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Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods
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(Received 7 March 1966)

A new approximate method is presented for calculating the density of states and one-electron Green's

function in the low-energy tail of a high-density impurity band. Such states occur in regions of large attrac-
tive potential produced by unusually high (random) concentrations of attractive centers and/or unusually

low concentrations of repulsive centers. These well-separated deep wells each have one bound state of lowest

energy. The distribution of these lowest levels yields the low-energy tail. For any one well, a bound-state

energy E(xo) is estimated variationally using P{x)= f(x—xo), where f(x) has any 6xed form. The best

energy for any well is obtained by minimizing E(xo) with respect to xo in the vicinity of that well. The
number of wells that contribute to the density of states at energy E is given by the number of local minima
in E(xo) that occur at the level E. In the high-density limit, Gaussian statistics are adequate for treating the
potential fluctuations and the expectation value for the density of states is easily calculated. At low energies
the best choice for the function f is that which maximizes the expected density of states. Application to an

exactly soluble one-dimensional model, a Gaussian "white noise" potential, yields the correct asymptotic
form p(E) =const (F)expL —is4) )2E )'~g. In three dimensions, the density of states in the Gaussian approxi-
mation is found to have the form p(E) = t A (E)/PjexpL —B(E)/{2g)g, where P is proportional to the con-
centration of impurities and to the square of the strength of the impurity potential. For screened, charged
impurities, B(E') =Eq'b(v), A (E) =PE@'a(u), where Eq ——O'Q'/{2m*), (1/Q) is the screening radius, and
v= (Eo—E)/Eq is the energy below the mean potential Eo in units of Eq. Computer-calculated curves are
provided for the "universal" dimensionless functions a(v) and b (p). The exponent b(v) behaves like p"2 when

~ is small (strong screening) and behaves like y' when v is large (weak screening).

l. INTRODUCTION

A. Comparison with Previous Work

A i%UMBER of recent experiments on tunneling, '

optical absorption, ' and luminescence' have

yielded experimental evidence for a tail in the density

of states associated with impurities in degenerate

semiconductors.

The theory of impurity-band density of states in. the

high-density limit has passed through several stages:

(I) a calculation of the shift of the band edge by Stern

and Talley, 4 and Baltensberger4 placing the impurities

on a suitable sublattice; (2) the virtual crystal approxi-

mation has been combined with second-order perturba-

tion theory by Parmenter' to calculate a real, perturbed,
' R. A. Logan and A. G. Chynoweth, Phys. Rev. 131,89 (1963);

for photon-assisted tunnehng, see J. I. Pankove, Phys. Rev.
Letters 9, 283 (1962) and R. J, Archer, R. C. C. Leite, A. Yariv,
S. P. S. Porto, and J. M. %helan, ibid. 10, 483 {1963).' I. Kudman and T. Seidel, J, Appl. Phys. 33, 771 (1962); Dale
E. Hill, Phys. Rev, D3, A866 (1964); G. Lucovsky, Appl. Phys.
Letters 5, 37 (1964); G. Lucovsky, Solid State Commun. 3, 105
{1965);J. I. Pankove, Phys. Rev. 140, A2059 (1965).

'M. I. Nathan, G. Burns, S. E. Blum, and J. C. Marinace,
Phys. Rev. 132, 1482 (1963); G. Burns and M. I. Nathan, Proc.
IEEE 52, 770 (1964); J. I. Pankove, J. Appl. Phys. 35, 1890
{1964);V. S. Bagaev, Y. M. Berozashvili, L. V. Keldysh, A. P.
Shotov, B. M. Vul, and E. I. Zavaritskaya, in Proceedings of the
International Symposium on Radiative Recombination in Semi-
conductors {Dunod Cie, Paris, 1965), p. 149; and Fiz. Tverd. Tela
6, 1399 (1964) LEnglish transl. : Soviet Phys. —Solid State 6, 1093
{1964)g;J. C. Sarace, R. H. Kaiser, J. M. Khelan, and R. C. C.
Leite, Phys. Rev. 137, A623 (1965); T. N. Morgan, M. Pilkuhn,
and H. Rupprecht, ibid. 138, A1551 (1965); T. X. Morgan, ibid.
139, A343 (1965).

4 F. Stern and R. M. Talley, Phys. Rev. 100, 1638 (1955);
KV. Baltensberger, Phil. Mag. 44, 1355 (1953).' R. H. Parmenter, Phys. Rev. 97, 587 (1955); 104, 22 (1956).
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E~(k) relationship from which the density of states can

be obtained; (3) multiple-scattering techniques using

unmodified propagators have been used by Lax' and

Edwards', (4) the improvement of modified propagator
techniques over unmodi6ed propagator techniques has

been demonstrated by Klauder, ' by comparison with

exact calculations for a one-dimensional model by La~
and Phillips, ' and by Frisch and Lloyd. ' However, all

perturbation and propagator techniques lead to tails

that cut off sharply. (5) A many-electron treatment of
Kol6's" shows that, aside from a small rigid shift of the

bands (and a slight modification of the effective mass)

due to exchange eA'ects, electron-electron interactions

can be ignored provided single electrons are treated as

moving in the screened fields of the impurities; (6)
Wol6" and Kane" both demonstrated the inadequacy
of perturbation methods, particularly in the tail.
(7) When the potential varies slowly enough, the fluctu-

ations in the energies of states mirror the fiuctuations in

the potential energy. This approach has been discussed

M. Lax, Rev. Mod. Phys. 23, 287 {1951);Phys. Rev. 85, 621
(1952}.See also Ref. 9.

' S. F. Edwards, Phil. Mag. 6, 617 (1961).' J. R. Klauder, Ann. Phys. (N. Y.) 14, 43 (1961).' M. Lax and J. C. Phillips, Phys. Rev. 110, 41 {1958).
' H. L. Frisch and S. P. Lloyd, Phys. Rev. 120, 1175 (1960)."P. A. Wolff, Phys. Rev. 126, 405 {1962)and Proceedings of the

International Conference on Semicondgctor Physics, Exeter, 196Z
(The Institute of Physics and the Physical Society, London,
1963), p. 220.

~ E. O. Kane, Phys. Rev. 131, 1532 (1963).This paper combines
moment and perturbation methods.
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by I,ifschitz" and by Bonch-Bruevich. '4 Kane" has
combined the potential energy fluctuations with the
Thomas-Fermi method to calculate the density of states.
Kane's procedure has also been compared with experi-
ment by Morgan. '

Since the potential energy fluctuations at high con-
centrations are Gaussian, the tail found by Kane is
Gaussian. This is a disadvantage, since simple expo-
nential tails are often found. The present paper, when

applied to the screened Coulomb impurity case, in the
Gaussian approximation, leads to a density of states
p(F)=expL —P(E)], where P(F) varies from ~E~" to
F. ; see Fig. 1. Over any reasonable energy range, p(F)
will behave roughly as expL —~F~ "] where u is some
number between —,

' and 2. The value of n, in any given
experiment, will be determined by a combination of
relevant physical parameters: the carrier and impurity
concentrations, the degree of compensation, the eftec-
tive mass of the observed carrier and of the screening
carrier, and the dielectric constant. See Figs. 2 and 3
and Table I.

Our method of calculation is nonperturbative. We
do not treat potential energy fluctuations as perturba-
tions, but require the electron to respond to these
fluctuations. This is similar to the spirit of Kane s ap-
proach. But the electron cannot follow very short-range
fluctuations. AVe therefore smooth (or "filter" ) the
potential and calculate eigenstates of the smoothed
potential. As the binding energy increases, the electron
wave function tightens up, and can follow shorter
range fluctuations. Thus the appropriate "filter" ac-
quires a narrower range with increasing binding energy.
But as the range is narrowed, the probability of
smoothed potential fluctuations of a given amount is
increased in an energy-dependent way, and the tail falls
off less rapidly than Gaussian.

Our results also diBer from those of the Fermi-Thomas
procedure because we include properly the kinetic
energy of localization omitted in the former method.

B. Qualitative Discussion of the Present Method

In impurity-band problems one is generally interested
in statistical properties of the eigenstates of an electron

"I.M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 44, 1723 (1963)
I English transl. : Soviet Phys. —JETP 17, 1159 (1963)j; Advan.
Phys. 13, 483 (1964); Nuovo Cimento Suppl. 3, 716 (1956); Usp.
l iz. Nauk 83, 617 (1964) t English transl. : Soviet Phys. —Usp. 7,
549 (1965)j.

'4V. L. Bonch-Bruevich, in Proceedings of the International
Conference on Physics, Exeter, lP6Z (The Institute of Physics and
The Physical Society, London, 1963), p. 216; V. L. Bonch-
Bruevich and A. G. Mironov, Fiz. Tverd. Tela 3, 3009 (1961)
t English transl. : Soviet Phys. —Solid State 3, 2194 (1962)j. See
also I. V. Andreev, Zh. Eksperim. i Teor. Fiz. 48, 1437 (1965)
I English transl. : Soviet Phys. —JETP 21, 961 (1965)g and A. B.
Almazov, Fiz. Tverd. Tela 5, 1320 (1963)

C
English transl. :Soviet

Phys. —Solid State 5, 962 (1963)j."E.0. Kane, Proceedings of the International Conference on
5emiconductor Physics, Exeter, 1P6Z (The Institute of Physics and
the Physical Society, London, 1963), p. 252; Phys. Rev, 131, 79
(1963.) See also T.N. Morgan, Ref. 3,who has simply assumed that
the density of states mirrors the potential energy fluctuations.
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in a random potential. Two of the simplest and most
important properties of an impurity band are the total
density of electronic states p(F), and the spectral
density A (k,E), which is a function of the wave vector
k as well as of the energy E. In the present paper, we
present an approximate method for calculating these
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Fro. 2. The logarithmic derivative n=pd logb(v) j/fd logvj of
the exponent b(v) in the density of states is plotted and is shown to
vary smoothly from n = ~ to 2.

