
PH YSICAL REVIEW VOI UME 148, NUMBER 2 12 AUGUST 1966
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A systematic procedure is proposed for calculation of the energy-level density of low-lying bound states
in a random potential. The procedure is based on a function-space formulation of the problem; and certain
features of the method may be useful in solving more general problems in functional integration. The method

works in one, two, or three dimensions. In the one-dimensional case, the result checks exactly with the
known solution.

I. INTRODUCTION

aild
(V(r))=O, (1.2)

(V(r) V(r'))=w(r —r'). (1.3)

Here w(r —r') is a correlation function of finite range.
The angular brackets in Eqs. (1.2) and (1.3) are defmed
for any functional A(V(r)) by the functional integral

(A)=— bV(r) exp ——', drdr'V(r)lt (r—r') V(r')

A( V(r)), (1.4)

where the differential 8V(r) should be understood to
include a normalization factor so that
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E wish to present a reformulation of some recent

~

~

work by Halperin and Lax" on the theory of
low-lying energy levels in a random potential. This
problem originates physically in analyses of the im-

purity band "tail" in highly doped semiconductors.
But certain mathematical features of the problem
indicate that a thorough understanding of its solution

may be valuable in a much broader range of applica-
tions. Specifically, the problem is one of performing an
integration in a function space the Hilbert space of
potential-energy functions. The solution apparently is

not accessible to perturbation —theoretic techniques.
%'e hope to show in a later publication that similar
mathematical problems arise in the theory of 6rst-order
phase transitions, and that the methods discussed here
lead to new results in that subject.

The problem to be solved is the following. Consider
the Schrodinger equation

—2W.+V4"=E.tt,
and suppose that the potential V(r) is a random func-

tion obeying Gaussian statistics such that

The kernel E(r r') h—as the property

dr'K(r —r')w(r' —r")=b(r —r"),

which assures the validity of Eq. (1.3). The energy
levels E„are dered by, say, periodic boundary condi-
tions on the sides of a very large box. The problem is to
compute the average energy-level density (p(E)) with
particular emphasis on large negative values of E
corresponding to low-lying bound states in the random
potential.

In the following work we shall be concerned primarily
with the so-called white noise" case, in which the
correlation function z may be approximated by a delta
function:

The eGect of this approximation is to restrict our calcu-
lations to a certain range of energies, low enough to
correspond to localized bound states but not so low that
the characteristic wave functions change appreciably
across the correlation length of the potential. The
alternative limit, in which the potential is very smooth
compared to the wave functions, has been discussed by
Kane. ' In this case a Thomas-Fermi approximation
seems to give reasonable results. %e shall retain the
finite-ranged correlation function w throughout part of
our formulation in order to clarify the distinction
between these two cases.

It is very convenient for our purposes that, for a one-
dimensional system and a white-noise potential, the
density of states may be computed exactly. This was
first pointed out by Frisch and Lloyd, 4 and has been
studied in detail by Halperin. ' At high energies it turns
out that (p(E)) is well approximated by conventional
perturbation-theoretic methods. In the limit E—+—~,
however, the exact result is

(p(E))-
2

exp ——(2~E()'I'
37

(1.8)

Equation (1.8) provides us with a,n exact expression

' E. P. Kane, Phys. Rev. 131, 79 (1963).' H. L. Frisch and S. P. Lloyd, Phys. Rev. 120, 1175 (1960).' B.Halperin, Phys. Rev. 139, A.1/4 (1965).
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against which to check the validity of more general
approximation schemes.

The considerations of Halperin and Lax (HL) are
ingeniously intuitive, and appear to be very special to
the problem at hand. Our main effort in this paper is to
formulate these ideas more systematically. In Sec. II
we show that a nonlinear equation, derived by HL as a
self-consistent determination of a characteristic bound-
state wave function, may be interpreted as a deter-
mination of a class of stationary points of the functional
integrand. Section III contains some formalism neces-

sary for an accurate evaluation of the integrand near a
stationary point. The usual method for evaluating
functional integrals is to write the integrand in ex-

ponential form and expand the argument of the ex-
ponential up to terms quadratic in the function-space
variables. In Sec. IV we point out that this procedure
is inadequate for the present problem, and then de-
scribe a correct calculation leading to a general expres-
sion almost identical to that of HL. The functional
integra, tion is performed in Sec. V, with special attention
paid to the energy dependence of the various factors
involved. As a slight improvement on the work of HL,
we are able here to retain all terms contributing to the
multiplicative constant in the asymptotic expression
for (p(E)). Explicit one-dimensional calculations leading
to Eq. (1.8) are presented in Sec. VI.

