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The linearized Boltzmann equation for the pure phonon field may be solved formally in terms of the
eigenvectors of the normal-process collision operator. This representation is particularly convenient as a
basis for solutions, since in the isotropic dispersionless case the temperature deviation BT and the heat
current Q are related to zero-eigenvalue eigenfunctions of this operator. The formal solution is summarized

by two macroscopic equations relating BT and Q. The first of these is the usual thermal-energy conservation
condition; the second is a generalized phonon-thermal-conductivity relation involving a k- and 0-dependent
thermal conductivity a(k,Q). Examination of ~{0,0) clarifies the role of normal processes and momentum-
relaxing R processes in determining the steady-state heat current. An alternative to the Callaway equation
for the thermal conductivity is obtained. Examination of ~(k,O) leads to a discussion of space-time —dependent
phenomena in a phonon gas. A set of macroscopic equations which describe second sound with damping and
Poiseuille flow are obtained. Second sound from the linear-response point of view discussed by GriKn is
considered briefly. In the companion paper the problem of Poiseuille flow in a phonon gas is dealt with in
considerable detail using these equations. The pure phonon field in a harmonic crystal is characterized by
zero expectation value of the density variation of the crystal. However, in addition to the pure phonon
field one may also have an elastic dilatation field in the harmonic approximation, which does lead to periodic
density variation. Anharmonic effects will couple the phonon field and the dilatation field, leading to a
coupling between elastic (sound waves) and thermal waves. The coupled-field dispersion relations are
discussed.

INTRODUCTION

'HE thermal properties of an insulating crystal at
low temperature can be described in terms of

the aggregate of phonons which inhabit it. These
elementary excitations have complete meaning only in
the harmonic approximation; however, as has been
demonstrated amply both theoretically' and exper-
imentally, ' they are well-de6ned excitations for practical
purposes even when they have a finite lifetime (e.g.,
in an anharmonic crystal or a crystal with defects, etc.).
They constitute a useful basis to describe a variety of
phenomena.

Even though the individual "quasiparticle" phonon
may have a 6nite lifetime against decay due to anhar-
monic interactions, in a pure (although anharmonic)
crystal the translational periodicity gives rise to certain
invariants for the aggregate of phonons. ' These
invariants are associated in an intimate way with a
hydrodynamic behavior of the interacting phonon
system.

It is our purpose to discuss some aspects of this
hydrodynamic behavior in terms of a Boltzmann
equation of motion for the interacting phonon system.
This description (i.e., the Boltzmann equation for

*Supported in part by the U. S. Atomic Energy Commission
(NYO-2391-17), the Army Research Once '(Durham), the Na-
tional Science Foundation, and the U. S.Once of Naval Research.

' R. A. Cowley, Advan. Phys. 12, 421 (1963}.
~B. N. Brockhouse, in Phonons and Phonon Interactions,

edited by T. A. Bak (W. A. Benjamin, Inc. , New York, 1964).' H. H. Jensen, in Phonons and Phonon Interactions, edited by
T. A. Bak (W. A. Benjamin, Inc. , New York, 1964).

interacting phonons) has somewhat limited validity.
A more general approach may be developed in terms of
the Green's function for the elements of the phonon
density matrix" but in actual fact when the usual
approximations are made it is of no greater generality
than the Boltzmann method, as employed for long-
wavelength collective phonon behavior to be discussed
here. The physically important conservation principles
may be incorporated directly when using the Boltzmann
equation, and the principal features of collective
behavior such as phonon hydrodynamics may be
developed in this framework.

Another aspect of the problem is introduced by
recalling that the lattice displacement operators in
phonon representation are linear in the phonon an-
nihilation and creation operators. In turn, their
expectation for any pure phonon (number) state is zero,
and the diagonal elements of the matrix representation
of any linear function of the displacements e.g., the
dilatation vanish in number representation. Thus an
elastic dilatation or "first sound" wave in a crystal
must be represented by essentially nondiagonal density
matrices in phonon number representation; in fact a
"coherent state" representation is required.

We are thus led in analogy to the hydrodynamic
separation of convection and diffusive motions in fluids,

' C. Horie and J. A. Krumhansl, Phys. Rev. 136, A1397 {1964).' P. C. Kwok, thesis, Harvard University, 1965 (unpublished);P. C. Martin and P. C. Kwok (to be published), to whom we
express appreciation for opportunity to see their work prior to
publication; P. C. Kwok, P. C. Martin, and P. B. Miller, Solid
State Commun. 3, 181 (1965).
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to follow I.andau Ehrenreich and Woodru6, ' and
others and to regard the elastic dilatational field and
phonon fields separately in the harmonic approximation
but coupled when anharmonicity is taken into account.
The microscopic demonstration of the essential validity
of this view has recently been carried through by Kwok
and Martin. ' In the present paper we examine the
phonon system at both the Boltzmann equation and
macroscopic level, and discuss the coupling of the tw'o

fields.
The present paper is laid out as follows: In Secs.

I—IV we discuss the pure phonon Geld; in Sec. V we
outline the anharmonic coupling to macroscopic
elastic fields. In Sec. I the description of steady-state
thermal conductivity is summarized with the intent of
illustrating those aspects of the transport equation
that are important to understanding its correct solution.
In Sec. II the formal solution of the Boltzmann equation
is developed in terms of the eigenvectors of the normal
process collision operator. The method we have
developed in detail was indicated by Peierls' in the
cornerstone paper on this subject; he noted the singular
nature of the normal process operator and suggested
the separation of the distribution function into compo-
nents reAecting this fact.

The results of Sec. II are applied to the case of steady-
state thermal conductivity in Sec. III; the variational
method of Ziman' is discussed, and the relaxation-time
approximation of Callaway' is found as a special
approximate case. An alternative is suggested to the
Callaway expression for the thermal conductivity. The
results of Sec. II are applied to the time-dependent case
in Sec. IV; macroscopic equations for the temperature
deviation and heat current are obtained, comparison is
made with the previous work of Sussmann and Thel-
lung. '0 In Sec. V, a phenomenological coupling between
the thermal and elastic fields along the lines of the Gru-
neisen model is used to illustrate the anharmonic coupling
between the fields, and the consequences are discussed.

I. FORMULATION OF THE PROBLEM

The quasiparticle occupation probability n(q, x, t) of
the phonon states may be regarded as the q,x element
of the Wigner density matrix which for slow spatial

'T. O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553
('1961);L. Landau and F. Rumer, Physik Z. Sowjetunion 11, 18
(1937); L. Landau and E. M. Lifshitz, Theory of Elasticity
(Pergamon Press, Inc. , New York, 1959},pp. 119 ff. ; R. Kronig,
Physica 19, 535 (1953); A. Akhieser, J, Phys, {U.S.S.R.) 1, 277
(1939).

7 R. E. Peierls, Ann. Physik 3, 1055 (1929); Quantum Theory of
Solids (Oxford University Press, Oxford, England, 1955); P. A.
Carruthers, Rev. Mod. Phys. 33, 92 {1961);P. G. Klemens, in
Handbuch der Physik, edited by S. Flugge (Springer-Verlag,
Berlin, 1956), Vol. 19; G. Leibfried, Handbuch der Physi k,
edited by S. Flugge (Springer-Verlag, Berlin, 1955), Vol. 7,
particularly Secs. 90-93.

