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Hall Coefficient of Hubbard's Model*
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XVith the aid of the Kadanoff-Saym transport equations, the high-field Hall coefhcient is calculated for
holes in narrow bands according to Hubbard's model. It is found that the inverse Hall coefhcient is pro-
portional to the fraction of momentum space occupied by the holes, v hich in Hubbard's model does not
equal the number of holes per atom. Therefore, the holes would not be compensated by the conduction
electrons, and it is concluded that Hubbard s model in its present form is inapplicable to even-valence
transition metals such as palladium and platinum.

I. INTRODUCTION

ECENTI.Y, there has been considerable experi-
mental evidence for anomalies in the spectral

density for d electrons in the transition metals" Xi,
Pd, Pt. In Ni, for example, the spectral density appears
to be split into two parts: the high-energy part resembles

the expected band structure density of states; below it
is split oA' a single peak of strength nearly equal to
that of the higher part.

Hubbard'4 has proposed a microscopic model which

under certain conditions gives split bands as suggested
4». experiment. For 0.5d holes per atom, Hubbard's

theory gives peaks of about equal weight, ' in agreement
with the nickel data, but it predicts approximately
equal widths, instead of one "band-like" and one
"resonance-like" peak. Clearly it would be desirable
to find further predictions of Hubbard's model to
compare with experiment. '

For Hubbard's model to predict split bands, the
elfective intra-atomic Coulomb repulsion energy (I)
must be & the bandwidth. ' Various estimates" —"for
I in transition metals (including the effect of s screening)
have varied betveen 0 and 15 eV. Recent experi-
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mental evidence" suggests that I 7 eU in Ni, although
the interpretation of the experiments depends, at least
superficially, on Anderson's local moment theory, '
whose validity is uncertain. ""There seems to be little
doubt, however, that I is sufFiciently large in the rare
earths. It may well be that Hubbard's theory is
applicable to the rare earths, even if it should prove in-
applicable (or uninteresting) in the transition metals.

As emphasized by Phillips, ' an interesting property
of a "resonance" or "split-band" model is that the
Fermi surface need not enclose the same volume of
momentum space as predicted by normal Fermi-liquid
theorv. ""Indeed, Hubbard's model predicts that the
fraction of momentum space occupied by the d holes is
larger than the number of d holes per atom. Herring"
has suggested that this may lead to incorrect predictions
of the galvanomagnetic properties. The point is this:
experimental evidence" indicates that the d holes of
platinum and palladium are compensated by the s
electrons in high magnetic fields. Presumably, then, the
d holes must contribute a field-independent term

nj,ec t—o the inverse Hall coeflicient (R ') to cancel an
identical term from the s electrons (which presumably
form a normal system). We are thus led to ask whether
Hubbard's model predicts that the hole contribution to
R ' is proportional to the density of holes, or whether
it is proportional to the volume of momentum space
occupied by the d holes (or to something else). In this
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paper we mak. e a detailed calculation to answer the
question.

To do this calculation, we use the Kadanoff-Baym
transport equations. "When applied to the simpler form
of Hubbard's model, these equations reduce to a single
equation analogous to the ordinary Boltzmann equa-
tion. In a high magnetic field this equation ma&. be
trivially solved for the conductivity. Ke find that R—'

is proportional to the volume of momentum space
occupied by the holes, rather than to their density.
Next we extend the analysis to include the various
lifetime effects considered in Hubbard's third paper. 4

We find that E. ' is not qualitatively affected by these
refinements, provided that the bandwidth is narrow
enough that the bands remain well split. Our results
depend only on certain general properties of Hubbard's
Green's function, and on none of the specific details.
It is concluded that Hubbard's model is probably not
applicable to the even-valence transition metals, such
as platinum and palladium.