V binds —or very nearly binds —a particle at energy E.
To see this, write Eq. (2.2) in the form

(2.4)g(r r ) )VE—E(r.r /v)

where

H(r, r'I V) =-', dsds'V(s)K(s —s') V(s') —lnG(r, r'I V).

(2.5)
The stationa, rity condition,

8H/5 V(s) I v r = 0, (2.6)

leads, via direct functional differentiation, to the
equation:

G(r, s'
I
V)G(s', r'

I V)
V(s) = — ds'w(s —s') . (2.7)

G(r, r'I V)

Now, for any potential V, the Green's function may be
written in the form

~-( I v)a.*('Iv)
GE(s, s'I v) =P

E.(V)—E
(2.8)

where the P„and E„are defined in Eq. (1.1) and we
have emphasized the V dependence of these quantities.
We suppos- and shall verify later —that for V near V
there exists an isolated ground state $0 with energy Eo
near E. In this case the right-hand side of (2.8) may be
approximated by the n= 0 term alone:

(s)g(s') (2 9)

II. FUNCTION-SPACE FORMULATION

The formal calculation of the density of states
y ( iV)s ( IV)proceeds in the usual way via the Green's function. For GE(s, s'I V)= =—ga particular V(r) we define GE(r, r'I V) to satisfy Eo(V) —E

'~'+ V( ) )GE(r'r I V) ~( r ) ' (2'1) Substituting (2.9) into (2.7), we obtain
Then define

gE(r —r') =(GE(r,r'I V)), (2 2) V(s) = — ds'w(s —s')g'(s'). (2.10)

where the angular brackets are defined by Eq. (1.4),
and we have invoked translational symmetry. Finally,

( (E))=,1, (1/ )8 + (o) (23)

Next consider the right-hand side of Eq. (2.2) as an
integration over functions V. According to Eq. (1.4)
the most probable V's are those which are small
everywhere; and presumably the dominant contribution
to the real part of & comes from the region of function
space nea, r V=0. On the other hand, for large negative
E, the only functions V which can contribute an
imaginary part to g are those which have a negative
fluctuation deep enough to bind a particle at energy E
near the points r,r'. The low-energy "tail" given by
Eq. (1.8) describes the small but finite probability of
such fluctuations for very low E..

Our reformulation of the HL theory is based on the
observation that the functional integrand defining g is
stationary at points 7 in the function space such that

Then the combina, tion of Eqs. (1.1), (2.9), and (2.10)
gives

—-,'~0— — dr'7E(r r')$0'(r—')lf 0(r) =Eopo,
Ep—E (2.11)

which is a nonlinear equation determining $0 and Eo,
identical in form to an analogous equation obtained
by HI. .

Ke now may apply purely dimensional arguments to
check the validity of the approximation in Eq. (2.9)
and to obtain some qualitative information about the
various functions involved. Certainly $0 is a smoothly
varying function of r. As discussed in the Introduction,
we confine our attention to the case in which the range
of the correlation function m is very much smaller than
the distance over which fo changes appreciably. In this
case there is only one fundamental length in the prob-
lem, which we shall denote by E '. That is, $0 is a
function of the variable Er. Then ea,ch term in Kq.
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(2.11) must be of order E imp. Specifically,

Ep ~ —K',
FlG. 1. Diagrammatic notation for

(2 12) the two j,inde oj basic Green's func-
tions.

gIr)g(r') = m
r r

G(r, r') =

where

dr w(r).

~ EC', (2.13)

quite an exact stationary point of the functional inte-
grand in Eq. (2.4). We must then make an accurate
evaluation of the integrand in the neighborhood of V.

For any potential V, we can write

Because Pp must be normalized, we have G(r, r'~ V) =G(r, r'( V,)

Eo—E~ yE (2.16)

where d= 1, 2, 3 is the dimensionality. Thus Eq. (2.13)
lmplles

where

ds G(r, s~ V,) tp(s)G(s, r'~ V), (3.1)

exp —-', drdr'V(r)lt (r—r') V(r')

fE fr—diP

=exp —const &( (2.18)

There being only one fundamental length, the bound-
state energy-level spacings in V must be of order E'.
(A potential well in which the spacings behave other-
wise as the binding increases requires at least two
fundamental lengths for its description, a radius and a
surface thickness. ) Thus, we may conclude that Eq.
(2.9) is a valid approximation for G(V) as long as d& 3.