J.M. Ziman, Electrons and Phonons (Oxford University Press,
Oxford, England, 1960), Chap. 7.' J. C. Callaway, Phys. Rev. 113, 1046 (1959)."J.A. Sussman and A. Thellung, Proc. Phys. Soc. (London)
81, 1122 (1963).

variation satisfies the Boltzmann equation

$(8/Bt)+v(q) v —Cfn(qx, t)=o. (1)

This equation is assumed to have pointwise validity
within the crystal; the collision operator C is "local" in
coordinate space; the group velocity v(q) is "local" in
momentum space (q space). In general, C is a nonlinear
integral operator in q space but it may be linearized as
a very good approximation. An instructive form of
Kq. (1) is

Dn(q, x,t) = Cn(q, x, t) (2)

and

"I. Prigogine, Xon-Lquilibrium Statistical AIechanics (Inter-
science Publishers, Inc. , New York, 1962}."J.A. Krumhansl, Proc. Phys, boc. (London) 85, 921 (1965).

where D=(8/Bt)+v ~, is the drift operator. Two
possible procedures may be employed toward solving
Eq. (2) in the linear approximation. One may solve
Eq. (2) in the form

n = D-'L Cn]

which may be done" in terms of the Green's function
for the operator 0, or in the form

n= C-'[Dnj,

if the inverse of the collision operator C ' is known.
The latter is the usual approach in dealing with steady-
state thermal conductivity; where typically one makes
the approximation

Dn —+ v pXO(T(x)), .V,=l exp(ha&/kaT) —1j ' (5)

and deals with Eq. (4) in the form

n= C '$v v TBiVO—/BT). (6)

Certain formal aspects of this equation have been dealt
with previously. "The nature of the collision operator
C, which must be handled with care in solving Eq. (6),
is discussed in detail there.

The main points of that discussion are:

(i) The collision operator C may be divided into two
parts,

C= N+R,

where N is the normal-process collision operator and
R refers to other processes, e.g., umklapp scattering,
mass-fluctuation scattering, etc.

(ii) In principle C ' in Kq. (6) can be expressed
directly in terms of its eigenvectors and eigenvalues, if
these are known, subject to the existence of the inverse.
Adopting a notation similar to the Dirac notation, if
Cln)=g„ln) is the characteristic equation for the pth
eigenvectors of C with eigenvalue g„, then



R. A. GUYER AND J. A. K RUM HANSL

where the eigenvectors satisfy the condition (tz zz')

=g». , the explicit meaning of the operation (tz p, ')
will be given below. Clearly for C ' to exist we must
have g„&0 for all p, .

(iii) In the problem at hand we do not know the
eigenvectors or eigenvalues of C in any detail, except
for the equilibrium distribution Eo which follows from
energy conservation in the collisions. However, at low
temperature where R(&N, C N; we do have partial
information about the properties of N. In particular,
four distribution functions (in q space) are known to
have eigenvalue zero as eigenvectors of the N operator
(See Appendix A). ~ztp) ~ tzxo(2 sinh-', x,) ' (13)

where xo=tu»p/ksT; the collision operator and the
drift operator are then self-adjoint. Equation (2) then
becomes

(N'+ R*)zz* = Dzz*, (12)

where the self-adjoint collision operators ¹ and R*
are simply related to N and R.~ The eigenvectors of the
No operator (assuming isotropy and cubic symmetry)
may be divided into two classes, those having zero
eigenvalue and the rest. The only obvious ones of the
former are (Appendix A):

N~g„&=0(g„)
NI ztzp&=0I »o&

Nlnz*&=olnz*&

(10)

ztz, ) X~,
ztz„) ~X„q„(ksT2 sinh-,'x,)-'
ztz.) X.q,

(14)

As T—+ 0, R ~ 0, these eigenvectors dominate C ' and
eventually lead to a divergence. A detailed discussion
is given in Ref. j.2.

A solution of Eq. (4) must be sought in the form

zz(q, x,t)=ao~zto&+ Z az )ztz &+C 'L(1—Po—Pz)Dzz],
QoppS, Q, S (»)

where Po=
) ztp)(ztp [, Pz ——[ztz)(ztz ( are projection operators

introduced to orthogonalize to the null space (~zto),
~ztz, ), ~ztz„), (ztz,)} of C. The coefEcients ap and az
measure the amount of homogeneous soution in zz (q, x,t).
These coeKcients are determined through auxiliary
conditions on the invariants of the collective phonon
system.

This basis for solution of Eq. (4) may be employed
not only in the limit where normal processes dominate
t:, but also in developing a solution in the general case,
provided that the set of all eigenvectors (~zt„&} is a
complete set in q space.

(iv) The principal features of transport processes at
low temperature may be conveniently discussed assum-
ing an (a) dispersionless and (b) isotropic phonon
spectrum. Under these special conditions it can be
shown that ap and az in Eq. (11) are proportional to
the temperature deviation and eth heat current compo-
nent, respectively (See Appendix A).

This background may be summarized: we expect that
the solution of the phonon Boltzmann equation, Eq.
(2), may be developed in terms of the eigenvectors of
the normal process collision operator; the important
information in this basis is contained in its null-space
components, being the local thermal-energy density
and heat current.

II. SOLUTION OF THE SOLTZMAHN
EQUATION

The linearized Boltzmann equation, Eq. (2), may be
symmetrized" by using the "basis"

The eigenvector ~ztp) has eigenvalue zero for both the
normal process collision operator and the E-process
collision operator as a consequence of energy conserva-
tion during phonon interaction. The eigenvectors

~
ztz, ), ~

ztz„& and
~
ztz, & have eigenvalue zero for the normal

process collision operator as a consequence of transla-
tional periodicity. Normal process collisions conserve
momentum, R processes do not conserve momentum,
the eigenvectors ~ztz ), ~ztz„) and ~ztz, ) are not eigen-
vectors of R*.

To solve Eq. (12) we write zz* as a linear combination
of the eigenvectors of N*,

)N*)=Q a„(x,t) (zt„), (16)

where the a„(x,t) can depend on space and time. Then
Eq. (12) can be transformed into a set of equations

&(7Zt»*+It»*)a'=Z D- a'

for the coefficients a„(x,t). Equation (17) follows from
Eq. (12) using Eq. (16) and the orthonormality of the
( ~

zt„&}.The operator S» ~ in Eq. (17) is diagonal, X» *
=X„~b» although we have not displayed this explicitly
in Eq. (17).

Equation (23) could be investigated for a general
anisotropic medium with dispersion; indeed these
properties are critical in determining the temperature
and frequency dependence of the collision operators. "
On the other hand the temperature deviation and heat
current are q-space integral functions of the phonon
distribution, and particularly at low temperature arise
principally from the isotropic and dispersionless part
of the phonon spectrum.

where X„X„,X. and p are normalization constants
according to

(.I
&=I'l(2 )' dq -(q)n (q)=~-. (»)

zz*(q,x,t) =I(q,x, t) 2 sinh(-', x,), (11a) "C.Herring, Phys, Rev. 95, 954 (1954).
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The assumption of isotropy serves the purpose of
allowing a physical identi6cation of ap(x, t) and al (x,t),
a»(x, t), al. (x,t) which is pedagogically useful; the
general anisotropic case can then be understood in

principle. In this assumed isotropic limit, for a single
phonon branch (the generalization is apparent and is
givenin Appendix C) in thelong-wavelength limit where

v(q) =cqlql 'it is shown in Appendix A that

p(x t)=C„(T0)BT(x,t)=(h&T/p)(gplx*) = (&~T/p)ao (lg)

and

Q, (x t) =(h.Thc'/x)(pl, le*)=(h.Thc'/x, )al (19)

where o(x,t) =E(x,t) Eo —is the deviation in the energy
density at (x,t) from the value Ep xC, T0, t——he energy
density in the phonon system at the average tempera-
ture T0., Q, (x,t) is the heat current in the x direction at

point (x,t) of the crystal. The heat. currents in the Y and
z directions are given hy obvious modification of
Eq (19).