FIG. 1.The density of states deep in the tail of an impurity band,
for a density of impurities high enough to use Gaussian statistics
has the form

~ (E) =—,exp'-&( )/2$'j,
Q' a(v)
Eq (6')'

where v = (Ep—E)/Eq is an energy measured relative to the mean
potential energy Ep (using the unperturbed band edge as origin)
in units Eq=k'Q'/(2m~) where Q is the inverse screening radius.
The parameter

8 e(m*)'
rs A+Zo

AtpQ

if n, is the concentration of impurities of charge Z,e, m* is the
effective mass in the band from which the impurity band is formed,
and ep is the dielectric constant. The figure shows the "universal"
function b(v) which varies from v'~' at small v to v~ at large v.
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TABLE I. Summary of numerical results. The density of states at "energy" v is given in dimensionless units by u(~) expI —b(~)P&'j.
The eigenvalue p determines the potential energy —p, U(r). The mean potential energy is —euro~, and T =go.o

—v is the mean kinetic
energy. All symbols are de6ned in Eqs. (5.12)—(5.19), and (3.16)—(3.19). /Small errors (a few percent) for v((1 due to insufBcient
iteration will be corrected in paper III of this series. )

Iogv

3
2.73
2.5
2.25
2.00
1.73
1.50
1.25
1.0
0.75
0.50
0.25
0.00—0.25—0.50—0.75—1.00—1.25—1.0—1.75—2,0—2.25—2.50

1000
562
316.2
178
100
56.2
31.6
17.8
10
5.62
3.16
1.78
1.00
0.562
0.316
0.178
0.100
0.0562
0.0316
0.0178
0.01
0.00562
0.00316

1354
810
491.3
302.1
188.6
120.2
78.4
52.5
36.2
25.78
19.06
14.71
11.99
9.96
8.79
8.12
7.83
7.912
8.390
9.19

10.34
12.244
15.46

1.444 X106
4-912X10'
1.702 X 10~
600 X10'
2 150X104
7.808X 1(P
2.988X 103
1 167 X10g
4 716X1(P
1 983X1
8 720X10
4.043 X10
1.956X &0
1.008 X10
5.456
3.108
1.846
1.151
0.7516
0.5006
0.343
0.2464
0.1806

3.098X 108
4.645 X 10'
7.250 X10'
1 153X10'
1.888X«
3.223 X104
5?'81X 10'
1.094X 10'
2 197X10'
4 689X10
1.078X10
2.793
7.259X10 '

2 157X10 '
5.957 X10-2
2.423X10 '
8.906X10-&

3 532X10 '
1.485X10 '
5.407 X10-'
2 834X10 4

1.29 X10 "
5.89 X 10-~

65.60
44.49
30.29
20.60
14.00
9.53
6.51
4.44
3.03
2.0)
1.46
0.969
0.659
0.450
0.3044
0.2047
0.1358
0.0893
0.0580
0.03696
0.02316
0.041211
0.0085

O'O

0.7866
0.7478
0.7052
0.6573
0.6044
0.5471
0.4864
0.4237
0.3602
0.2984
0.2400
0.1869
0.1407
0.1015
7.06 X10-'
4.71 X10 '
3.012X10 '
1.84 X10 '
1.07 X10 '
5.99 X10 '
3.20 X10 '
1.596X10 8

7.57 X10 '

2.7
2.1
1.64
1.23
0.91
0.67
0.48
0.336
0.230
0.152
0.097
0.0596
3.01 X10 '
1.965X10 '
1,05 X10 '
5.33 X10 '
2.53 X10 '
1.13 X10 '
4.73 X10 4

1.79 X10 4

6.9 X10-'
2.24 X10 '
6.71 X10 '

two functions when the energy is in the low-energy tail
of the impurity band and when the density of impurities
is sufFiciently high.

The high-density limit occurs when many impurity
atoms are found within a volume characteristic of the
"spread" or "width" of a typical wave function. Thus
we do not, in the high-density limit, think of a wave
function as localized on a single impurity atom; the
wave function is localized in a region in space in which
many impurities are present, and no one impurity is
very important. The high-density limit is in fact ap-
proached in semiconductors, where the average distance
between impurities may be much smaller than the
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FIG. 3. At the v for which b (v) = 10$' Pand the exponential factor
in the density of states is exp( —5)j, b(v) varies roughly as v"
where n = Pd logb(v) j/d loge is obtained from Fig. 2. The result is
the plot of e versus g'=b(v)/10 shown above, where

effective Bohr radius, yet large compared to the lattice
spacing. Thus our wave functions will vary slowly from
one cell to the next, and the effective-mass approxima-
tion will be assumed in this pa, per. Impurity ions are
represented by a model potential which includes

properly the effective intraband matrix elements of the
original Hamiltonian.

The simplest approximation that one ca,n make in the
high-density limit is that the electron (or hole) moves
in a uniform potential equal to the average potential of
the impurity atoms. The eigenstates in this approxima-
tion are plane waves; and the density of states in this
approximation vanishes completely for energies below
a minimum energy Eo, which is equal to the average
impurity potential plus the energy of the k=0 state in
the pure crystal. In the real crystal, however, we know
that the density of states does not vanish below the
energy Eo. Because of the random nature of the irn-

purity distribution, there will always be some region of
a macroscopic crystal in which we find an unusually
high number of attractive impurities or an unusually
small number of repulsive impurities. The average
potential in this region will be lower than the average
of the crystal as a whole. If the region in question is
suf5ciently large and the potential sufIiciently low, then
we expect to find a bound state, localized in this region,
with energy less than I'0. The probability of finding a
fluctuation of sufIicient magnitude to produce a bound
state of energy J.' decreases very rapidly as E becomes
much lower than Eo, and hence the density of states
p(E) becomes very small for Eo—E sufficiently large.
The region of energy with small density of states is
called the "low-energy tail, "and is the region of interest
in the present paper.
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A crude description of the most important factors
which determine the density of states in the low-energy
tail may be given as follows: We discuss the properties
of a "typical" wave function with a given energy E. For
the sake of simplicity of discussion, we may assume that
the range of a single impurity potential is small com-
pared with the width of the wave function, and that the
impurities are attractive. In order to have a wave func-
tion of energy E((EO, we must have an unusually high
number of attractive impurities in the region where the
wave function is large. The necessary density of excess
impurities in the region depends on the size of the wave
function. If the wave function is very spread out, its
kinetic energy of localization will be very small, and the
potential energy of the wave function divers from the
average potential energy in the crystal by the amount
E—Eo. The required average density of impurities in
the region of the wave function exceeds the average
density in the crystal as a whole by the number of
impurities per unit volume necessary to give an average
potential of E—E0. On the other hand, if we assume
that the wave function is very narrow, then the kinetic
energy of localization will be very large; consequently
the potential energy of the wave function must be very
negative, and the excess density of impurities required
in the region of the wave function must be very
high.

In general, if the wave function is assumed to be too
narrow, the probability of finding the required excess
density of impurities in a region the size of the wave
function becomes extremely small. On the other hand
the probability of finding any given excess density of
impurities, throughout a region, decreases rapidly when
the region becomes large. It may therefore be readily
seen that if the wave function is assumed to be too
spread out in space, the probability of having the
necessary excess impurity density to produce the energy
E again becomes extremely small. Ke expect, therefore,
that there will be a most probable shape for the wave
function, not too narrow and not too spread out, and we

may expect that the probability of great deviations from
this optimum wave function should be rather small. The
dominant factor in the density of states p(E) is the
probability of finding an impurity fluctuation of the
necessary magnitude in a region the size of the optimum
wave function.

In Sec. 2 of this paper we show how the density of
states at a given energy E in the low-energy tail could
be estimated if the shape of the typical wave function
at energy E were known. Using a variational principle,
we show how to make a best choice for the shape of the
wave function and thus for the density of states. An
approximation for calculating A (ir,E) is also described.
In Sec. 3 we discuss in detail how to carry out these
calculations when the density of impurities is sufBciently
high that it is permissible to use Gaussian statistics for
the potential energy fluctuations. When Gaussian
statistics are applicable we find that the density of

states has the form (in three dimensions):

LA (E)/ej e- PL—2l(E)/2H (11)
where $ is a parameter proportional to the concentration
of impurities and to the square of the strength of the
individual impurity atoms, 8 is a function of the energy
E and, implicitly, of the "shape" of the individual
impurity potentials, while the function A (E) is slowly
varying, in the low-energy tail, relative to the ex-
ponential factor.

In Sec. 4 we apply these procedures to a one-dimen-
sional model of an infinite density of very weak point
scatterers, for which the density of states and spectral
density can be exactly calculated. ' ""The density of
states for this model, in appropriately chosen units, has
the simple asymptotic form, as E + —~, of

p (E) — exp (1 -')
3

The approximate method gives the asymptotic form
exactly, except for a factor of approximately 2 in the
constant in front. LSee Equation (4.9).] The approxi-
mate ratio of A (k,E) to p(E), calculated by the methods
of Sec. 2, agrees with the exact asymptotic form of this
ratio.

In a forthcoming paper, paper II of this series, we
shall show how to improve the approximation of Secs. 2
and 3 by the inclusion of an average-second-order cor-
rection. When this correction is applied to the calcula-
tions of the one-dimensional model of Sec. 4, the over-
all constant in the asymptotic form of the density of
states is obtained correctly to within 8% of the exact
value.