From these dimensional considerations we also may
deduce the general form of the exponential factor in the
density of states. According to (2.13) we have

V(r) ~ KPXfunction of (Kr). (2.17)

Then, at the point V= V, the statistical weight in Eq.
(1.4) is

y(s) = V(s) —V.(s). (3.2)

G(r, r'
~
V,) = g (r)g (r')+G(r, r'), (3.3)

where g(r) is defined in Eq. (2.9) and G contains the
rest of the sum in the representation (2.8).

It is now useful to introduce a diagrammatic notation.
We denote the factors g(r)g(r') by a line with a, dot in
the middle and a factor G(r, r') by a double line as shown
in Fig. 1. An interaction p is denoted by a wavy line.
Figure 2 shows a typical diagram in the expansion of
G(V). Consider first all diagrams which have at least
one line with a dot. Starting from the left at point r, we
may sum all insertions between r and the first dot.
This gives

Using G(V,) as the zeroth-order approximation, we may
obtain an infinite series of contributions to G(V) by the
usual iteration process for solving Eq. (3.1). To do this
correctly, however, we must improve the approximation
(2.9) for G(V,). We write

where we have used ~E~ ~K' from (2.12) and (2.16).
Clearly (2.18) checks with (1.8) for d= 1.

One other aspect of the solution for V and Pp which
will turn out to be very important is that the variables
r and r' which appeared on the right-hand side of Eq.
(2.7) have disappeared in Eq. (2.10). Of course, Eq.
(2.9) is valid only for s and s' within the region where
V is large; and the location of this region is determined
by r and r. But, within this region, there is a sort of
translational invariance of the solutions of (2.6).
Accordingly, we shall use the notation V, (r) to denote
the function centered at the point z; i.e. , V, (r) is a
function of ~r—zt.

h(r) =g(r) — dsM(r, s)g(s)

+ dsds'M(r, s)cV(s,s')g(s')+

ds (r,s)g(s),
1+M

where the matrix M is

M(r, s) =G(r, s) q (s).

(3.4)

(3.5)

III. PERTURBATION EXPANSION OF G
FOR V NEAR V,

Next sum all insertions between two dots. This leads to

FzG. 2. A typical
It turns out to be convenient to let V (r) be defined diagram in the ex-

by Eqs. (2.9),—(2.11) although this function is not Pa»i» o' «1').



the total contribution

dsg(s) v (s)g(s)

dsg(s) &p(s)h(s),

(4 2)
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particular V, G(v) as a function of E will have a dis-

crete set of poles associated with bound states. Each of
these poles contributes an imaginary part via the usual
relation

1/(x —ib) = I' (1/x)+i~8 (x) . (4.6)

According to our development in Sec. III, the functions
h(r), R, and G,.„, are to be computed by a sort of per-
turbation expansion in powers of y= V—V, in which

Po, the lowest lying state in V, does not appear as an
intermediate state. Thus we may guess that no poles
will occur in these functions for energies E near I;0.
More precisely, any poles in h, R, or 6,.„.for E near Ep
must correspond to large potential fluctuations q such
that V has a deep well outside of 0. The ground state in
such a well must be degenerate with, but orthogonal to
fp. Such poles will not contribute to Eq. (4.5); nor will

they show up in any finite order of the perturbation
expansion in powers of q.

The conclusion is that the relevant imaginary part
must come from a zero of the denominator j —E. in Eq.
(3.10). Accordingly, we write

rmG(r, r~ V;z)=- h, (r)h, (r) ~(1—R(V)). (4.7)

Furthermore, if we evaluate h, (r) by perturbation
theory, the right-hand side of (4.7) will vanish for

~ r—z~ )K '; and the restriction of the z integration to
the region 0. is superfluous. Finally, it is convenient to
reverse the order of the z integration and the functional
integration denoted by the angular brackets in (4.5).
The result is

(p(E))— dz(h, (r)h (r)8(1—R(V))h(/D(z~ V))

X~det(~~D)~). (4.8)

This formula is essentially identical to that of HL, the
main difI'erence being that our derivation will enable us
to avoid certain inconsistencies in the subsequent
evaluation of (p(E)).