Thus the eigenvectors (leap); lsl, ); lg»), lgl, )}play a,

very special role, being directly related to the experi-
mentally measured quantities BT and Q. In what
follows we continue to use this isotropic approximation;
however, in the computation of collision rates the true
anisotropy or dispersion could be used. That is, the
character of the eigenspectrum of Np, {lg„)},is related
to the translational periodicity of the system, while the
scattering rates are related to point-group symmetry.

In order to solve Eq. (23) the structure of the
matrices A„,„,*, R» * and D» must be known. These
are given in Appendix B. Then the basic equation (17)
may be written more concisely by dissecting the "coefE-
cient vector, " a, into ap, al ——(al„a»,al, ) and a2

=(al, ap, ). Then wecan write Eq. (17) in the form

0 0 0 0 0 0 Doo D(1
+ 0 R»* E.&2* —Dlo

0 0 %22* 0 R21* R22* 0 D, 1

0 ao

D12 al
D22 a2

(20)

or
(Ba,/Bt)+(~hcp/X)Vap= —(~-')llal (24a)

(BQ/Bt)+(phcp/X)V 0= —(~ ')11Q (24b)

In this representation the equations may be solved
rather simply. First, there is always the separate
equation

Dog~0+ Dolal (21)

which may be rewritten using Eqs. (AS), (A6), (18)
and (19) as

Bap jkhc Balg Balp Bali)
+ + + l=o, (22a)

Dt X ax ay as )
or equivalently

(B /Bt)+& Q=c.LB(~T)/Bt]+& Q=o (22b)

The energy conservation condition is satisfied as it
must be, having been imposed on the collision operators
N* and R*.

Proceeding to the remaining rows of Eq. (20)

Dllal Dloao= —E11 al (E—12 D12)a2

(~22++22 D22)a2 (E21 D21)al

it is seen that a2 may be eliminated to yield

D1181+Dlpa0 LE11 (+12 D12)(&22++22 D22)

X(821 D21)]al. (23)

This important equation is the analog to the momentum
balance equation. Defining the quantity in brackets as
the phonon momentum relaxation operator ~ ', and
substituting according to their definitions for the other
quantities, Eq. (23) becomes

Under circumstances that R processes become
negligible and E processes are infinitely rapid then the
right-hand side of Eqs. (23), (24a), (24b) vanishes. The
simultaneous equations

(Bo/Bt)+V Q=O
(BQ/Bt)+(phcp/X)2V 0=0,

describe a hydrodynamic wave; in fact this wave is
the second-sound mode, in the zero-damping limit. In
that limit it is a free collective oscillation.

On theotherhandonemayrearrange Eqs. (23), (24a),
or (24b) to examine the response of the driven system
when it may be regarded as having an imposed tempera-
ture distribution. Recall that ao measures the local
temperature; thus, in these equations the ao term may
be used as the driving term (temperature distribution)
and the response al (i.e., heat current Q) may be
computed by inverting

Dloa0 L(+11 Dll) (+12 D12)(+22++22 D22)

X(E21 D21)]al (2Sa)
which can be written as

—( hcp/~)2C. ~T=(BQ/Bt)+(.-')»Q. (2Sb)

Formally the inverse of (25b) may be written as
Q= —xVT and x is the thermal-conductivity operator.
To place it in an explicit representation consider that
the temperature distribution and heat current are
Fourier-analyzed in the customary way, in components
expLi(Qt —k r)]. Then (see GrBKn") one may regard
x as x(k,Q). In fact the assumed isotropic dispersionless

14 P. A. GriKn, Phys. Letters 17, 208 (1965).
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limit yields from Eqs. (25a), (25b)

Q (k Q) = —-'C c'r (k,Q) p 2',
where .(k,n) = P(g,.l

(r)-'l g,.)+conj-' (27)

and the (k,Q) dependence resides in D=i(k v —0)
whose matrix elements may be computed to obtain
D~~, a~2, D22. The task of computing the inverse called
for in Kq. (27) is the subject of the subsequent discus-
sion. However, it should be recognized that Kqs. (26)
and {27) constitute a set of complete and formally
exact macroscopic equations for the pure phonon 6eld.
The coupling to elastic dilatation fields is discussed
separately in Sec. V.

III. STEADY-STATE LATTICE THERMAL
CONDUCTIVITY

If a constant thermal gradient is present, choose this
gradient to be in the x direction, then, Vae(x, t) ~ (8T/Bx)
where BT/Bx is a constant and only the x component of
ai is nonzero. Further, ai, does not depend upon (x,t).
Under these conditions Eq. (26) reduces to

Q, = —-',C„c'r (0,0)p, T,
where

T (o,o) =(s» l

R' —R' (1—P) (N*+ R*)-'
X (1-P)R*l~,)- (28)

and (1 P) = (1 Pp Pi) is a projection operator which
suppresses the components in lao» lni » l»~» lai*)
There is a misleading simplicity in this result; the
important properties of real crystals are contained in
r (0,0). Essentially all of the extensive work by Peierls,
Klemens, Ziman, Herring, Carruthers, and Callaway'
concern this aspect of the problem. Our concern here
will be with the general structure of r(0,0) for various
possible relative magnitudes of R* and N*.

When the normal processes are very rapid compared
with the R processes, N*»R~, the second term on the
right-hand side of Eq. (28) approaches zero and

Ol

ei, = (R*—') iiDiepe,

Q, = —-', C.c'(R*-') rid', T,

(32)

(33)

where R* ' represents the inverse of the entire R~

matrix. Hence, in this limit.(0,0) =(»,
l

R'-i j».). (34)

Using the same relaxation-time approximation for R~

as above, R* '~ —rR, w'e 6nd

r(0,0) =
xo )-4(xd ) ——l—

o (e.-1)-'

"" 7 ggx e'dx
(35)

(e*—1)-'

the usual relaxation-time approximation. ' This is to
be compared with Eq. (30).

BrieRy the difI'erence between the limit N*&)R*,
Eq. (29), and the limit R*»N*, Eq. (30), is that in the
former case only the matrix element R»* need be known
awhile in the latter case the complete structure of the
R* operator is needed for inversion.

The results for steady-state thermal conductivity
can be summarized by the formula

where

K= -',C,.c-"r (0,0), (36)

r(0,0)=(gi
l

R '7f'[,)1+R*N* '(1—P)
N*»R*, (37a)

experiments on I.iF by Berinan and Brock." and
Thacher'8 verify this point.