In Sec. 5 of the present paper we study the three-
dimensional case of screened Coulomb impurities. The
value of d logB(E)/d logE is found to vary smoothly
from ~ to 2. In paper III of this series we shall show that
the proportionality of B(E) to

~

E
~

"' is characteristic of
the short range potentials, whereas the E"dependence is
characteristic of long range potentials. In Secs. 6 and 7,
we discuss some details necessary for the application of
the Coulomb model to real crystals.

The techniques of these papers can also be adapted
to study the low-energy tail of an exciton absorption
band due to interactions with thermal phonons in an
otherwise perfect crystal. '

2. GENERAL METHOD

A. The Imyurity-Band Model

We consider a model in which the electron (or hole)
obeys a Hamiltonian of the form

H = V'+ V (x) . (2.1)
"' B.I. Halperin, Phys. Rev. 139, A104 (1965)."M. Lax, Rev. Mod. Phys. 38, 541 (1966), Sec. 4."B.I. Halperin, Ph.D. thesis, University of California, 1965

(unpublished). (Available from University Microhlms, Inc. , Ann
Arbor, Michigan. )
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The operator V is the "kinetic energy" of the particle,
and is invariant under spatial translations. For an
electron in a nondegenerate isotropic band, E has the
simple form

The density of states is defined by

(2 &)

r= —a'V'/2m*+E. , (2.2)

but the following discussion is not restricted to this case.
The potential V(x) is the random potential due to the
impurity atoms. We assume here that V(x) is diagonal
in the electronic position, in order to simplify our equa-
tions, but the discussion may be readily generalized to
the case of a nonlocal potential.

Although we shall use notations appropriate to a
three-dimensional crystal, almost everything we say
will be equally applicable to one-dimensional models of
impurity bands with the trivial substitution of scalar for
vector variables. For those equations which require
more serious modifications in the one-dimensional case
we shall indicate the necessary changes.

We assume V(x) to be the sum of the individual
impurity potentials, and it may be written in the form

V(x) =g P s, (x—z)I n, (z) —n,5dz, (2.3)

where the index c denotes the type of impurity, the
quantity ps, (x—z) is the potential at point x which
would result from an a-type impurity at point z, and
the quantity n, is the average concentration of a-type
impurities. The function n (z) is the actual distribution
function of the impurities, thus

m. (z) =Q 5(z—z.;),

where z„ is the position of the ith impurity of type a.
The quantity q in Kq. (23) is an over-all strength
parameter, which we have introduced in order to discuss
more easily the behavior of the density of states as a
function of the strength of the impurity potentials. Note
that, as defined here, the expectation value of the
random potential V(x) is zero; the average potential of
the impurities is assumed to have been included in Eo.

The statistical distribution of the impurities may be
described by the concentrations n„and the correlation
functions (n, (z)m (z')), (~n, (z)e;(z')m, "(z")), etc.,
where ( . ) denotes the expectation value for the
statistical ensemble. In this paper, except where other-
wise stated, we shall assume all the impurity atoms to
be statistically independent. The two point correlations
are then given by

where E; is the energy of the ith eigenstate of the
Hamiltonian H, and 0 is the volume of the crystal. The
spectral density A (k,E) is defined by

(2 g)

where f,(k) is the kth Fourier component of the ith
eigenstate,

P„.(k) = e-*'" Q, (x)dx. (2.9)

B. The Density of States

The crucial assumption we make is that at a given
energy E, in the low-energy tail, almost all of the energy
eigenfunctions have approximately the same shape.
Specifically let us assume that whenever E;=F.we find

The spectral density is proportional to the imaginary
part of the Green's function" for an electron in the
impurity band.

When the energy E is sufficiently far below Eo, the
density of states p(E) decreases very rapidly with de-
creasing E. Because the average value of IP;(k) I' is a
relatively slowly varying function of the energy, we
expect that the behavior of A (k,E) will be principally
determined by the behavior of the density of states, and
our first task will be to determine the approximate form
of p(E).

The approximations we will make will be valid in the
low-energy tail. For the time being we shall not be
precise about the meaning of the low-energy tail—that
is, we shall not specify just how far below Eo one must
be. We do state that the energy must be suKciently low
that the ratio p(E)/p(EO) must be much smaller than 1.
This means that IE EOI must be larg—e compared to
the energy easily obtainable from the potential fiuctua-
tions. Note that the low-energy tail may be reached in
two ways, by keeping the Quctuations fixed and letting
E—Eo ~ —~, or by holding E—Eo fixed at a given
negative value and letting the fluctuations become
small, i.e., q ~ 0.

(2.5) P, (x)=f(x—xo), (2.10)

or, equivalently,

(Lso(z) n, 5[n (—z') —n 5~) =n, h„b(z —z') . (2.6)

Similar relations can be written for the higher correla-
tion functions. "

"See for example Eq. (12.27} of M. Lax, Rev. Mod. Phys. 32,
25 (1960}and Sec. 9 of Ref. 17.

where f is a fixed function (for each E), and xo is a
position variable which may be anywhere in the crystal
and will be different for each eigenstate. It is no restric-
tion to assume that f has its maximum when its argu-
ment is zero. States in the low-energy tail will generally

~ See for example D. Pines, The Beany Body Problem (W. A.
Benjamin, Inc. , New York, 1961},p. 31.
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be highly localized in a region of low potential, and it is
clear that f must be rapidly decreasing when its argu-
ment becomes large. We also require that f(x) obey
the normalization condition imposed on the wave
function f;,

f(x)'dx= 1. (2.11)

[Since we find that f is real, we can simplify our nota-
tion by assuming this from the start. )

For the present, let us assume that the function f is
known —we shall discuss later the best method for
finding this function. Let us use the right-hand side of
(2.10) in a variational estimate of the energy E;. The
variational estimate, for a particular choice of xo, is
defined by

It may be objected that the variational principle
rigorously tells us that E(xp) is greater than E; only if
P; is the ground state of the particle for the whole
crystal. In order for E(xp) to be smaller than E;, how-
ever, the trial function f(x x—p) must mix in another
wave function f; whose energy is lower than E,. In the
low-energy tail, where the density of states is very small,
energy eigenstates are (spatially) few and far between,
and the possibility of simultaneous overlap between
f(x—xp) and two different eigenstates is quite negligible.

If, as we claim, there is a close one-to-one corre-
spondence between local minima in E(xp) and the
energies of eigenstates in the vicinity of E, then the
number of eigenstates with energy E is approximately
equal to the number of local minima in E(xp) with value
E. Thus we have the following approximation to the
density of states in the volume 0:

E(xp) =— f(x—xp)Hf(x —xp)dx. (2.12) [Number of local minima in
1

The variational energy can be written as the sum of two
terms

px(E) = E(xp) such that at the mini- (2.15)

mum E&E(xp) &E+dE.)

where
E (xp) = e+ V, (xp), (2.15)

8= f(x—xp) Ef(x—xp)dx,

V, (xp) = f(x—xp)'V(x)dx.

(2.14)

Note that the kinetic energy 8 is independent of the
choice of xo, because the operator V is translationally
invariant. The potential energy V, (xp) is an average of
the potential V(x) in a region about x=xp. As xp is
permitted to vary throughout the crystal, V, (xp) will
fluctuate about an average value of zero, and at various
places in the crystal V.(xp) will exhibit an unusually
large negative Quctuation. These places correspond to
regions of very low V(x), and hence to places where we
expect to 6nd a low-energy eigenstate f;(x). We know
that a variational estimate of the ground-state energy
of a system always overestimates this energy. Hence, we
expect that E(xp), in a region of negative fluctuations,
will always be larger than the true energy E; of the local
low-energy eigenstate. The best estimate of the energy
E; is thus obtained by choosing xp so that E(xp) is as
small as possible, i.e., so that E(xp) is a local minimum.
In general, E(xp) at this minimum may be considerably
larger than E;;however, if the assumption (2.10) holds,
we expect E(xp) to be a good approximation to E;when-
ever E,=E. It may also be seen that, in general, if
E(xp) is close to E, then E; will be close to E, and hence
E(x,) will again be a good approximation to E;. (This
last statement follows from the fact that the density of
states is rapidly falling with decreasing energy, and thus
almost all of the eigenstates with energy less than E
have energy close to E.)

We have placed the subscript f on the density of states
to remind us that the validity of the estimate will de-
pend on the correct choice of f

Until now, we have used the words "local minimum"
loosely to mean the minimum value of E(xp) in some
region. For purposes of computation we wish to define
a local minimum as any point where VE(xp) equals zero
and the second derivatives are positive. If two points
with vanishing first derivatives occur very close to-
gether, then the use of this new definition may destroy
the one-to-one correspondence between local minima
and eigenstates, because the same eigenstate may be
counted twice. It may be shown, however, that in the
low-energy tail, the probability of occurrence of two
points close together, with VE(xp) =0 and E(xp) &E at
each point, is extremely small. Furthermore, if there is
only one such point in a region, it must be a local
minimum, so that the second derivatives are auto-
matically positive. Hence, we may substitute for the
words "local minimum in E(xp), " in Eq. (2.15), the
words "point where VE(xp) =0."