It is convenient to write the 4reen's function in the
form

where the self-energy Z is given by

Z(z)=z —s—F(z). (4)

where E~+ are the two (real) roots of

Ey+ ——ep+Z(F. p-), (6)

and the renormalization coeff. cients Z„+ are given by

Assuming, for the moment, that F is given by (2), v;e

find for the spectral weight function

2 (p,(o) = —2 ImG (p, co+io+)
= 2ir[Z~ b((o —E, )+Zp+b((o —E,+)], (5)

II. HUBBARD'8 MODEL

In what follows we consider only the simpler theory
for a nondegenerate band. For thermal equilibrium,
Hubbard writes the Green's function in the form"

Zy++Z~ = i.
Because the self-energy does not depend on wave vector

p, we have the useful relation

where e~ is the band energy and e is the mean band
energy. According to Hubbard, the quantity (e~—e) is
to be thought of as describing the propagation of elec-
trons between atoms and F(z) the resonant properties of
the atoms themselves. In the simplest approximation'

1 1—-', n -', n

+
F(z) z—c z—z—I

which resonates at frequencies corresponding to the
diiference between atomic levels. (In this approxima-
tion, the atomic levels occur at energies 0, 8, and 2m+i
corresponding to 0, 1, or 2 valence electrons, respec-
tively, on the atom. ) Here e is the number of electrons
per atom, and I is the intra-atomic Coulomb repulsion
energy mentioned earlier. The split bands predicted by
Hubbard occur because the interatomic kinetic energy
(e„—s) is too small (by assumption) to outweigh the
atomic level splittings.

We shall consider the case where the Fermi energy p,

lies in the upper band of (5), and shall henceforth omit
the "+"superscript from quantities referring to this
band.

In a later paper, ' Hubbard has refined his model to
include the effects of "resonance broadening" and
"scattering" corrections on the atomic resonance func-
tion F(z). The spectral weight function thus obtained
does not retain the simple structure of (5). However,
there are still split bands, if the bandwidth is sufhciently
small; roughly speaking, one replaces the 8 functions of
(5) with functions of finite width.

In this paper we consider not the equilibrium
properties of Hubbard's model, but its behavior in
crossed electric and magnetic fields,

eE= —v U —(8/BT) K,
eB=cVX K.

'8 L. P. Kadanoff and G. Baym, Quantum Statistical, Mechanics
(%. A. Benjamin, Inc. , New York, 2962), hereafter abbreviated
KB. For a discussion of the equilibrium properties of the Green's
functions we use, see also P. C. Martin and J. Schwinger, Phys.
Rev. 115, 1342 (1959). For applications of the transport theory
see R. E. Prange and L. P. Kandanoff, ibid. 134, A566 (1964),
and also D. C. Langreth, Ph.D. thesis, University of Illinois, 1964
(unpublished). For a generalization of the KB equations to a solid,
see B.L. Jones and J. M. McClure, Phys. Rev. 143, 133 (1966)."In general, we follow the notation of KB (Ref. 18). Specif-
ically, we pick units such that A and the volume of the system
are unity. Notice that Hubbard's de6nition of the Green's function
differs from KB's by a factor of 2w.

We describe the response of the system to the helds
using the functions" g~(p, co; R, T) and g~(p, co; R, T),
which, respectively, represent. the numbers of particles
and holes per atom with wave vector p and energy ~ in
the vicinity of the macroscopic space time point R,T.
The total (local) numbers of electrons and holes per

~ See KB, Ref. 18, p. 60 and p. 102 for de6nitions of g &.
Note that in a solid the "spatial" coordinates become %annier
site indices.
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atom is then"

~, (R,T)= (2/2s)g, da) g&(p,(u; R,T),

ng(R, T) = (2/2s)P, A) g&(pp&; R,T),

and the current per atom is

j (R,T) = (2e/2s)g, ~ &u~u —Kg (p)~i R)T).

The nonequilibrium Green's function has the same
structure as the equilibrium one":

g(p, s)=Ls —e, K—U —a. (p,s)] ', (13)
where

eke p (p, (u)

~(u, s) =~(p, ~)+
2x z—Go

The quantities 0&(p,&u) and 0&(p,co) defined by KB,
represent, respectively, the scattering rate of an
electron into the state pcs given that it is originally
unoccupied, and the scattering rate out of the state ~
given that it is originally occupied. The sum of these
rates y(y, &a) is proportional to the inverse lifetime of
the state. The (real) quantity o (y, oo) is the part of the
self-energy that is local in time.