When the R-processes are very rapid compared with
the normal processes, R*»N*, Eq. (28) takes the form

T(op) ~ L+11 +12 +22 ~21 ] ~ (3 1)

This quantity is equal to (R* ')ii as we can show by
considering the basic equation, Eq. (20), with X2~*=0.
Then under the conditions for steady state we have

r(0,0) ~ (1 l
R*l 1)-'. (29) (0,0) =(g„l R*-'

l
g„l,

j+R+ )N+
R*»N*. (37b)

r{0,0) =
x'e~ *' x e~

dx rn ' —dx, (30)
e (e —1)', (e*—1)'

where xe ——O~n/T. The distinction between this limit
and. the more familiar relaxation-time approximation
considered next is signi6cant as has been pointed out
by Ziman'~ and Callaway. ' The analysis of recent

» R. Berman et al. , Proc. Roy. Soc. (London} A253, 403 {1959};
J. M. Ziman, Ref. 7.

16 J, C. Callaway and H. C. von Baeyer, Phys. Rev. 120, 1149
(1960), Appendix.

This result corresponds to the so-called Ziman limit,
in which relaxation rates i.e., thermal resistivities add.
This is particularly apparent when R* is replaced by a
relaxation time approximation, R*—+ —7~—', and the
definition of r(0,0) is employed. The result is

In practice the principal issues revolve around knowl-
edge of the eigenvector spectrum of the normal process
operator. At present this subject is not well developed,
although it now seems timely for more detailed consider-
ation; we restrict ourselves to application of this general
formalism to the relaxation-time approximation, where
it sheds light on the nature of the approximation.

We propose that the following approximate identifica-
tion of collision operators and relaxation times preserves
the important physical features of the thermal conduc-
tivity problem:

(i) Assume that the space spanned by ( l qg), l ita), etc. j
comprise a single vector denoted by l 2) i.e., a2 has just
"R. Berman and J. C. F. Brock t'to be published)."P. Thacher, thesis, Cornell University, 1965 (unpublished}.
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one component. Then, the matrix (2I X*I2) reduces to
the number E»* and, since only a& is nonzero, the
matrix R» * is the simple 2)&2 matrix

R11 ) R12
Rg (38)

-R21 R22

whose inverse can be constructed algebraically:

R22 ) R21
(R'-') =

det (R*) —R2g"',

integral expressions. Using Eq. (15) and the relations
in Appendix A,

(1I rpl 1)= (2kafi'c'/C, ) . d'qra(q)q.

X [2kaT sinh(A~/kaT)] '-,

(1I ra 'I 1)= (3kak'c '/C„) -d'qtt1/rR(q)]qg'

In the abbreviated space we are considering r(0,0)
can also be expressed algebraically where s is given by

X[2kaT sinh(kcu/kaT)] -',

1
r (0,0) = Rgg*—R(2* R2~*

%22*+R22*
(40)

1 kg)
d'qr&(q) (Aa&/k&T)'

(ii) The specification of r(0,0) in Eq. (40) requires
three numbers to de6ne R* (since R~2*——R2~*) and one
number to specify N~.

For N* we choose N*= 1/r!r a number not dependent
on q which may have been computed from some specific
conventional model. Then we identify the matrix
element (N* ')u~= r!v.

For R* we choose R~=+1/ra a function of q.
Further we know from the discussion involving the
Ziman limit that when N —+ ~, r(0,0) ~ (1 I

R
I 1) '.

From Eq. (40), when N"~ ~, r(0,0) ~ (Rgt') ',
hence we make the identification Rrt*=(1I ra 'l1). If
further we assume that R22* R11*then only 812 =R21*
is unspecihed. However, we have a further condition to
be ful6lled by r(0,0) in Eq. (40). When N~ ~ 0,
r(0,0) —+ (1

I

R* 'I 1). This condition is fulftlled for

(R,,*)'=Ru*t.R)~*—(1/(R ') gg)7. (41)

In summary, with the identifications

.V22" +(1/r p
—),

Rg " (1I r„(q)-'
I
1),

R22 —R11 )

(R*-'),g ~ (1 I
ra (q) I 1),

(42)

then Eq. (40) for r (0,0) has the proper limiting behavior
for both N*&)R* and R'&&N*.

(iii) Substituting from Eq. (42) into Eq. (40) for
r(0,0) leads to

r(o,o) =(ll.,
l

1&

r~+(1
I
ra 'l1)-'-

(43)
r~+(1I ra~ 1)

Dehning the variable s=r!r((1I ral1)) ' we can write
the thermal conductivity in the form

1
«=«C.c' (1I«ll) +(llrR 'll) '- — . (~4)

1+s (1+s)

It may be of value to use the definition in Eq. (15)
to write out the various quantities in terms of familiar

XL2 sinh(Pgu/kaT)]

where r~(q), for example, is the single-phonon relaxa-
tion time for normal processes. When the normal
processes are negligible N*~ 0, 7.~ —+ ~ and s ~ ~.
The second term in Eq. (44) goes to zero and the erst
term dominates. When the normal processes are very
rapid N*~ ~, T~ ~ 0 and s —+ 0, the second term in
Eq. (44) dominates. We regard the factors s/(1+s) and
1/(1+s) as switches which carry the solution from one
limiting form (e.g., s ~ 0, the Ziman limit) to the other.
The switches depend upon the parameter s which
measures the ratio of the rate of R-process scattering
to the rate of normal process scattering.

The Callaway equation' may be written in a form
similar to Eq. (44) although the algebra of that equation
is unnecessarily complicated by having the matrix
elements of products of relaxation times instead of the
product of matrix elements. Although we have not
stressed this point it is apparent that the identi6cation
of collision operators with relaxation times is made in
a su%ciently arbitrary way that there is no argument
in favor of writing (1I r~ 'ral1) in place of (1I r!r 'I1)
X(1

I ral 1), etc. In fact Eq. (44) can be "derived" from
the Callaway equation if the matrix elements of
products of relaxation times are replaced by the
products of the matrix elements. We suggest Eq. (44)
as a reasonable alternative to the Callaway equation,
with computational advantages.

An intuitive understanding of Eq. (44) is given by the
following considerations: The heat current carried by
the phonon system is proportional to X—$0(T(x)),
the displacement in momentum space of the phonon-
distribution function. This displacement has the form,
where v= c(q/I q I ),

5rl = 'V —!Vo rv' V TBAO/BT (45)

where r(q) is a relaxation time which measures the
average lifetime of momentum in state q. When the
normal processes are slow compared to the R processes,
this lifetime is simply ra(q) and the heat current
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J I
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QUASI - MOMENTUM

'I(
OUT Of

THE SYSTEM

(~) (b)
I' IG. 1. Schematic analogy of quasimomentum balance in

phonon system; (a) represents weak normal processes where
various groups of phonons lose momentum individually, while in
(b) strong S processes effectively transfer quasimomentum to the
strongly scattered state (indicated by the large arrow).

carried by the phonons is proportional to (1~ra~1).
[The limit s —+ pc of Eq. (44).j In the opposite limit,
the normal processes are rapid compared to the E
processes. Although the E-process mechanism may
destroy momentum selectively as a function of q (e.g.,
a resonance) the normal processes act as an intermediate
to take momentum from states where it is relatively
weakly scattered and dump it into the strong scattering
states so rapidly that all states lose momentum at the
same rate. (The hydraulic analogy in Fig. 1 illustrates
this argument. ) In these circumstances a single lifetime
characterizes the momentum loss from all g states.
This lifetime is(1~ rs '~1) ' [the limits —4of Eq. (44)j.