C. Determination of the Best Trial Function

Let us now consider the problem of finding the best
trial function f We know .that regardless of the choice
of f, the variational estimates of the energies of the
eigenstates will be high. In the low-energy tail, where
the density of states is rapidly falling, any approxima-
tion which systematically overestimates the energies of
all the eigenstates is bound to underestimate the density
of states. Thus we claim that in the low-energy tail, no
matter what the choice of f, pq(E) will be smaller than
the true density of states, p(E). Clearly the best choice
of f, for any given energy E, is that which maximizes
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pf(E). We call the density of states obtained by this
optimum choice "p~(E)";i.e., we have

p & (E)™xfI pj(E)]. (2.16)

D. The Spectral Density

Thus far we have discussed only the total density of
states p(E). In order to calculate the optical absorption,
one needs to know the spectral density A(k, E). The
spectral density is, by definition, the product of the
density of states p(E) times the expectation value of the
absolute square of the 4th Fourier component of the
wave functions at the given energy. If our assumption is
correct, that almost all the wave functions at energy E
have the approximate form f(x—xo), then the absolute
square of their Fourier transforms must be approxi-
mately

I f(k) I'. Thus we claim that in the low-energy
tail,

~ (k,E)=
I f(k) I'~(E), (2 17)

where f is the function which maximizes pf(E). To
compute A(k, E) when we do not know the exact
density of states p(E), we use the approximate density
of states, pq(E).

3. METHOD OP CALCULATION

A. General Statistics

The method we use to calculate pg(E) is essentially
a generalization to three dimensions of a method used
by Rice in random noise problems. "Equation (2.15)
may be written

In (3.5) we have dropped the absolute value sign from
the determinant because, as mentioned earlier, almost
all the critical points of V, (y) with V, (y) =E eh—ave
positive second derivatives. The quantity pr(E) is then
determined by the 10-variable joint probability dis-
tribution of V, and its first and second derivatives at a
single point.

In the case of a one-dimensional model of an impurity
band, we have instead of (3.5), the relation

w(E) = &&LE—T—V.(r) jbLV.'b)) V."b)& (3 6)

The density of states pq(E), defined by (3.5), may
be written as the product of three factors

s (E)=P(E e)P —(oIE e)x(—E ~, o) (3 7)

where the function p(X) is the probability density for
V, (y) to take on the value X at an arbitrary point y;
Pz(~ I X) is the conditional probability density for
V V, (y) to take on the value A, when it is specified that
V, (y) =X; and X(X,A) is the conditional expectation
value of detV& V, (y), when it is specified that V, (y) = X

and VV, (y)=A. In (3.7), we are interested in the
functions P, pa, and X when X =E eand A=O. —

As a preliminary to estimating the probability func-
tions in (3.7), we need to know the two-point auto-
correlation function &V, (y) V, (y')). This autocorrelation
function may be expressed in terms of the autocorrela-
tion function &V(x)V(x')) of the original potential,
which in turn may be expressed in terms of the auto-
correlation function of the impurities. Thus we have

1
pf (E)=— dy&P; b (y—y;)bLE —8—V, (y))&, (3.1)

0 &v.(y)v. (y)&= f (-yu ("-y)
where (y;} is the set of all points satisfying

&V*(y)=0. (3.2) and
X (V(x) V(x'))dxdx', (3.8)

When the indicated average over all potential configura-
tions has been taken, the quantity in brackets in (3.1)
becomes independent of y, and the integration over y
merely yields a factor of Q. Thus we may write

(E)=&K h(y —y)~IE—e—v. (y)j&, (33)

&V(x) V(x'))=„p ..(x—z)&., (x —,)
ea'

X &Ln, (z) —n, lLn (z') —n. )&dzdz', (3.9)

where y is any point in the crystal. We next make a
transformation from the variable y to the variable
~V, (y) by writing

2, ~(y —y;) = hL& V.(y)3ldet» V.(r) I (3 4)

or

(V(x) V(x')) = vP P n, v, (x—z)v, (x'—z)dz. (3.10)

The determinant of the second derivatives in (3.4)
arises as the Jacobian of the transformation. Equation
(3.3) can now be written

X~I «.(y)j d t» V.(y)&. (3.5)
~' S.0.Rice, in Serected Papers oe Poise and Stochastic Processes,

edited by N, %ax {Dover Publications, Inc. , New York, 1954}. (3.11)

In Kq. (3.9), correlations between atom positions are
still included. Equation (3.10) specializes to the un-
correlated case, using Eq. (2.6).

In order to exhibit explicitly the dependence of these
moments on the concentration of impurities and the
strength of the potential, we introduce a parameter

$=n'X,
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where E is the total concentration of impurities,
g=P n, T. hus we write

The covariances of the derivatives among themselves
are given by

where

(V(x) V(x')) = &lV(x —x'),

(V.b)V. (y')}=8 (y —y'),

(3.12) ([«.(y)jL«.(y) j)= —l«G(0) (3 Ig)

(3.13) lt is convenient to choose the coordinate axes such that
the matrix of second derivatives of G is diagonal, v ith
the form

Q

H'(x —x') =P — r, (x—z)r (x' —z)dz,
a Q

(3.14) vvG(0) = — 0 oi' 0
0 0 O. g'

(3.19)

In this case, the three components of V V, (y) are un-
G(y —y') = f'(x—y)f'(x' —y')&V( —"') " x ( lo) correlated, and the function pa is simply the product of

three Gaussians:

B. Gaussian Statistics

The calculation of pr(F) is greatly simplified when
the concentration of impurities is sufficiently high that
the random variable V, (y) obeys Gaussian statistics.
The value of V, (y) is the sum of independent contribu-
tions from all the impurity atoms in the crystal. The
impurity atoms which contribute heavily to V, (y) are
those which fall in a sphere about y whose radius is
roughly the width of the wave function f or the range
of a single impurity potential, whichever is larger. When
the concentration of impurities is sufIiciently high so
that there are many impurities in this region, we know

by the central limit theorem that Gaussian statistics
apply. Henceforth, we shall assume that Gaussian
statistics can be used. This is mathematically equivalent
to studying the impurity band in the limit that the
strength parameter p of the impurity potentials ap-
proaches zero and the concentrations S„approach
infinity in such a manner that the products q2A.

remain constant.
The statistical properties of V, (y), in the Gaussian

case, are completely determined by the two-point auto-
correlation function (V, (y)V, (y')). The function P(X)
of Eq. (3.7) is a Gaussian distribution,

p(X) = (2m(ao') '" exp( —)2/2&00') (3.16)

with variance
= (V b')') = 8 (0) (3.17)

(v.b')«. b')) = 8'u G(y —y')
l
'=r.

Because the function G, by dehnition, is an even func-
tion of its argument, the right-hand side vanishes
identically. Ilut Gaussian variables (of mean zero) are
completely described by their second moments, so that
uncorrelated variables such as V, (y) and VV, (y) are
statistically independent. Thus the conditional dis-
tribution p3(A.

~
X) is independent of X and reduces to the

ordinary probability distribution of & V, (y).

The covariance of V, (y) with its first derivatives is
given by

pi (A
~
X) = (2z.&)-'"(0 ra 2~3)-'

A I2 A2' A g'-

Xcxp—
2/0. r' 2)a.2' 2/0 i'

(3.20)

~e now must find X(E 8, 0), th—e conditional expec-
tation value of the determinant of the second derivatives
of V, (y). Each of the second derivatives may be written
as the sum of a term proportional to V, (y) and a term
uncorrelated with V, (y); that is,

vv V, (y) = V, (y)M+X, (3.21)

where M is a constant matrix, and X is a matrix of
variables, uncorrelated with V. (y), which have mean
zero and variances proportional to $. (See Appendix A.)
The matrix M is given by

(V, (y)VVV, (y)) VVG(0)M=-
«.(y) } G(0)

(3.22)

0,0 2(r 3 (8—E) ' —
(8—E)2-

u~(&) = exp
(2z )'Po 0' 2(0'0'—

(3.23)

In the one-dimensional case, we have instead of

~2 As remarked at the end of Sec. 2A, the low-energy tail can be
reached in two equivalent ways, by letting E~ —~, or by
keeping E constant and reducing the magnitude of the potential
Auctuations by letting g ~ 0.

Note that M is independent of $. Thus, when V, (y)=E 8, the second deriv—atives are equal to (E—8)M
plus terms which disappear as $~0. The determi-
nant of the second derivatives is therefore equal to
(8—E)'a r2022~3'/ao' plus terms which are negligible in the
low-energy tail."See Sec. 7D for an exact evaluation of
these terms. Since M is negative definite, and V, (y) is
negative, the second derivative VVV, (y) is certainly
positive definite if we are deep enough in the low energy,
so that we may neglect X. This con6rms our earlier
claim that almost all the critical points of V, are local
minima when V, is sufficiently negative.

Combining our results for p, p~, and X, we hand
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Eq. (3.23), of variational calculus

(S—E) (S—E)P-
pg(E) = exp—

2~(f7o' — 2(fTO'—
(3.24) V f(x)—uf(x) f(x')PIV(x —x')dx'=Ef(x). (3.32)

k«'=—(Ll'.'(y) j') = —fG" (o) .

We must now choose f so as to maximize Eq. (3.23).
%hen (~ 0, it is clear that the exponential factor will
become extremely sensitive to the choice of f, while the
other factors are much more slowly varying. Hence, the
best choice of f is that which maximizes the exponential
factor in (3.23), or equivalently, that which minimizes
the expression

(0—E)' [E—j'f(x) Ef(x)dx]'
(3.26)j'f(x)'f (x')'W (x—x')dxdx'

Note that in the low-energy tail the choice of f is
independent of $. Hence the factors op, o ~, op, op, and 8
will also be chosen independent of (, and the concentra-
tion dependence of p&(E) will just be contained in the
explicit $ dependence" of Eq. (3.23):

p (E)=~(E)& ' «pL —B(E)/26 (3 27)

For the one-dimensional case, p~ has the form

pg(E) =A (E)( ' expL —B(E)/2g]. (3.28)

In either case, B(E) is the minimum value of I', Eq.
(3.26), at the speci&ed E:

B(E)=I'; =ming(8 —E)'/op'j. (3.29)

We can show that B(E)/(Ep —E)' decreases mono-
tonically as E~ —~, so that the density of states falls
off less rapidly than a Gaussian. Note that I'/(Ep —E)',
which varies as (8—E)'/(Ep —E)', is monotonically de-
creasing as E~ —~ for any fixed f Let f; be th. e best
f at energy E,. If Ep&K,

B(Ep)=—I'Efp, Epj& I'Lf»Ep&

B(Ep) I'(fg, Ep) I'f f&,E)j B(E))
(3.3&)

(Ep—Ep)' (Ep—Ep)' (Ep—Eg)' (Ep—E,)'

A similar argument shows that B(E) increases as
E~ —~, i.e., as the density of states decreases.