For a complete description of the nonequilibrium
properties of Hubbard's model, we would need a
knowledge of the nonequilibrium values of the functions
o ~. For a calculation of the high-field Hall coefEcient,
however, we shall only need to use one property which
o ~ is assumed to have, which we describe below. In
thermal equilibrium, the scattering rates are embodied
in the function F(s), which is independent of wave
vector, because it represents the resonant properties

"In a solid, e.{R,T) does not strictly represent the electronic
density, but rather the occupation number of the %annier state
centered at R. In thermal equilibrium it is independent of E.
Similar comments apply to nf, and j. Equations (10} and (11)
hold when the potentials U and K do not vary appreciably over
a lattice spacing: they give the linear response to the electric
6eld and semiclassical response to the magnetic 6eld correctly.~ See KB, Ref. 18, p. 116.

For compactness we shalt. usually suppress the R,T
arguments, denoting nonequilibrium quantites by lower
case letters, and their equilibrium analogs by capitals.

In terms of g& and g~, the nonequilibrium Green's
function g and spectral weight function a are given by

d~ o(p,~) d~ g'(u, ~)+g'(p, ~)
g(f, s) = — = — (12)

2Ã z—op 2%' Z—M

of the individual localized atoms. Hence the equilibrium
scattering rate functions Z~ are also independent of
wave vector. The interatomic kinetic energy never
gets renormalized. It is clear that if this same philosophy
were carried out in a calculation of ~ & for small devia-
tions from equilibrium the insensitivity to wave vector
would persist. Thus, following Hubbard, we henceforth
neglect any wave-vector dependence that 0 ~ may have.
In fact, this wave-vector independence is the only
property of Hubbard's model that we shall need, aside
from the qualitative notion that there are two split
bands. We never use any of the specific details of
Hubbard's calculation.

III. THE HALL COEFFICIENT

In this section we consider only the simpler form of
Hubbard's model. That is, we assume that the spectral
weight function u(p, co) has the structure depicted by
Eqs. (5)—(8). These assumptions enable us to retain an
analogy between Hubbard's model and a normal Fermi
liquid. They will be relaxed in Sec. IV.

To determine g and g~ we use the KadanoG-Bayrn
equations" (KBE). These equations are expansions of
the exact Green's-function equations in terms of the
time and space derivatives of the external potentials
K and U. We note that for Hubbard's model any change
in the density of the particles involves a reshufn, ing of
the populations of the upper and lower bands. Since the
energy diGerence between the bands is the largest energy
in the problem, the KB expansion is probably not
appropriate. However, if we restrict ourselves to steady-
state phenomena where only the characteristics of the
upper band are changed then we may expect the KBE
to give the linear response to the electric field and the
semiclassical response to the magnetic field exactly.

The KBE for g~ is

L~ —U—~y-K —Rea. , g&]y, +PReg, ~&],,„
0&g&+0&g& (15)

The equation for g& is obtained by interchanging all
&'s and ('s in (15).The bracket notation on the left
side of (15) means

8F BG 8F 8G
Ã G]~,-=-

8% BT 8 1 t9G0

w+ v,G+vRF—v,G (16)

for any two functions Ii and G.
It is desirable to add some sort of dissipative mecha-

nism to Hubbard's model, to give the system a finite
conductivity. We do this by replacing the right side of
(15) by

(g&+g&)g&+ (g &+tt&)g&

~ Reference 18, pp. 33 and 102.
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where

sr ~(y,o); R, T)=P,.M, , a.g~ (p', o); R,T).
The above interaction is typical of some elastic scatter-
ing mechanism. For example, for randomly positioned
impurity centers interacting weakly with the electrons,
it takes the form

M„„=nr iPx d'r 9,*(r)V(r—x)9,.(r), (18)

C
+-B (VpFXVpG). (19)

ln deriving (19) we have used, among others, the
identities

Vaf[g(R)]= V fEV ng+V, fX (VnX g),
(VI1) ~-~ (VS) =-~'X(»S) (20)