Finally we point out that measurements of the heat
current in a phonon system in the various limits of the
rates of normal process scattering and E-process
scattering would essentially measure particular matrix
elements of E-process scattering. That is, if N &&R*
the heat current is a measure of (1

~

R
~
1)=alii~', while

if R*)&N*, the heat current is a measure of (R~')ii.
Measurements made in the intermediate case depend
not only on these two matrix elements, but also on
additional matrix elements of the R* operator and
matrix elements of N'.

The relationship of these developments to the varia-
tional procedure of Ziman is easily seen when the
variational procedure is carried out using a linear
combination of the eigenvectors of the normal process
collision operator as the trial function. The resulting
equations for the combination coeKcients correspond
to our Eq. (20).

IV. s(k, Q) AND SECOND SOUND

In the previous section we employed the solution to
the Boltzmann equation obtained in Sec. II to the
problem of steady-state lattice thermal conductivity.
In this section we consider the situation in which bT
and Q can depend upon space and time. The Boltzmann-
equation description remains valid for long wavelengths
(compared to a lattice constant).

Phenomena in this regime fall into two categories
depending upon the composition of ~. These are:

Q=—-',C„c'(1
~

R*-'~ 1)ikbT. (49)

Essentially the result of Eq. (33). We can write this
equation in terms of a h- and 0-dependent thermal
conductivity given by

z = —',C,c'(1
i
R*—'

i 1)(1+0(Qrs)+ ) (50)

which in fact depends on (k,Q) only as a small correction.
We remarked earlier that Eqs. (22b) and (25)

remained valid even if a has more general space-time
dependence than a ~ exp' (k x—Qt). Hence, it is possible
to write Eq. (46) in the form

Q= ——',C,c'(1~ R" '~ 1)(1+0(D)+ )V T. (51)

Combining this heat-Bow equation with the energy-
conservation equation yields

$8(hT)/Bt j=—XVP(bT), (52)

the Fourier heat law, with X= (~/C„). The solutions are
purely diBusive.

(1) R*)&N* the momentum loss relaxation time rs
characterizes the thermalization of the phonon system,
roars, (2) N*&)R*, the momentum conserving relaxa-
tion time vN characterizes the thermalization of the
phonon system, ~~vN. These two circumstances lead
to quite diferent phenomena.

Case 1: R*&&N*. The basic equations from Sec. II
are the statement of energy conservation, Eq. (22b),
and the generalized thermal conductivity relation,
Eq. (26). In the limit we are presently considering,
(Qrs«1, rs«mr) the statement of Eq. (26) can be
written more conveniently by solving Eq. (20) in a
manner similar to that employed in Sec. III in dealing
with the steady-state thermal conductivity with
R~)&N". From Eq. (20) we find

ai ——(1 ( [1+N*—'(N* —D)]—'R*—'
( 1)p,p. (46)

Case Z: This was dealt with in Sec. II, Eq. (25):

D,~p=(1
~
[1+(R*—D)N'-'(1 —P)]-'

X (R' —D)
i
1)ap. (47)

This equation follows from Eq. (25) upon considering
the known properties of the operators when operating
on

~
iti). Equations (46) and (47) lead to two alternative

expressions for the generalized thermal-conductivity
relation. The power-series expansion for the inverse
operator in Eq. (46) is a series in R~'(N* —D)

((rs/r~) rsQ), a—factor which is small in the limit
corresponding to case i. The power-series expansion
for the inverse operator in Eq. (47) is a series in
((re/rs) r~Q), a—factor which is small in the limit
corresponding to case 2. The advantage of having the
two alternative expressions when dealing with these
cases is apparent.

Returning to case 1 we find that Eq. (46) yields

s,=(1
(
R*-i~ 1)(1~ik v~o)ap(1+0(Qr, )+ ", (4S)
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For Np&&Rp: The heat current equation, Kq. (47),
in the limit Ox~&2, Q~g&&1 is to first order

(llik vl0)
8j ap, (53)

iQ+(ll R*l 1)—(llik vN* '(1—P)ik vl 1)

or

Q = —-',C„c'[iQ+(1I
R'

I 1)
—(1lik vN~'(1 —P)ik vl 1)) 'p'T (54)

from which the Ir,- and 0-dependent thermal conduc-

tivity

(k,Q) = -', C,c'[iQ+(1 I
R"

I 1)
—(1 lik vN '(1—P)ik vl 1&)

—' (55)

can be defined. Under the restrictions of this case

«(k,Q) is strongly dependent on k and Q.

As remarked above we can write Eq. (47) in the form

&1 I
v & I0&«= (~a~/~t&+&I I

R*I 1&a~

—(1 I
v vN~'v y

I l&a)q, (56)
OI

a
Q+r. —,.(llv vN' ~v el i&Q+"

at
',C,c'r V T—-(57)

where r.=(1l R*l 1) ' is the relaxation time corre-

sponding to the Ziman limit. This equation along with
the energy conservation equation form a set of macro-
scopic equations for Q and bT valid in the limit Qr~(1,
Qr&&&2. This set of equations is closely related to those
of Sussmann and Thellung. "However, they differ in
essential respects, as may be pointed out by changing
variables to compare with their notation:

bT +T, Q —+ (C—„Tp/3)u,

where Tp is the average temperature, T= T(x,t) is the
temperature variation, and u is the "Quid velocity" of
the phonon gas—a definition which we must adopt
from Kqs. (19) and (22). The Eq. (22b) and Kq. (57)
become

(1/Tp) (BT/N)+@V n=0 (58)

and, if (N*) ' is replaced by rN(l ql ) and r~ dehned as

&1 I r~(l e I) I 1&

8Q C 2 TNC—+—v T+ — (P+2vv. ) n=0. (59)
Bt 1'0 v, 5

Comparing with Sussmann and Thellung; the energy-
balance equation (58) does not contain a term in r~
and V'T. This difference is an essential one physically
and arises from the linear energy-momentum relation
for the phonon gas. The heat current here is linearly
proportional to the phonon-gas quasimomentum only,
in the isotropic dispersionless limit which describes the
leading behavior. The appearance of the 8-process

relaxation time r, in Eq. (57) is an obvious and expected
extension of their equations.

Equations (22b) and (57) may be used to examine
second sound with damping, Poiseuille Qow in a phonon

gas, or related problems.
It is possible to discuss "second sound" by employing

the macroscopic equations (22b) and (57). This treat-
ment has been given by a number of authors"; we do
not repeat it here. It is useful to relate our development
of the generalized thermal conductivity equation to
GrifEn's analysis' of second sound based on linear
response theory. GriKn has shown (using a self-

consistency argument analogous to that usually
employed in dealing with the dynamic dielectric con-
stant) that the unforced propagation of temperature
waves depends upon the singularities of

k'«(k, Q) )-'
X= ly

iQC. (Tp) I
(60)

k'c' (l l
RP

I 1) ——1

2 —i —p3Q&1
I
cos'HN~'

I 1& =0 (62)
30' 0

for which Re(k/Q)~VSc ' and Im(k/Q)= —(V36/2c)
where tl = [Q-'&1

I
Rp

I 1&+Q& I
Np '

I 1)). Second sound
propagates and is weakly damped with a damping
coe%cient which depends upon rs and r~ (C'ompa. re
with our earlier result. ")

7. COUPLED DILATATION AND
PHONON FIELDS

The microscopic treatment of this question has
recently been carried out by Martin et cL.' Ke wish to
show the structural relation of our discussion to a set of
applicable macroscopic equations, for X*)&R*, Case 2
of IV (the Akhiezer limit).