The problem of minimizing Eq. (3.26) can be reduced
to the solution of a nonlinear integral equation. Let us
multiply the quantity E in Eq. (3.26) by the normali-
zation integral j'f(x)'dx in order to make the expression
homogeneous in f Expression (3. .26) is then inde-
pendent of the normalization of f, and may be mini-
mized by holding the denominator fixed at any constant
value, and varying 1 to minimize the numerator. Intro-
ducing a Lagrange multiplier p, we find by the methods

~ For the case of screened charged impurities, the screening
length, which appears in IV(x—x'), is also concentration-
dependent.

This equation looks like the Hartree equation for a
particle bound in its own self-consistent field, with an
interaction —@IV(x—x'); the only difference between
Eq. (3.32) and Hartree's equation is that in the present
case we have specified E and consider p as the eigen-
value to be found. Equation (3.32) can be solved on a
computer using the techniques developed by Hartree"
for solving his self-consistent equations. Essentially, one
assumes a potential, solves the Schrodinger equation
for the wave function of a particle in that potential, and
then uses this wave function to obtain a better shape
for the self-consistent potential.

An alternative procedure for minimizing (3.26) is
simply to introduce a trial function with several
parameters and to minimize with respect to these
parameters. If V" and IV are sufficiently simple, the
necessary integrals can be done explicitly for a well-
chosen trail function, and a minimization with respect
to a small number of parameters may even be carried
out by hand.

That a minimum value for (3.26) exists is pretty clear.
We know that (3.26) is always greater than zero and
that it becomes large if f is either too spread out in
space or too conffned. It also becomes large if f is not
smooth. It is very hard to imagine any situation other
than that (3.26) achieves its greatest-lower-bound for
some well-behaved, smooth f.

The question of the uniqueness of the optimizing
function f is a difficult one to answer. To be more
specific, let us assume that V and the function 8' are
spherically ay~metric. (Spherical symmetry of p„and
spherical correlation functions imply that IV is spheri-
cal.) There will then always be a spherically ay~metric
solution of the Hartree equation (3.32), because (3.32)
is the same equation which occurs if one wishes to
ffnd the spherically symmetric function f which mini-
mizes Eq. (3.26). On the other hand, the Hartree equa-
tion is nonlinear, and we must worry about the possi-
bility of a "lower" solution with "broken symmetry, "
i.e., a solution which is not rotationally invariant. If the
"lowest" solution is not rotationally invariant, then
there is not one optimum choice of f but a continuous
family of solutions, obtained by arbitrary rotations of
any one solution. (Actually, we already have one broken
symmetry: Eq. (3.32) is translationally invariant, but
we know that the best choice of f must be localized in
space. The translational degeneracy of the solution has
been removed by specifying that f(x) have its maximum
at x=O.j Although it is dificult to see why a non-
symmetric solution would give a lower value for Eq.
(3.26) than would a symmetric solution, we have not

24 D. R. Hartree, The Calculation of Atomic Structures, (John
Wiley 8z Sons, Inc. , New York, 1957), pp. 63—100.
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been able t.o disprove this possibility. If it should occur
that the function f is inf'initely degenerate, it is neces-

sary to modify our basic assumption that all wave func-
tions have the form f(x—xo) by including parameters
e, P, and y which describe the orientation of the function

f. The best variational estimate to the energy of an

eigenstate would then be the value of E(xp Q, j9 p) takei'i

at a local minimum in all the parameters.
In the three-dimensional calculations we have done,

we have always assumed that the correct solution for

f is spherically symmetric.

1 4K'-' 4 K"

p (1';)= exp
~5~( 3 (

(4 9)

The true density of sta, es, , for the Gaussian-white-
noise model, may be expressed analytically in terms of
Airy functions. ""In the limit E, ~ —~, or equiva-
lently $ ~ 0, the density of states has the exact asymp-
totic form

In Appendix 8 we show that this solution is, in fact,
unique, and we discuss the procedure for evaluating the
constants in (3.24) for this choice of f W.e find that

4. APPLICATION TO ONE-DIMENSIONAL
WHITE-GAUSSIAN-NOISE MODEL p (E)~

4K
(4.10)

qv. (x—s) =qu, b(x —s), (4.2)

then Eq. (4.1) in comparison with (3.10) and (3.11)
corresponds to the normalization

2P n, u 2 g= Q=n, — (4 3)

AVe shall choose units where h and the effective mass
are equal to unity, and we shall choose the zero of
energy such that F0=0. The kinetic energy operator is
then given by

1 d-'

v ———
2 dx"-

(4 4)

For the Gaussian-white-noise model, the "Hartree
equation, "Eq. (3.32), takes the simple form

With the conditions that f(x) be properly normalized
and that f(x) be maximum when x=0, Eq. (4.6) has
the solution obtained in Appendix 8:

f (x) = (x/2) '" sechxx,

@=4K,

where K is defined by
E= —-'K'

2

(4.6)

(4.7)

(4 8)

In order to check our approximation method, we have
applied it to a one-dimensional model for which the
density of states and spectral density may be exactly
calcula. ted, the model of a particle in a "white-Gaussian-
noise" potential. '" ""It also turns out that our approxi-
rnate method is especially simple in this case; all

quantities of interest can be obtained ana, lyticalli,
without the need of a computer.

The %hite-Gaussian-noise potential is the random
potential which arises in the limit of an infinite density
of very weak 8-function scatterers. This potential is
characterized by Gaussian statistics, vith the auto-
correlation function

(4.1)

lf the individual scattering potentials in (2.3) are
writ. ten in the form

~ f(k)
~

'= (n'/2x) sech'(kyar/2x) . (4.12)

The good agreement. between the results of our ap-
proximate theory and the exact asymptotic forms of
p(E) and A (k,E), for the white-Gaussian-noise model,
provides striking confirmation of the validity of the ap-
proximate theory in the low-energy tail. One may still
ask, however, where the low-energy tail begins: we
must be sure that the exact functions p(E) and A(k, E)
achieve their asymptotic forms at energies high enough
to make the asymptotic forms useful.

In Fig. 4 we have compared the exact value of p(E)
with its asymptotic form, Eq. (4.10), The error in the
asymptotic form is found to be 27% when E/Pi3= —1„
approximately 6% when E/P~'= —2, and =3% when
E/P"= —3. The values of p(E)/p(0) at these three
points are 0.15, 3X10, and 7)&10, respectively.
Thus, over most of the range of interest, the error in the

The agreement between p~ and the exact asymptotic
form of p is remarkably good. The power of K in the
exponent is correct, the factor -',.- is exactly correct, and
the power of K in front of the exponential is correct. The
over-all constant in pi is too small by a factor of +5; in

the low-energy tail, where the density of states may
change by many orders of magnitude, this error is not
very significant. Even this error may be greatly reduced,
however. If one includes the "average higher order-
energy correction, " described in a forthcoming paper,
II, the fa.ctor 1/+5 in Eq. (4.9) is removed and replaced
by the factor 0.921. Thus we can reproduce the exact
asymptotic form with an error of less than 8%.

We may also compare the form for A (k,E) predicted
by the approximate theory with the exact asymptotic
form for the spectral density found in Ref. 16. It was
shown that in the limit I' ~ —~, with k/x held
constant, or equivalently with k and E held fixed and

j—+0, one has

A (k,E)/p(E) (ir'/2x) sech'(k+/2x). (4.11)

Our approximate theory says that the ratio (4.11)
should be

~
f(k) ~2. If we take the Fourier transform of

(x/2)'" sechxx, we indeed find
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i1Tipurity potentials of the fornl

10

UJ
10

Q

ilr .(x—z) = —Z, exp( —Q1x—s1), (5, 1)
qo X—X

where e is the electronic change, eo is the dielectric con-
stant of the pure semiconductor, Q is the reciprocal
screening length, and Z e is the charge of the a-type
impurities. Ke assume that the impurities are randomly
distributed. The autocorrelation function for the poten-
tial fluctuations can be evaluated by working with the
Fourier transform of Eq. (3.14).One finds after straight-
forward calculation that

10 —2
where

(V(x) V(x')) =
& exp( —Q1x—x'1), (5 2)

FIG. 4. Density of states for one-dimensional white noise model:
Comparison of the exact p(E) with the asymptotic form of
the exact p(E), namely pcs(E) =I 8IEI/x$] expI —4I2EI'~/3t]
(when A=m~= 1).The energy is plotted in units of P/3, the density
of states in units of &&'/'), i.e., (p/Q('/')) is plotted against
(8jP@) as a universal curve. Including second-order corrections,
the density computed in this paper is p2(E) =0.92ppz(E).

asymptotic form is of the same order of magnitude as
the discrepancy between the asymptotic form and the
approximate theory, when the average higher energy
correction is included in the latter.

We have also made comparisons, at several points,
between the exact value of the ratio A (k,E)/p(E) and
its asymptotic form, Eq. (4.11). The results of these
comparisons are shown in Fig. 5.