As we show below, Eqs. (15) may be reduced to an
ordinary Boltzmann-like equation with the ansatz

g&(y, o); R,T) = a(P,Q)fp, (21a)

g (p,o); R,T)=a(P,Q)(1—fp). (21b)

notice that we assume that g~ and g~, and hence all
other quantities, depend on R and 1only implicitly
through the defjnition of P and 0. Such a trial solution
clearly satisfies our steady-state conditions that n(R, T)
and j(R,T) be independent of R and T, and we will
6nd that it also satishes the KBE. The utility of
(19) is now immediately apparent, since in our case
[F,G]p, n = O.

For 0 in the upper band, ~ and 0- vanish, so
that in evaluating the left side of (15), we need only
evaluate (19) with F=Q ep —Reo(Q) and G—=g (P,Q)
= a(P,Q) fp.

where ttr is the impurity density, V(r) the impurity
potential, and q „the electronic Bloch functions. Since
we only intend to treat these dissipative effects to lowest
order, we need not modify the left side of (15).

The KBE may be expressed in a manifestly gauge-
invariant, and more convenient form by regareing P, 0,
R, T as the independent variables instead of y, ~, R, T,
where P= p —K(R, T), Q=o)—U(R, T). Then (16)
becomes

BF BG
[P,G],,. [E,G], ,+ee=Vrc— V,s)80 80

The first equality above follows because a(P,Q)
= 2vr8(Q —ep —Reo) "commutes" with Q ep—R—ea.
Because of the vanishing of a~ the evaluation of the
right side (15) of the KBE is straightforward. Finally
an 0 integration over the upper band yields

[eE+ (e/c) VpepX B]' Vpfp
= —2vr Qp zpMp p sp 8(ep —ep )[fp fp ]—, (23)

v here ep and zp are dined analogously to their
equilibrium counterparts, E~ and Zp. Similarly, one
can easily verify that the substitution of (21b) into the
KBE for g~ yields (23) also. This redundancy of the
second KBE simply means that the assumed structure
of the solution was correct.

Equation (23) is, of course, aside from several
renormalizations, just the independent-particle Boltz-
mann equation, which with certain assumptions about
the form of ep, Mp p, and sp may be solved for the
conductivity tensor. lf we take E and B perpendicular,
however, the right side of (23) plays no role in the
high-8 limit, and we henceforth neglect it. AVe have
included it thus far to show that it leads to no unusual
effects.

We linearize the left side of (23) in the electric field
by letting

fp Fp+ j)fp ep Ep+ j)EP, (24)

where J p and Ep are appropriate to thermal equilibrium
(no fields). Then

—e E VpEpb(Ep —p) —(e/c) VpEp (Vpj)EpX B)
Xb(E —)+( / )(V E XB) Vpbf =0. (25)

A solution" of (25) is (recalling that RJ B)
~fp=[cB-'P (EXB)-»p3(Ep-~) (26)

Equation (23) is actually quite general. The only
assumption needed in its derivation was that 0.~ and 0.~
vanished at and were continuous across the Fermi
surface. Thus (26) is valid for a normal Fermi liquid
as well. "The main problem in its general application is
to express the current in terms of bfp, and to calculate
PEP, if necessary. For a normal Fermi liquid, the current
is given by"

j= 2e p p(V pep) fp s 2e p p VpEp[$fp+ j)Epf) (Ep—p)]
= 2ec& ' Pp(VpEp)P. (EXB)j)(Ep—is) . (2))

Hence the Hall coefFicient is given by

[(Q ep Rea), ri(P—,Q)f—p]„,.
= a(P,Q) [(Q—.p —Re~),fp)„,.

(ecE)—'= — P ndS,
(2sr) 3 Fermi surface

(28)

I9

(p,a) 1—Ee )eE v f
(90

where n is a unit normal vector in the direction of
QpEP. We assume that the holes occupy closed regions

quation (19) determines sfp to within an additive junction+p&PX +pIt p) ~ (22) of Fp which does not affect the current.
'See KB Ref 18, Chap 11
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of momentum space, so that (28) becomes

(ecR) '= —2V/(2s. )', (29)

wave-vector independence of the self-energy, one
obtains

where U is the volume of momentum space (per zone)
occupied by the holes. Of course, in normal systems,
2V/(2s. )' is just the density of holes, so that compensa-
tion results.

