions.