5. SCREENED COULOMB POTENTIALS

We now turn our attention to the important example
of screened Coulomb impurity potentials. AVe assume

0.20

0.15

2x e4

~=——p n.Z.s.
60

(5 3)

Ke assume that Gaussian statistics may be used.
The kinetic energy operator T' for the model is

assumed to be of the isotopic, effective mass form,
Eq. (2.2). We assume that the optimum choice of f is
a spherically symmetric function. Let

f(x) = (4~) '"S(r)/r, (5 4)
where r = 1x1.

If one averages the function exp( —Q1x—x'1) with
respect to the angular coordinates of the variable x', one
finds

ezpL —Q (r'+ r"+2rr'p) ' ~'jar =E (r, r')
—1

e &'&L(r&+Q ') sinhQr& —r~ coshQr~j, (5.5)
rr'

where r& and r& are the greater and lesser, respectively,
of the two numbers r' and r. The Hartree-type eigen-
value equation, (3.32), is equivalent to the pair of
equations

h' d'

LLI

0.10

—pU(r) S(r) = (E—E,)S(r),
2tPl df

(5.6)

U(r) = lt (r,r')S(r')'dr'. (5.7)

0.05

0
0

I

2 3

FrG. 5. Momentum dependence of spectral density for one-
dimensional white noise model, at energy I" = —P/'. Comparison
of A(k, E) and its asymptotic form

) f(k) j'p(E}, where
) f(k) ~'

= (ss/2k) sech'(xk/2s), and s= I2E['&. We plot the spectral
density in units of p'('/') against wave number in units of &'/3, i.e.,
we plot A (k,E)/p'(~/') versus k/g'/'. %'e have assumed 0=m*= 1.

The function S(r) is required to vanish at r=O and

Equations (5.6) and (5.7) have been solved iteratively
on a digital computer for a range of values of the param-
eter E—Es. For each value of (E—Es), a trial function
was first used for S(r) in Eq. (5.7); then the value of
U(r) so obtained was substituted in (5.6). The value of
p is varied until the solution S(r) of (5.6) satisfies the
required boundary conditions and the function 5 thus
obtained is used as a new trial function in (5.7). The
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iteration process was found to converge rapidly. The
wave function 6nally obtained eras then used to calcu-
late the constants T=8—Ep 0'p and r~, and the func-
tions A(E) and B(E) of Eq. (3.27). The results are
presented in Table I. Typical wave functions S(r) and
potentials U(r) are shown in Figs. 6-8.

The parameters which can enter the density of states,
in the present model, are Q, $, (b'/2m*), and (E—Eo).
Note that $ has the dimensions of (energy)'. We know
that the dependence of the density of states p&(E) on
the parameter $ must be given by Eq (3..27). Hence, by
dimensional arguments, p~ must have the form

p, (E)= (Eq'Q'/P)a(v) expL —(Eq'/2$)b(v) j, (5.8)

1.0

p

(I)

0.4

0, 2

0
0

—0.1

—0.2

—03

—0.4

i 0.5
6

where a(v) and b(v) are universal dimensionless func-

tions; Eq, is the energy unit:

Fro. 7. The wave function S(r) and potential U(r) of Eqs.
(5.6)—(5.7) are plotted against r in dimensionless units (see Fig. 6
legend) for v= 10.

Eq= O'Q'/2'*,

and v is the dimensionless energy,

v=—(E,—E)/Eq) 0.

(5.9)

(5.10)

energy tail, by the exponential factor in (5.8). The func-
tions a(v) and b(v) are equal to the functions A (E) and
8(E) in units where Q= b'/2m" = 1. Our actual compu-
tational procedure thus consists in picking v and solving

L d'/«' I—U(r) jS—(r) = —vS(r) (5.14)

2.0
—0.2

jointly with (5.7) Lusing Q= 1 in (5.5)] to obtain p and
S(r). Then using Eqs. (3.17), (3.15), and (332), we
obtain

1.2
V)

0.8-

0.4

0
0 0.0 1,6

r
2 4

—0.6

—0.8

3.2

g 2
0

and using (3.19), (3.15), and (3.32), we get

1
&r P = —— U (x)V'Lf(x)$'dx

3

(5.15)

FIG. 6. The wave function S(r) of (5.6) and potential U(r) of
(5.7) are plotted against r, using as units Eq=k'P/(2'*) =1,
Q=1, for the case v= (E0—E)/F. q= 1000. (These are plots of
Q»g and U/Eq versus Qr.)

U( )d jS'( )/ j"

For the conduction band we must take PS (r)/r)drPr U (r)g", (5.16)

Ep ——E,+F; v= (E,+V E)/Eq, —(5.11)

where E, is the conduction-band-edge energy. For the
"high-energy tail" of the valence band, we must take 0.4

v=LE—(E.+1')j/Eq (5.12) p. 3

where E, is the valence-band edge. In both cases, t/' is
the mean of the original potential (see (5.1)j: 0.2

0.1

—0.6

(5.13)

0
0 8 12

Q.s
20

FjG. 8. The wave function S(r) and potential U(r) of Eqs. {5.6)—
(5.7) are plotted against r in dimensionless units (see Fig. {jThe behavior of p~ is, of course, dominated, in the low- legend) for v=0.2.
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1o'

1O'

length, of the impurity concentration, and of the
eAective mass m*, we may hope to reach diGerent
regions of Figs. 1, 2, and 9. The requirements that limit
the region of validity of Eq. (5.8) are discussed in Sec. 7.

The region of Figs. 1, 2, and 9 of importance for
a particular material depends on the dimensionless
parameter

where

$'—= o/E q' =8onD/(a'Q'),

a —= ooh'/m"e'

(5.21)

(5.22)
103

EQ

is the hydrogenic Bohr radius in the solid for a singly
charged impurity, and

10 nn—=Q, n.Z,' (5.23)

1Q '

1o-'

1o 5

10 3
II I I Ill

10 1

I I I I I I I

10
II I

103

where " denotes the second derivative d'/dr'. Since
e—E= —(potential energy), we have

8 E=T+v=p(f U—f)=oooo (5.17)

where T= —(f,V'f) is the mean kinetic energy. Equa-
tion (3.23) now yields the universal functions

FK. 9. The prefactor c(v) in the density of states, Eq. (5.8), is
plotted against v = (E0—I':)/I'q. (See Fig. 1 legend. )

(The density nz reduces to the concentration n of free
carriers in an uncompensated sample of singly charged
impurities. Otherwise ng&) n).

The low-energy tail for any material begins, roughly,
at an energy where b(v)/2f'=3 Atypi. cal measurement
in the low-energy tail will be made at an energy where
b(v) =10)'. Hence, when $' is known the corresponding
value of v may be determined from Fig. 1, and the
resulting n(v) from Fig. 2. The result is the plot of n
versus $' shown in Fig. 3.

In Figs. 10 through 13 we show semilog plots of the
complete function p~(E) for several values of the

l
I

l
I

l
I

l
I

1Q

b(v) = (T+v)'/ao'= p'ao' (5.18)

()=(T+ )' '/[(2 )' o']= ' '/r(2 )' o), (5.19)

when Oo, 0-~ and p are evaluated for each v. The results
of our computer calculations for b(v) and a(v) are
plotted in Figs. 1 and 9. In Fig. 2, we have plotted the
quantity

n (v) —=d logb(v)/d log v. (5.20)

As may be seen from Fig. 2, n(v) varies smoothly from
—,
' to 2 as v increases. That this is the correct behavior to
be expected, will be established in paper III.

Note that the argument v in Figs. 1, 2, and 9 is

plotted on a logarithmic scale, with v varying over many
orders of magnitude. Ke would not expect to see all
regions of these curves in any one type of crystal. At
energies which are too close to E0, we will not be in the
low-energy tail, and the approximation p~(E) will not
be of value. On the other hand, when E is too far in the
low-energy tail, Gaussian statistics will certainly not be
valid, and Eq. (5.8) will be incorrect. Thus in any one
material the interesting range of v is probably restricted
to considerably less than one decade. However, by con-
sidering models with di6'erent values of the screening

1P-6

1o' 1 J 1 I I I I I
0 0.01 0.02 0.03 0.04 0.05

Fro. 10. The density of states p1, in dimensionless form,
o (v) exp' —b(v)/2&'), is plotted against v= (E0—E)/Eq for
2g'= 0.1 (See Fig. 1 legend. ) The dashed region is not deep enough
in the tail for our approximations to be valid. See (7.6).



IMPURITY —BAND TAILS IN HIGH —DENSITY LIMIT. I 735

parameter $'= $/Eo'. For $' near one, p&(E) displays a
behavior close to simple exponential.

O. SCREENING

10 I

I
I

I
I

I
I

I
I

I
I

I [ I

In order to implement the formulas in Sec. 5, it is
necessary to estimate the screening length, Q

—'. It
should be remembered that the screening carriers need
not belong to the band whose low-energy tail we are
studying. For example, in certain optical experiments,
one may be interested in the low-energy tail of the
conduction band in a p-type semiconductor.