V. THE FUNCTIONAL INTEGRATION

In order to perform the functional integration over
potentials V, we expand V(r) in some complete set of
orthonormal functions pp„(r):

AVe also write

V(r) = $opo(r z)—+ p(r), (5.3)

where p is orthogonal to yp(r —z). Note that, in the
white-noise limit, the weight factor in Eq. (1.4) becomes

exp ——,
' drdr'V(r)K(r —r') V(r') ~

and

«g'(r)[V(r) —V(r)I= ——4+-; (5.5)
ya a

drdr'g(r)[V(r) —V(r) jG(r, r'~ V)[V(r') —V(r') jg(r')

1
drdr'g(r) go+ — ppo(r)+ p'(r) G(r, r'~ V)

1
X go+- p o(r')+p(r') g(r') (5 6)

Proper evaluation of the low-energy limit now re-
quires a careful study of the E dependence of the vari-
ous factors occuring in Eq. (4.8). From previous con-
siderations, we expect the dominant contribution to the
functional integral to come from regions of the function
space in which )oooo V K', which implies (p K' +'
and a K~" '. Here we have used Eq. (2.17) and have
again used the fact that K ' is the only fundamental
length in the problem. Thus each spatial integration
contributes a factor E "; and each p„must carry a
factor K~" for normalization. If $p is the only anomalous
Gaussian variable, the other )„will be of order y'IP—
independent of K—according to Eq. (5.4). From the
discussion of Sec. II we have g y '~'K and G(V) K

The most interesting term to consider is the quantity
1—E which enters as the argument of a delta function
in Eq. (4.8). Let us examine separately the first two
terms in the perturbation expansion for R given in Eq.
(3.6). These terms are

(5.1) If we set Eq. (5.5) equal to unity (1—R= 0), we deduce
that

The P„ form an infinite but discrete set of Gaussian
random variables. Having moved the z integration
outside of the functional integration in Eq. (4.8), we
are free to choose the set of y„differently for each z.
Accordingly, it is natural to choose go proportional to
V, (r):

q p(r z) = —aV, (r); —a—'= dr V'(r) . (5.2)

jp+ (1/a) ——ya —yK~" '-'. (5 7)

C.'ounting factors of K in (5.6), we notice that terms
containing factors (go+1/a) vanish as K +~ for-
d&3. But the term in (5.6) containing two factors of pp

is of order unity, and must be retained in the low-energy
limit. In a similar fashion, we note that higher-order
terms in the expansion of E. will contribute at most
extra factors of the form pCdr K '+pi', which are



1
1—R=1+—pp+-

ya a
(5.17)u()(r) ~ Pp(r); XQ=0.

negligible for large K a,nd d&3. Thus the correct Note that we have replaced E by Eo on the left-hand

approximation is srde.
It is obvious that one solution of Eq. (5.16) is

drdr'g(r) (Q(r)G(r, r'
~
V) (p(r')g (r') . (5.8)

h(r) =h(r)~g(r). (5.9)

The last term on the right-hand side of Eq. (5.8)
suggests that the natural choice for the orthonormal set
y„ is one which diagonalizes this quadratic form. That
is, the p„are the eigenstates of the integral equation

It is now trivial to verify that, to leading order in E,
one should write

Although the product ykp pp (pp is not, strictly speaking,
an eigenstate of (5.10), Eqs. (5.13) and (5.16) imply
that ())p is orthogonal to all the (p (zz$0) within the
approxima, tion discussed above. Furthermore, the right-
hand side of (5.16) vanishes for all zz. It follows that the
numbers 1+X„can be interpreted as the strengths of
potentials of shape V(r) which bind eigenstates zz„(r)
a,t the fixed energy L&0.

Before completing the calcula, tion, it will be useful to
note that one more solution of Eq. (5.16) may be
obtained explicitly. In the Ca,ussian white-noise limit,
Eq. (2.11) becomes

( )
)

( )-( )~ -) ( )) ( )) (
L 2&' Ep (7/(&p L))0'p'(r)j4'p(r)=". (5.18)

%e must verify, however, that the &0 we already have
chosen in Eq. (5.2) is orthogonal to these eigenstates.

To solve Eq. (5.10), it is convenient to introduce the
functions u (r) such that

(Q„(r)=g(r)u„(r) .

Then Eq. (5.10) becomes

u„(r) =yX„dry(r, r'~ V)g'(r')u (r'); (5.12)

and the orthogonality relation is

By taking the gradient of this equa, tion,

J'-p (37/(&p &) )0'p (r)$&fp(r) = 0, (5.19)

we see tha, t there is a d-fold degenerate set of eigenstates
n( Vip with eigenvalue 1+hz ——3. In analogy with
Eq. (5.2), we shall write these states in the form:

BV
(())„(r)=b f) '=d ' dr(vV)z(v= 1, , d). (5.20)

BXr

Ke are now rea, dy to evaluate the various terms in
Eq. (4.8). We have

drg'(r)u„(r)u (r) =(z„,„.