%e use a quasi-thermodynamic model, ' and again
consider the isotropic, dispersionless, single longitudinal

"J.C. %'ard and J. %'ilks, Phil. Mal. 42, 314 {1951);43, 48
(1952); E. W. Prohofsky and J. A. Kru~hansl, Phys. Rev. 133,
A1403 (1964); R. A. Guyer, and J. A. Krumhansl, Phys. Rev.
133, A1411 (1964); R. N. Gurshi, Zh. Kksperim. i Teor. I"iz. 19,
490 (1964) I English transl. :Soviet Phys. —JETP 46, 719 (1964)j.~ L. D. Landau and E.M. Lifshitz, Facet Mechanics {Pergamoq,
Press, Inc. , ¹vrYork, 1959), p. 201.

or the vanishing of X '. Explicit expressions for «(k,Q)
for the limiting cases 1 and 2 are given by Eqs. (50)
and (55), respectively.

For case 1, using Kq. (50) the condition X—'=0 leads
to

1—(ik'c'/3Q)(1
I

8* 'I 1)=0 (61)

the Fourier transform of Eq. (52). From which Rek
= Imk~(1/c)(Q/r)'", in agreement with the result of
I-andau and Lifshitz. " In this limit thermal waves do
not propagate.

For case 2, using Eq. (55) the condition X '=0
leads to



774 R. A. GUYER AND J. A. KRUMHANSL

phonon system. " Denote the elastic (dilatation) dis-
placement field by u and the dilatation itself is V u.
In the uncoupled harmonic limit u will satisfy a wave
equation

po(a'u/at') = YOV2u, (63)

with the dispersion relation Q=ck and c= (Yo/po)'12.
The harmonic phonon field may be described using
Eqs. (58) and (59), rewritten in terms of the local
differential thermal energy e&

——C&bT and local heat
current Q as

(64)(agr/at)+v Q=o,

aQ c'
+—«z'+

3

1 7~C
(v'+vv ) Q=o. (65)„.(o,o)

Now assume that it is possible to define a local free-
energy per unit volume

F=F....h(V. u)+F„., (V u, T), (66)

where in fact the thermal part is simply the (quasi-
harmonic) free energy of the phonon field, assumed to
depend parametrically on the local specific volume
through the dilatation V u. This dependence is
expressed in the Gruneisen model through y, the
dependence of the phonon-dispersion relation on the
dilatation, i.e.,

phonon system

po(a'u/aP) = Y*V2u—Vp, (73)

which may be written in terms of the assumed local
thermodynamic parameters

Bu fapg
po = LY O(F,))V2u —

I

—v (») .
Bt2 EaT

(acr/at)+v Q= p,a/at(v—u) (75)

aQ c'—+—V~z+
at 3 r, (0,0)

TNC
(V"+2vv ) Q

=c'p vv u (76)

In fact Y*=Y*(T) so the first term represents a finite-
temperature corrected modulus, while the second term
is the "thermoelastic" coupling. "

The development of similar coupling terms for the
phonons in a medium whose dispersion relations vary
with position and time was carried out completely by
Kronig' for the normal Quid phonon component in
liquid helium, with a density fluctuation, (bp/po)
= (V u) in the present notation. It is straightforward
to apply his analysis to obtain

(der/a)) =yv. u.
Thus, coupling terms to the dilatation field appear in
the macroscopic phonon Geld equations.

Taken together Eqs. (74), (75), (76) may describe
either "Grst" or "second" sound propagation and at-
tenuation, and the two are coupled as discussed
in greater detail in Refs. 5, 6, and 14.

We may evaluate easily the coupled equations in
the Gruneisen approximation and the limit rg~ ~,
7~ —+ 0. The resulting coupled dispersion relationship
for the Fourier-analyzed waves expLi(Qt —k x)j is

However, generally we have

BF~ BFg (aF,
+ d(v u)+~ dT. (6g)

a(V. u) a(V.u) &aT
dI'=

The isothermal local equilibrium condition is given by

[aF„/a(V u)j+/aF, /a(V u)j=o. (69)

(70) (0'—'k' — k')(0' —
)F =(Yo/2)(v u)'+F;,+

Po
where I'o ' is the zero-temperature compressibility.
Then in (69) the second term may be interpreted as an
internal phonon pressure

Taking a harmonic approximation for the mechanical
contribution referred to the undeformed zero-temper-
ature state,

p~= PF~/a(V u)j.— .(71)

The equilibrium condition, neglecting terms in F3, is

Yp(v u).„—p( ——0, (72)

and determines the finite-temperature dilatation i.e.,
thermal expansion. If the phonon free energy does not
depend on dilatation i.e., no anharmonic eGects, p&=0
and there is neither coupling nor thermal expansion.

Using this model we may then couple Eq. (63) to the"The model used here is intended only to indicate the structure
of the coupled problem; it is not as general as that of Woodruff
and Enrenreich. The use of local thermodynamic concepts is
limited to frequencies for which 07((1, where T is of the order of
(r~-'+T g-')-'.

(c„/c„—1)= Yo 'Ty'Cv (78)

"The term in brackets in Eq. (74) is in fact the isothermal
modulus, i.e., ST=0. The adiabatic modulus is obtained if in
(75) ~ Q =0, whence bT is obtained from (75) and substituted in
(74); in the model used it is found that c~'= (C„/C,)c,'. However
in general for a longitudinal wave neglect of (~ Q) in (75) is only
effectively true if in (76) the heat current relaxation rate Lv (0,0) '
—(v zc~/s) (V +2~~.)j is very large and 0 may be neglected on
magnitude grounds. This corresponds to the limit of negligible
thermal conductivity.

~2U
k'(c'k'+0') =0 (77)

po

where y is the Gruneisen constant, Uz the average total
local thermal energy. Using the standard thermo-
dynamic relations, the specific heat C&= 4T' for a
phonon system, and the relation
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it may be found that for small y (weak anharmonicity)
there are two roots"

(79)

which are the first- and second-sound modes, in agree-
ment with Ref. 5. Thus, the essential physical behavior
is well described by the Boltzmann description we have
developed.

The above assumptions on relaxation rates preclude
damping of either erst or second sound. To compute
the damping of first sound or normal diffusive heat How

the relaxation terms in Eq. (76) must be included.
This will be discussed elsewhere. In any case the
magnitude of the coupling between dilatation and
phonon 6elds is proportional to (c„/c,—1)'zI For a
Gruneisen y=2, Vo '=10 ~ cm' dyn ' 0~~=10' 'K,
T=10'K then (co/c„—1)=10 4.

VI. CONCLUSION

We have developed the solution of a linearized
phonon Boltzmann equation in terms of the eigenvector
problem for the normal process collision operator for the
purpose of investigating steady-state and space-time—
dependent phenomena in a phonon gas.

For the pure phonon field, the formal results of this
development are summarized in two macroscopic
equations relating the temperature deviation and the
heat current. The first of these is the usual statement of
energy conservation, Eq. (22b); the second is a general-
ized thermal conductivity equation; Q= —«(k,Q)zk8T,
for which we obtain an explicit expression for the
k- and 0-dependent thermal conductivity.