In the following, we shall assume that all the screen-

ing comes from one band. We shall give formulas for
the case where the screening carriers are electrons in the
conduction band. The formulas are directly applicable
to p-type semiconductors, with the appropriate sign
convention for holes. In any situation where there are
carriers in several bands, we may write

10 2

2$'-1

10 I I I I

0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4

O'=Z- Q-' (6.I) FrG. 12. The density of states p&, in dimensionless form,
a(v) exp) —b(v)/2&'j, is plotted against v for 2g'=10.

where Q
' is the contribution from band n, computed

according to the formulas belov .
If we make the Fermi-Thomas approximation' to

estimate the screening charge, a,nd moreover linearize
the result in the potential t/', the screening constant is

I
I

I
I I

'
I

found to be

Q'= (4~e'/~o) ~.(&')d&C ~fo(&)/~&3, (6 2)

where p, (E) is the density of states in the conduction
band (including the impurity-band tail) and fo(E) is
the Fermi occupancy factor

fo(E) = (expL(E —E„)/kT]+II ', (6.3)

where E„is the electron quasi-Fermi level."
At high temperatures, when Boltzmann statistics are

applicable (6.2) reduces to

Q2= 4vre2n/(eok T) ) (6.4)

where n is the concentration of free electrons. For
temperatures below the degeneracy temperature, "
8fo/BE can be approximated by a delta function and

10 4
Q'= 4~e'p, (E„)/eo. (6.5)

If the quasi-Fermi level is not the tail, we can approxi-
mate p, (E) by the unperturbed "free-carrier" density:

p, (E)=po(E) = (2m')-'(2m, /h')3" (E E)'o~' —(6.6)

where m, is the mass of the screening carrier and is not
necessarily the same as m* the mass in the observed
band whose low-energy tail we wish to calculate. The
quasi-Fermi level can then bc approximated by

10 I I I

0.1 0.2
I I I

0.3 0.4 0.5

E„Eo=h'(37r'rs)2"/(2m, ), —
so that Q' reduces to the "free" electron value

(6.7)

FIG. 11. The density of states pl, in dimensionless form,
a(v) expt —b(v)/2g'g, is plotted against v for 2g' 1. (See Fig. 1

legend. }
"See for example J. C. Slater, Phys. Rev. 76, 1592 (1949);

R. B. Dingle, Phil. Mag. 46, 831 (1955).

Q2 —(4m e2/ (eeh2) g (3g/~)1/8

Q'=4m"'/a. ; a.= eoh'/(m, e') . (6.g)
26%. Shockley, Electrons and Holesin Semicondaclors (D. Van

Xostrand |ompany, Inc. , New York, 1950).
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10

4»&s

I
' I

and thus condition (6.9) is equivalent to

(3+)2/8 (n/i )3/4 n i/2

1& 3 — (na, ')"4. (6.12)
(4ir)'" (nD)'" nr&

Inequality (6.12) gives the condition for validity of
linear screening when the magnitude of the potential
fIuctuation is equal to the root-mean-square fIuctuation
of V(x). In the low-energy tail we may be interested in
potential fIuctuations which are larger than the root
mean-square fluctuations in V(x). If we are in the
region $'))1 where the range of the wave function

Q 'i '" is small compared to the screening radius, the
condition b(/)=10)' means that we are interested in
potential fluctuation with

~
V(x)

~

=3@/2. In the range
where &'«1, the wave function averages V(x) over a
region large compared to the screening length; the low-
energy tail in this case arises when V(x) is attractive
over a large region, but

~
V(x)

~

will not be much larger
than P/2 in this region. Condition (6.12) may thus be
more properly written

1O-I— I/2

1(3 — (na, ')//4y (6.13)

10 12 14

FIG. 13.The density of states pI, in dimensionless form,
a(I) exp/ —b(I)/2g'j, is plotted against I for 2g'=1OO.

where p depends on $' and varies between ia (for $'))1)
and 1 for ($'«1).

It should be remembered that the parameters $'

depends on m* as well as m, . If the screening constant is
given by (6.8), then Eq. (5.21) may be written

In the presence of nearly perfect compensation, E„
will move into the tail of the density of states, and it
will no longer be valid to approximate p, (E„)by po(E„).
There is, however, a worse difficulty, which arises in

compensated semiconductors: linearization in V may
no longer be possible, and the potential V(x) is no

longer strictly a superposition of screened Coulomb

interactions.
The criterion for linear screening is that the potential

V(x) be small compared to the Fermi energy (E„—Eo).
For linear screening to be valid the root mean square
fluctuation in V(x) should be small compared to the
Fermi energy, or

(1/2( E E (6.9)

It is convenient to express Eq. (53) for (5.21)j for $ as

(6.10)

If we use Fq. (6.8) to approximate Q, Eq. (6.10)
becomes

(8 )/III
) (6.14)

If inequality (6.13) does not hold we cannot use hnear
screening, and all our problems become much more
difFicult. It is probable then that some further approxi-
mations will have to be made.

It is also useful to re-express the condition of linear
screening in the form

(6.15)

'7. VALIDITY REGIONS OP y(v) POR
SCREENED COULOMB CASE

A. Gaussian Statistics

Our "smoothed potential" can be written as a sum

V. (x)=P E(x—z.,),

In the absence of compensation, when m, m~ this con-
dition is roughly $')1. Only if m*«m„will this
condition be weakened.

(6.11) E(x—z„)= f'(x x') ~
—o/*' —z.;//

~

x& z
~

dx& (7 2)
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so that Eq. (7.6) is roughly equivalent toCaussian statistics are adequate in dealing with ihe
sum (7.1), provided the average number of centers
within the range of R(x) is large compared to 1, and

provided we are not too far in the low-energy tail. Since
the range of f'(x) is [tt'/(2m~

I EI )]'/2, and this function
is convoluted with a function of range Q ', we can
combine these ranges and write our condition roughl ' as

(7.8)

(7.9)

22) 4 ($')2, ~~'&&1,

r) (6f'))/'-', $'»1.

Summary of Con{litio//s for 5matt $'

no[t2'/(2m*
I
J.

I

)'"+Q-)$2»1,

(p-)/'-+ 1)'»Q'/nD .
01.

b(4P/~')) 6~' or ~') 1, (7.10)

If /2=/tr), m, =m, the condition (7.5) v((2j'/)r)'-',
(roughly), is incompatible with Eq. (7.8). A direct use
of Eq. (7.6) rather than the less precise Eq. (7.8)

(7 3) 1'eq1111'es

If the number of centers within a screening radius Q
' is

large compared to 1,

ni)Q ' (-2&='/2r)'(n/nn)2(m /m"')'»1 (7.4)

then (7.3) is satisfied for a,ll v. Note, moreover, that
when the condition (6.15) for linear screening is obeyed,
(7.4) is also likely to be obeyed. If, however, (2$'/2r)
X(n/n/2)"'(m. /m*)'&1, then Gaussian statistics are
valid when Eq. (7.3) is obeyed:

or

(n
—E)2/2

V(
[I—(nnQ ')"'j'

(2&'/2r)'(n/nn) "'(m, /m*) 4

v&
[1—(2&'/2r) (n/n/))"'(m, /n'/ )"-j'-'

(7.5)

If we attempt to go too far into the low-energy tail,
Gaussian statistics will inevitably break down, whether
or not Eq. (7.4) holds. Moreover, the criterion (7.3) is a
sensitive one, and a more careful evaluation of the
effective radius of E(x) is needed. We hope to return to
these points in a future discussion of non-Gaussian
statistics.

b(E)) 6&', (7.6)

[which makes exp[ b/2$' j=ex—p( —3)j, then the prob-
ability of a potential fluctuation deep enough to produce
an excited state at v will be quite small. Thus we adopt
(7.6) as an interim condition for the validity of our
calculations. The dashed portions of Figs. 10-13 were
indicated in this way, because they violate (7.6).

It is, of course, preferable to use (7.6) directly, with
Fig. 1 or Table I, but for small and large v v e have the
approximate formulas (see paper III)

b (v) = 3v)/2, v«1,
b(2)=2' v»1,

(7 7)

3. Use of Ground State Only

Our calculation neglects the presence of excited states
in each minimum. If we are deep enough in the tail for
the ground state at energy v to be moderately un-
likely, say

if there is to be any region of v for which Eqs. (7.6) and
(7.5) are compatible. Smaller values of $' ca,n thus lead
to a valid region only if m, & m*.

C. Use of Minimum Counting Methods

A one-to-one correspondence between energy states
and minima is only valid if the spread of the wave
function associated with each minimum is small corn-
pared to the mean separation between minima, i.e., if

where only minima below some cutoB energy E& are to
be counted. Using Eqs. (5.8)—(5.10), we rewrite this
condition in the form

—2]' I 3

a(v) exp[ —b(p)/2&'gdv/(t')' . (7.12)

In particular, this condition must be obeyed even at
v= v~. A "safe" condition can therefore be written in
the form

v+ vIW

- 2/3

a(v) exp[ —b(v)/2$'fd)2/($')2 (7.13)

By introducing the approximate forms

a(E)=AEE, b(v)=Bv", (7 14)

we obtain an approximate evaluation of Eq. (7.13):
r,)(+12(m)/[rt(II/2)222 j)2/E((2)2(122 2)/2 (7 1—5)

where m= ( +/12)/n, .

Summary of Co//ditions for Large j'

If $'»1, andm, =m~, n=n12 both the condition (6.15)
for linear screening, and Eq. (7.4) for Gaussian statistics
will be obeyed. In this case, our computed results are
valid for b(v) )6f', i.e., the solid portions of the curves
in Figs. 12 and 13. If m, (m*, larger values of $' are
needed to satisfy Eqs. (6.15) and (7.4). If m, )m*, our
results can be valid for $' considerably smaller than
unity.
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((X22X33))= —t72'732G (0)—M22M33(V, '), (7.24)

((X„X„))= —V,2V',2G(0), (7.25)(7.16)b(v) =3v"'a(v) =0.4v"'

For small $', the region of small v is important, and Thus we obtain the simple result. s

then from Figs. j., 2, and 9 or from paper III, we can
conclude that

so that
v» 1.6 ((')-',

so that including the cyclic terms,
(7.17)

a(v) =10-'v"-', b(v) = v'-. (7.18)

a condition less stringent than Eq. (i 9) F. ro. m the
same sources, we can conclude th at for large (' and v,

((det) )= V,'MriM )2M~3 —3 V,.M ii3f22M33(V, ')

«. )—
= (E 8)3Mi—iM22M33 1—3

(E—B)2
(7.26)

hsing this information in Eq. (7.15), we find that in

large j'
v& 0 1 ($ )113 (7.19)

a condition far less stringent than Eq. (7.10). For
intermediate values of $', by using the exponents n and

appropriate for the relevant values of v )say at
b(v)=10/], we again find that the condition (7.15) is

considerably less stringent than the condition (7.6):
b(v) &6)' required for excited states to be unimportant.