In Hubbard's model, we may calculate the current
using (11) and (21) plus the nonequilibrium analogs of

(5) and (8):

where

—eE vpepQ(ep, Q) 2vrb(Q —p),

Q(e„fI)= I (Q)A'(P, Q)/4~.

(33)

(34)

To evaluate the terms on the left side of (15) propor-
tional to the magnetic field, we must evaluate the last
term of (19). Here we cannot use (32); however, the
wave-vector independence of o. ~ leads to considerable
simplification. Ke obtain

j= 2e pp (dQ/2+) (Vpep)a(P, Q)fp (e/c) (VpepX B) Vpg~(P, Q) . (35)

Thus the KBE (15) becomes
30= 2e Q pzp(Vpep) fp= 2e Pp(Vpep) fp, —eE vpepQ(ep, Q) 2s.b(Q —p)

+ (e/c) (VpepXB) ' Vpg (P,Q)

(P,Q)g (P,Q)+o (P,Q)g~(P, Q) . (36)

so that (29) is valid in this case as well. " However,
2V/(2w)' is greater than the density of holes, since

na=2 Q Zp, 0(Zp(1,
EP&fs

(31)

so that Hubbard's model does not predict compensation.

IV. EXTENSION TO INCLUDE
LIFETIME EFFECTS

Here we generalize the results of the preceding
section. As noted earlier, Hubbard's more sophisticated
model' does not retain the property of vanishing widths
(P), so that the arguments of the preceding section do
not apply. Of course, the wave-vector independence of
the self-energy does persist; fortunately this is the
only property we shall need in the high-field limit.

The ansatz (21) no longer holds. Nevertheless, we

may linearize the terms in the electric field on the left
side of the KBE using the local equilibrium values

g~(P,Q) =A (P,Q) $1—e(Q —p)],
g&(P,Q) = A (P,Q) e(Q —~),

(Q) =r(Q)LI-e(Q-&)),
o~(Q) = I'(Q) e(Q—p) .

(32)

According to (15) then, we must evaluate the second
term of (19) with F=Q ep —Reo, G =—g~, and add it to
the evaluation with I' = Reg, 6=0.~, where g

~ and 0 (
are given by (32). This evaluation is a matter of
straightforward algebra; using Eqs. (12)—(14) plus the

"We have tacitly assumed that with p in the upper band, the
lower band contributes nothing to the current. This may be seen
by repeating the steps leading to Eq. (23) for the lower band, thus
deriving an identical equation. When this equation for the lower
band is linearized in E, then one 6nds that the change in the
distribution function is proportional to 5(Fp —p), which is zero
by assumption.

Again we assume KJ B and take the high-8 limit, "
so that the terms on the right side of (36) may be
neglected. Then (36) has a trivial solution, which, when
combined with (11) gives

j= 2ecB-' Pp(Vpep) (EX II) PQ(ep p) . (3i)

Assuming again that the holes occupy closed regions in
momentum space, we find

—(ecE) '= de Q(e—,p)$2V(e)/(2s)'i) (38)

where V(c) is the volume of momentum space enclosed
by the surface ~p——~.

iVote that Q(e,p), when considered as a function of e,
is peaked around e=p —Z(p), has unit area, and width
-I'(p). Thus as I'(p) ~ 0, we recover the results of
Sec. III. Even in the more general case I'(p)&0,
however, (ecR) ' is proportional to an average momen-
tum space volume, and not to the hole density. Ke
emphasize that none of the details of Hubbard's model
have been used in the calculation; Eq. (38) follows
solely from the wave-vector independence of the self-
energy functions.
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"We should point out that unless the bandwidth is small
enough so that the bands are well separated, aW would be too
large for this high-6eld limit to be attainable in practice.