By considering the quantity «(0,0) [i.e., «(k, Q) for
k,Q —&0], we obtain an expression for the steady-state
thermal conductivity in terms of matrix elements of the
normal process and R-process collision operators.
Examination of «(0,0) permits one to understand the
interplay of normal processes and R processes in
determining the limiting behavior of the thermal
conductivity. A model vector space was used for the
normal process collision operator in which we derived a
simple expression for «(0,0) in terms of relaxation times
which represent No and R*; this expression for «(0,0)
is similar to but simpler than the Callaway formula.
We propose it as a useful alternative.

The k- and 0-dependent thermal conductivity and
the corresponding macroscopic equations are considered
in the regime Qr«1 for the cases N*«R* and N*&&R*.
In the former case we have «(k,Q)~«(0,0) and the
macroscopic equations lead to the Fourier law of heat
diffusion. In the latter case «(k,Q) depends strongly

'3 Here, c is understood to be the isothermal 6rst-sound velocity.

upon h and 0 and a set of macroscopic equations
similar to those of Sussmann and Thellung were
obtained. We used the expression for «(k,Q) to consider
the possibility of second sound according to the
criterion of Grifhn. The expression for «(k,Q) when
N~&&R* leads to strongly damped temperature oscilla-
tions; the expression for «(k,Q) when No&)Ro leads
to a weakly damped temperature oscillation, second
sound.

Finally, we presented a Griineisen-like model for the
anharmonic coupling between our phonon-field equa-
tions and an elastic dilatation field; it was shown that
the essential physical aspects of the coupled system may
be discussed in this manner without resort to a corn-
pletely microscopic development. The first- and
second-sound modes as well as their coupling and
damping may be treated thus.

ACKNOWLEDGMENTS

We are particularly indebted to P. A. Gri%n, A.
Thellung, and G. V. Chester for many discussions of
the subject of this paper.

The quantities p, X~„)~„and X~, are determined by

For an isotropic dispersionless medium with phonon
velocity we have

zz'= (kzz/C, ), X'= ( 3kz'zkco/C). (A7)

The moments of the distribution function e* of
interest are

V
(zzp i

zz*) =
(2zr)o

dqzzx(2 sinhx/2)-'

X (2 sinhx/2) iz (x), (AS)

APPENDIX A

The following distribution functions are known to
be unaffected by the normal process collision operator:

X(bT,O) = [exp(hco/kzz(T+8T)) —1] ', (A1)

AT(0, 2) = [exp(Puo+ 2 q/kzzT) —1]—', (A2)

which if bT and 2 are small may be expanded in the
deviation from X(0,0)

~ go) =&(&Tyo) —Xo(T)= (bT/T) [4 sinh'(x/2)] ', (A3)

~zzz)=E(0&&) —A'o(T)=& /qksT[ o4sinh'(x/2)] —' (A4)

where x=koo/kzzTo. We consider these deviations as
eigenvectors of the normal process collision operator;
and, normalizing to the basis discussed in Ref. 12, define

~
zzp) =zz[2 sinh(x/2)] —' (AS)

~
ztz,) X,q,

~
zz jo) v =X„q (2kzzT sinhx/2) '. (A6)
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or
(&tp l

n*)= (& /kg T)pr,

where ~T is the energy density measured with respect
to the average thermal energy, ~~C,T.

Similarly it follows from the definition of the heat
current

(}=V/(2&r)' kp&pvndq

that when v=cq(lql) ', then

(p&g, l
e*)= (& p/ks Tkc')Q, . (A9)

These moments may be used to compute the energy
density and heat current in the isotropic dispersionless
limit.

APPENDIX B

The structure of the collision and drift operators in
the vector space of the E-process collision operator can
bediscussedinthesubspaces lptp& lpt&*» I»&.» lp»*& IB).
Here li&)—= leap), lp&p&, etc. is all of the subspace of the
collision operator not included among the known zero-
eigenvalue solutions.

In this representation the E-process operator is
diagonal, and has the structure

0 0
0
0 0
0

0 0 0
0 0 000 E»*

The eigenvalues X2, X3, ~ ~ ~, are all positive since the
system will equilibrate; thus, while E~ does not have
an inverse, E» does (actually, diagonal with elements
Xp ', &I,p-', etc.).

The R-process operator in q space is assumed to
conserve energy; this will be the case for anharmonic
scattering or elastic scattering by defects. This will not
be true for metals where electron scattering of phonons
transfers energy out of the phonon system. For non-
metals the structure of R* is

are a basis for one of the (threefold degenerate)
irreducible representations; for lower symmetry the
structure of R11*would be more complex. Although R*
does not have an inverse, the matrix in the subspace
having l»p) projected out using 1—Pp=1 —

l»p&(p&pl 1.e.,

(1—Pp) R*(1—Pp) = (Il3)
R21*, R22*

is nonsingular and does have an inverse.
The drift operator, (8/Bt)+v V', consists of two

parts. The 8/Bt is diagonal in q space. For the general
anisotropic case v(q) Vx would not have a simple form
in the basis being used. For the cubic or isotropic case
v(q)=clql 'q and belongs to the l&t& ) irreducible
representation. Thus at least in these important cases
the structure of D is

aB/Bx aB/By aB/Bs
8/Bt 0 0

0 8/Bt 0
0 0 8/Bt

8/Bt
aB/Bx
aB/By
aB/Bs

0
Doo Do1
D10 D11 D12

D22

where 0. is given in terms of the sound velocity c and
the normalizing constants X and p, by

a=tpkc'/X'. (»)
Since the problem is linear it may be Fourier-analyzed
a„expLi(Qt —k x)j; then the matrix elements 8/Bt —& pfl

and 8/Bx~ pk, In genera. l 9 is expected to have an
inverse in the low-frequency limit; we have been un-
able to define any specific circumstances under which
D becomes singular.

In general we have three distribution functions
e"&(q,x,t), e&'&(q, x,t), n (qP,&t),xobeying

APPENDIX C

The real crystal with three branches of the phonon
spectrum must be examined to see whether there are
any modifications in fundamental principle from the
development and conclusions based on the isotropic
single-branch model phonon system.

Consider now that in a monatomic three-dimensions. l

crystal there are three branches characterized by

0 0 0
R*= 0 R„* R„',

0 R pip R
(32) 3

(Be&'&/Bt)+v&'& /n'"= g c' Pn+&,

where again the submatrices may be rectangular or
square with dimensions 1, 3, ~ as appropriate. The
diagonal nature of R11~ is apparent for isotropic or
cubic systems, since the point-group symmetry operator
commutes with R* and the functions l&tt ), l&tq„), lpt&, &

(Bn&'&/Bt)+ v "& ~ &' e&Q c' "n&'&

3

(Be"&/Bt)+v"'Ve"&= p c'pn'"'.
k~1

(&"2)
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E=P[n"&h&u"'+n"&ha&( &+n('&hcv( )] (C3)

It must be understood that the collision operator may while

scatter intrabranch or interbranch, but that in any case Xp,p*=0, El, l ~=0;
R(),p*=0, Rp, l *=0;

etc.

Rp„*——0;

is conserved for elastic collisions, while for X-processes

II =g[n&'&hq&'&+n&'&hq&'&yn&'&hq(')] (C4)
q

is conserved. Thus the two distributions (A1) are
zero-eigenvalue eigenfunctions of the X-process collision
operator, but with the same T and X for each branch.
Thus (AS) and (A6) become, deining x'&'& = (hc)(&)/h)&T),

l»0'") =)ix"'[2 sinh(x"'/2)] ', (CS)

I»& &'&)=7& (7 [2hsT sinh(x"'/2)] ' a=x, y, s (C6)

with the normalization

3

2&»."'l»s"')=t'- s.

but the matrices Rii*, Ri~*, Rsm~ as in (C2) are generally
nonzero.