Thus we may conclude that if 2M are deep enough in
the tail for excited states to be unimportant, the use of
minimum countimg methods should be quite valid.

((det)) = LEo'(v+ T)'a i'o, 'o 3'/ 3o'][1—3p'o.3'/(v+ T)'].

For large v, we show in paper III that

o3 ~1, T/v~0,
so that our fractional error is

(7.27)

3&'/v'(-' (7.2S)

o'= 5.4 'i',

so that our fractional error is

T=3v ) (7.29)

if we obey (7.10) and require v2&6$'. For small v, we
show in paper III that

D. Exact Evaluation of the Mean Determinant 3]'(5 4v'")/(16v') = $'/v"-'(-' (7.30)

In Sec. 3, Eq. (3.21), we evaluated the dominant term
in the conditional mean of detB'V, (y)/By, By, . In this
section, we shall make an exact evaluation of the mean
of all terms in the determinant. Using Eq. (3.21) this
determinant can be written

det= V,'M11M22M33+LV M22M33X12+cyc1ic]

+ V, (M»(X22X33—X„X„)+cyclic]+detX;,. (7.20)

As before, we want the mean conditional on V,=E—8.
(It is also conditional on &V, =O; but, as the second
derivatives are uncorrelated with the first, this condition
can be ignored. ) Thus V, is fLxed, and the X,; are
Gaussian random variables of mean zero. Hence, only
polynomials of even degree in I;, survive the average,
namely the first term in (7.20), which we have already
evaluated, and the third which we shall proceed to
evaluate. According to (3.21)

X;,= 7';V', V,—((V,V, V,)), (7.21)

= ((V,V', V,)T3'7i V,)—((V',7,V.) V.)(V,V'3Vi V, )/(V, ')
= —V;V,'737'iG(0) —M;,M ii(V, ') . (7.22)

The second term, which follows from Eq. (3.22) can be
simplified using Eqs. (3.19) and (3.17):

M;, = b,,(a,2/a32); (V—,')= Po.32. (7.23)

where (( )) is the mean conditional on V, =E 8. —
Equation (A9) now yields

when we follow Eq. (7.9) and require v&4($')2.
Thus as long as we are deep enough in the tail, this

error is unimportant. When it becomes important, we
should evaluate ((l det

~ )), the conditional mean of the
absolute value of the determinant, rather than ((det)).
Moreover, when Eq. (7.6) is violated, excited states
become important.

E. Single Shape for A11 Wave Functions

The assumption in this paper which underlies our
work is that all the wave functions of the system at a
given energy (in the low-energy tail) have the same
shape. When Gaussian statistics are applicable, the
most important corrections to this assumption are
included in the average second-order energy correction,
which will be discussed in paper II. When the density of
impurities is not high enough for Gaussian statistics to
be employed, it is more difFicult to analyze this assump-
tion. It is clear that, if the wave function is bound to a
cluster of three or four impurities, its shape will depend
on the positions of these impurities. It is probable that
there will be situations where Gaussian statistics are
invalid but where the general approach of this paper can
still be used.

For example, if the density of impurities is low enough
that any electron bound in the tail is localized on a
single impurity, a single-shape wave function is again
likely to be a good approximation. Gaussian statistics
are then likely to be invalid (except in the case of very
weak screening). However, the counting procedure is
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trivial: There is one minimum at each impurity. Energy
fluctuations are produced by the potential energy
contributions of the other sees. The distribution of such

energy fluctuations can be treated by Markoff's
method. "At low densities, the nearest-neighbor con-
tributions will predominate, and we expect the density
of states to have an analytic behavior near the energy
A; of an isolated impurity similar to that produced by
the pair approximation. "

2x e'
&=——P n.Z„',

Eo

I'a O'Q'/(2m*), ——

v = (Zo—B)/Bq,
4xe'

Fo——— P Z.n. ,
EO

(8.2)

(8.3)

(g 4)

8. SUMMARY

We have developed a method for calculating the
density of states in the low-energy tail of an impurity
band in the high-density limit based upon counting
minima in an appropriately smoothed version of the
random potential.

We have tested our theory on an exactly solvable
one-dimensional Gaussian model and have found that
our approximate results yield the correct form, Eq.
(1.2), and, when appropriate second-order corrections
are applied, the correct numerical coefficient within 8%.

We have applied our results to the case of screened,
charged impurities, in a Gaussian approximation, and
have found

i (&)=[(Q& )'ie] ( ) PL —& 'b( )/2t], (g.f)

where
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sions, and for originally directing his attention to these
problems. He would also like to acknowledge the
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Fellowship during a portion of this work.

APPENDIX A: CONDITIONAL EXPECTATION
VALUES IN GAUSSIAN STATISTICS

Let Z~, Z2, , Z„be n independent Gaussian varia-
bles of mean zero. Let X and F be Gaussian variables
of mean zero that may be dependent on the Z„. Then
we can write

X=.4++„a„Z„

and impose the condition that .0 be u»correl;~ted with
the Z„:

& 1Z„)=0, r=1, , n (A2)

by choosing the numerical coefficients according to

a„=(XZ„)/(Z„') . (A3)

The coefBcient a„ is analogous to the "component" of
the "vector" X in the direction Z„. The variable 3 is a
linear combination of X and Z„and is thus a Gaussian
variable of mean zero. Because a set of Gaussian
variables which are uncorrelated are statistically inde-
pendent, A is independent of the Z„.

Let the symbol (( )) denote the conditional expec-
tation value of a variable when Z~, .

, Z„are specified
to have the values s~, , s„. Since 3 is independent
of the Z„, the conditional expectation value of 3 is the
same as the ordinary expectation value, namely, 0. It
follows that

«X))=Z a"
Similarly we may write

l'=B+Q b,Z, ,

b =&1'Z )/&Z. ')

where n is the concentration of impurities of charge
Z,e, Eo is the dielectric constant, and no* is the efI'ective
mass of the carrier whose impurity band is under study.
The determination of the reciprocal screening length Q
is discussed in Sec. 6. The numerical functions b(v) and

~ ~ ~ where
a(v) are given in Figs. 1 and 9, respectively.

(A4)

(A5)

(A6)
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"In one dimension, there is an algebraic singularity as given
in Eq. (3.5) of Ref. 9. In three dimensions, the density of states is
concentrated within a region

~
Ji/E; —1~ &exp( —'/'),

where ~&(1 is the average number of impurities within a Bohr
radius, i.e., in the volume 47ra'/3. However, the differential density
of states vanishes at E=E; faster than any power. See Eq. (49)
of M. Lax and H. L. Frisch, in Imperfections in Nearly Perfect
Crystals, edited by W. Shockley (John Wiley 8z Sons, Inc. , New
York, 1952), Chap. 6.

and B is independent of the Z, . As in (A4), the condi-
tional expectation value (for fixed Z,) can be written

(&l'))=Z b" (A7)

(XV)=(AB)+g a,b,(Z,') (Ag)

The conditional expectation value of the product
[X—((X))][F—((F))] is just the conditional expecta-
tion value &(AB)). Since A and B are independent of
the speci6ed variables, the conditional expectation
value ((AB)) is equal to the ordinary expectation value
(AB). This in turn may be related to the ordinary
expectation value (XV) by
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Hence, using (A3) alld (A6), we have

«[&—&(X))j[V—&(V))j))
(rZ„)&Z„V)= (Y I )—P —. (:V~)

(~.')

The normalization of f(x) re&tuircs that.

f(x) = (~/2)'" sech ~x,

f(0)= (~/2)""-,

p, =4v.

(HS)

(Bq)

(810)

APPENDIX 8: EVALUATION OF FORMULAS
IN THE ONE-DIMENSIONAL MODEL

The normalization integral, and most other integrals
involving f(x), can be performed by changing the
variable of integration from x to e '"".AVe also use the
fact that d sechx/dx= —sechx tanhx. We find

Equation (4.5) for f(x) may be written

2—f"(x) lu—f(x)' =k—"f(x)

Multiplying by f'(x) and integrating, we have

[f'(x)]'= rc'f(x)' ,'pf(x—)4+—const.

(81)

(82)

oo

(V.(y)')=- f'( x)d x
2

K ) (811)

Since f'(x) = f(x) =0 when x= ~, the constant in (82)
must equal zero. We have chosen our origin so that f(0)
is a maximum and hence, f'(0)=0. Equation (82) thus
implies

(83)
If we define

atj

(V,'(y)'-) =— (d[/(x) j'/(fx)'dx-
2

(812)

«(x)=—f( 'x)/f(0),

then we have u(0) = 1, and

oo

0=—
2

f'(x)' dx= -6a'-. - (813)

The Fourier transform of f(x) is computed by a
u (x) = [u(x) u(x)'$"'-I» x& 0. (») different method. In the integral

The sign of (85) is axed by noting that u(x) is a maxi-
mum at x=0. From (85) it follows that for x)0, f(k) = e "'f(x)dx, - (811)

= tanh '[(1—u-')' -']=sech '«. (86)„r(1—v')"'

Similar procedures may be used for x&0, and we find
that for all x,

u(x) = sechx.

we can close the contour of integration in the upper
or lower half-plane according to the sign of k. Poles of
f(x) occur when x= is.~ '(n+-,'), where n is any integer.
The residues of the integrand at these poles form a
geometric series which may be easily summed, giving

f(k) =x(2g) '" sech(k7r/2r) . (815)