Now G satisfies

(—z~' —R+V)G(rr'I V) =~(r—r') —A(r)A(r').

d$„
()p(L) ) ds g'(r s)IID. 13 „~ (2~~)(/2

1
exp ——P $ ' ()(1—R)g(VD)

~
det(~VD) ~, (5.21)

2y n~

(5.14)

Operating on both sides of Eq. (5.12) with the operator
which appears on the left in Eq. (5.14), we obtain

where we have inserted the correct normalizing factor
into (1.4) for the white-noise case. Remember that we
have referred all functions inside the functional integral
to the origin z. Now,

J."o—E&

dr'Pp'u„gp(r) . (5.15) where f„„r erpesents the set of $'s corresponding to the,
say, ) (zz) degenerate states (p .. Also:

If we remember that our analysis is restricted to the
Gaussian-white-noise limit, and that we need the X„
only to leading order in IC, we may rearrange (5.15) to
read

(~D)„=2 dr V(r)(~V(r))„=—P p„drp). (r) (p(„(r)
b n

L
—

vzp P—Eo+ (1+X„)V(r)]u„(r)
yX ( '

Jr'dP—(rp') (grz') u(r') j((frp) . (5.16)

2

b
(5.23)
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l«t(vvD) f

= l2 «V(r)detivvV(r)] f

——2 «V(r)detLVVV(r)]—=C. (5.24)

b V to leading orderHere it is legitimate to replace V by
ln E.

now can be performed usingThe ntgatono e $ no can p
the delta function whose argument is given y
That is

X

( = ———ya 1—— „.A. g . a.2a(p= ———ya
a n=1 v

mailer than the first by aiso e that the second term is sma e
factor a2~ E '. i'. W'th this value of $v, the a,rgurnent o
the exponential weight factor becomes

1 1 ~ 2—2 Zr..'=- +1+—2 1—Zr..', (5.26
2y ~~ ~ 2yaz 2p n=z X„

e onl tern1s up to and inc u ingwhere we need to keep on y
f the fact thater zero in E.We also have taken note o t e ac

P =2. thus the sum in 1, . mus
~ - ~ p y ~ ~

of S IV. Th

respect to functional variations o aw
(VV)„, .e., spatial displacements.

in 5.21~ ertains only to theThe integration over z in ( . , pe
factor g'(r —z) and yields (s (E —E) '. A factor

in E . 5.21) and Eq.
comes from the integrations ovs over the $i, by virtue o e
seco d delta fu ction i

are trivia; an eIntegrations over the remaining, „
final result is

(jq L|')—I $ d —~ 2
—t(a) jz-

Fv E=—y/2A . (6.4)
Then

V x = —(y/(Ev E))—fvz= E'—sec.h'(Ex) . (6.5)

e ree, , efined by Eqs. (5.2),The three constants u, b, c, defin q-.
(5.20), and (5.24) respectively, are

dx(V(x))'=-', K", (6.6)

oo —j'P- 2

dx
dx

16
=—A. ',

15
(6.7)

d2V 2 32
dxV(x) = = E—'. —

dx2 b2 15
(6.8)

1 h ve to compute the eigenva ues X. If we use
5.16 takes the formEq. (6.3) and write Ex=y, Eq. 5.16 a es

(6.10)

(6.11)t= tanhy.

Equation (6.9) becomes

(1—
Z ) (d v„/dP) 4&(dv„/dt)+—2X„v„=0, (6.12

which implies that the v„are Gegenbauer polynomials
of order -'. The eigenvalues are2

X =-'zz(zz+3). (6.13)

The infinite product in Eq. (5.27) may be evalua. te
easily:

Pl —1 0+4

—1+2(i+it„)sech'y zz„(y) =0. (6.9)
dY2

the transformation»To solve this equation, we make the

zi„(y) = (sechy) v„(t),

=2 — n n+3-

)&exp — +1 . 5.27
2+9

12
= llm

N~~

1V—16 i Ã+
E 5 6 %+3

becom
—-'dVo/dx' —(v/(&o &))0o'= &o4o. —

The solution of Eq. (6.1) is

1)' v(x) = (-,'E)'" sech(Ex),

(6.1)

(6.2)
where

E = —-'E2
0 2 (6.3)

VI. EXPLICIT RESULTS FOR ONE DIMENSION

(5.27 can be carried out ana, lytically, and we
that Eq. (5.27) reduces to the known result given in
Eq. (1.8).

,'2.11~ whichgee start with the nonlinear Eq.
es

This happens to be precisely the factor which is missing
in HL.

Returning to Eq. (5.27), note that

exp —— — +1

=e.p ——(2IEI)»z+O(le I-ziz) (6.15
37

by virtue o qs.f E s. (6.4) and (6.6). Then, combining all
uted above, weof the terms in the pre-factor compute a ove, we

obtain exactly Eq. (1.8).