On the other hand, the drift operators for the three
branches involve the terms 8/(7t and v"' V. The
former is again diagonal in p,p,

' representation while

the latter must be evaluated from the expression

[Z&»."'I v"'I» ")]&. (C14)

This applies generally, but it is crucial to the structure
of Eqs. (21) and (58) that all terms Do „.——0 for)i'=2,
3 ~ . So considering the special case p =0, and for three
isotropic dispersionless branches,

(»0&»
I

=)ix&'&[2 sinh(x&»/2)]-'

while v, =c;q(lql) 'so that

It is found that, for three isotropic dispersionless
branches,

&»0
'

I
v &&'& =I&&hczl)& &»i

From symmetry it follows that for each branch

(CIS)

)&&=hs[c (i)+C (2)+C &3)]-i (C8)
&» -"'I» "')=0,

X'=3k h'[(C (i&/c)2)+ (C.&'&/cg')+ (C "&/c ')] ' (C9)

where C, (&) and c; are the specific heat and sound
velocity for the jth branch.

The eigenvalue problem of the N* operator is then
generalized appropriately as follows:

thus,

c,' C„(&) C.(')

j Xa C& C(I„-)

so this gradient term vanishes for p,p'=0, 0.For p', y=0, 1

it becomes

P N' &l»„&»)=&„l»„&&&), (C10)

(C11)

)&h Q, C„"'
Dp, la

Q,c„»&/c)2 Bx
(C16)

with the special cases

Rtjkl„(k&) 0 , Q Rk&, kl», (i&)+0

Q N4&, k
I

&k&) —0 Q N4&, k
I

o:&) 0

which is the generalization of (BS). But we note also
that in this isotropic dispersionless case the functional
form of

I
»i~"') for all (j) is the same in &I space, differing

only by a scaling factor dependent on c;. Thus the
orthogonality g';(»i, &'& I»„&'&)=0; )&=2, 3, , must
hold for each component (j). From this follows that

Do +—&»0(&')
I

v(i) .
I » (i))—0 (C17)

Equations (16) and (17) may then be generalized

In"'*)=Z o.l»."'), (C12)

and can be placed in the p,p,
' matrix representation of

Eq. (17). In that representation the collision operators
N* and R~ will have the same structure as given by
(81) and (82), although the sum over branches must
also be taken, e.g.,

for p=2, 3, . Thus, the structure of D„„ is also
similar to (84) except that appropriately weighted
velocities must be used, i.e., the specific heat weighting
just given.

Some final identifications are needed to obtain the
equivalent of Eq. (22b). It may be verified in general-
ization of (A9) that

(»i &'& In*)= (&& /hk)&TcP)Q &'&, (C18)

i)O aga111)

X„,„"=Q(»„"&IN~'"I»„&'&). (C13) i.e., the jth branch component of thermal current in the
nth direction, weighted by the inverse square of the
sound velocity. But evaluation of the (»0&"

I
moment of

t.he gradient term in each branch of the Boltzmann
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equation has just deomonstrated the equality

A typical term of (»&~&"
I

m*'tJ&) is

( &&0&' &I r, &&'&(f&/r&x )e&'&")= (», /kgT)(8/r&x )Q "'. (C19)

(C20)

Thus, taking (&&00&I on the jth Boltzmann equation and

summing over j yields

(f&~r/f&t)+V 0=0 (C21)

Ke conclude that the presence of several isotropic and

dispersionless branches does not modify the essential

physical conclusion reached in our main discussion.

Dispersion and anisotropy would indeed complicate
the details.
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A variety of phonon-gas phenomena in nonmetals are discussed in a unified manner using a set of macro-

scopic equations developed from the solution of the linearized phonon Boltzmann equation. This set of

macroscopic equations, appropriate for the description of a low-temperature phonon gas, is solved for a
cylindrical sample in the limit )z(&R; ) &) ~*))R'. Here X& is the normal-process mean free path, Xz' is the
mean free path for momentum-loss scattering calculated in the Ziman limit, and R is the radius of the
sample. The solution in this limit exhibits Poiseuille flow of the phonon gas as first discussed by Sussmann
and Thellung. An equation for the thermal conductivity which correctly includes this phenomenon is found.
Using this equation, the possible outcomes of steady-state thermal-conductivity measurements are dis-

cussed in terms of the microscopic scattering rates. Heat-pulse propagation is discussed from a similar point
of view. The existence of Poiseuille Row in steady-state thermal-conductivity measurements bears directly
on the possibility of observing second sound in solids. A quantitative analysis of available data on LiF sug-

gests that the chemical purity of these samples sets very stringent limits on the observation of either of these
effects. The observation of Poiseuille How in solid He' samples by Mezov-Deglin strongly suggests that this
material is a prime subject for investigations of second-sound propagation.

I. INTRODUCTION

N a perfect single crystal of dielectric solid the
- - phonons undergo two distinctly different kinds of
scattering processes, normal processes (Ar-processes) in
which quasimomentum is conserved and umklapp
processes (f/-processes) in which it is not. ' As the tem-
perature of the solid is varied the relative rate of these
scattering processes changes drastically with an attend-
ing change in the transport properties involving
phonons in the solid. The presence in thermal conduc-
tivity of a Ziman limit, ' and the possibilities of Poiseuille

*This work was supported in part by the Army Research
Ofhce (Durham), the National Science Foundation, the Ofhce of
Naval Research, and the U. S. Atomic Energy Commission
(NYO-2391-32).

'R. E. Peierls, Ann. Physik. 3, 1055 (1929). Throughout the
text we use the phrase "U processes" to refer to the case when
umklapp scattering alone occurs. Otherwise we use "R processes"
to refer to the case when a number of resistive scattering mecha-
nisms are operating in the sample.

~ J. M. Ziman, Electrons and Phonons (Oxford University Press,
New York, 1960), Chap. 7.

How3 4 and the second sound" ' in a phonon gas are
consequences of these changes. The purpose of this
paper is to discuss the entire spectrum of possible low-
temperature behavior of a phonon gas from a single
unified point of view.

The starting point of the analysis is the system of
macroscopic equations derived in the previous paper. '
These equations describe the time- and space-dependent
behavior of a phonon gas; they are set down in Sec. II.
Two sets of equations valid in opposite limits (deter-

~ J. A. Sussmann and A. Thellung, Proc. Phys. Soc. (London)
81, 1122 (1963).

R. N. Gurzi, Zh. Eksperim. i Teor. Fiz. 46, 719 {1964)LEnglish
transl. :Soviet Phys. —JETP 19, 490 (1964)j.' J. C. Ward and J. Wilks, Phil. Mag. 43, 48 (1952).' E. %. Prohofsky and J. A. Krumhansl, Phys. Rev. 133, 1.403
(2964).

7R. A. Guyer and J. A. Krurnhansl, Phys. Rev. 133, 1411
(1964).

The previous fPhys. Rev. 148, 766 (1966)j paper is hereafter
referred to as I; the equations from the paper are denoted by
I(—). (The need for symmetrization and the particular choice of
basis is discussed. )


