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General kinetic equations between vacancies, divacancies, and impurity atoms are presented. Some
applications of these equations to the reactions during quenching are treated. The critical temperatures
or freezing temperatures which determine the status after the quench are also given. The treatment shows
that the cooling rate near the critical temperature is important, and these temperatures are rather low in
usual cases. The treatment is in good agreement with the results of the actual change during quenching
calculated by a digital computer. A relation between the binding energy Bv; of an impurity atom and a
vacancy and the solubility limit Cl, of the impurity is presented. A relation between the binding energy and
the heat of solution II is also discussed. The tentative relation is Bv; =0.52H = (—0.088 logCI, +0.088}eV.

I. INTRODUCTION
' "N recent years a number of quenching, equilibrium,
~ ~ and diftusion experiments have been done on pure
metals and dilute alloys. It has been shown that the
point defects in pure metals and dilute alloys play an
important role in these experiments. Two major factors
for the interactions between vacancies and impurity
atoms and between impurity atoms themselves are the
distortion of lattice around the impurity atoms' and
the electrostatic interaction between vacancies and
impurity atoms. 2

The total fractional concentration of single vacancies
and single-vacancy impurity complexes in a dilute alloy
at a thermal equilibrium is given by~

C= C1V+CVs

et a/. ' first investigated this problem. They realized that
there exists a critical temperature T*, above which the
reaction is fast enough to maintain a thermal equi-
librium and that below T* the reaction is too slow to
maintain the thermal equilibrium. Kimura et a/. 4 also
discussed this problem. Koehler, de Jong, and Seitz'
extended this treatment. Fujiwara' analyzed the re-
action between vacancies during quenching by means
of a digital computer. Recently, CotterilP also analyzed
the reactions by use of an analog computer. Mori, '
Meshii, ' and KauGman ' studied experimentally the
process occurring during quenching. This treatment
was extended by Flynn, Bass, and Lazarus. ' This paper
treats general kinetic equations between point defects
with impurity atoms. Simple applications of the equa-
tions to the process during quenching are also given.

II. KINETIC EQUATIONS OF POINT DEFECTS
+12c;2, exp( —(Er~ Br,)/k T), —(1)

where c; is the fractional concentration of impurity
atoms. The first term represents the fractional concen-
tration of free vacancies clv, and the second term repre-
sents the fractional concentration of impurity-atom—
vacancy complexes cv;. A1 and A& are constants, and
Ev" is the energy required to form a vacancy far from
an impurity atom. 8v, is the binding energy of impurity-
vacancy complexes.

A quenching experiment is one of the ideal experi-
ments to study the point defects in metals because the
major defects present at high temperatures are va-
cancies. However, in a practical quench the quench
speed is finite; and because of this the reactions between
vacancies and other defects progress even during a
high-speed quench. The quenched status, therefore, is
not the same as that of quenching temperature. Koehler

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' For example, R. Swalin, Acta Met. 5, 443 (1957).' For example, D. Lazarus, Phys. Rev. 93, 973 (1954).' More correctly the first term of Kq. (1) is AI(1—13c,)
Xexp( —I';v~'jkT). The author is indebted to R. M. J. Cotterill
for pointing out this correction.

The kinetic equations for vacancy motion in a dilute
alloy can be treated in analogy to the paper by Koehler,
de Jong, and Seitz, ' who considered the case of pure
metals. The four configurations of divacancy-impurity
complexes and the three configurations of complexes
containing two single vacancies with an impurity atom
are shown in Fig. 1. The kinetic equations with geo-
metrical coefFicients in a face-centered-cubic metal are
as follows:

' J. S. Koehler, F. Seitz, and J. E. Baurle, Phys. Rev. 107, 1499
(1957).

'H. Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf, Acta
Met. 7, 145, 154 (1959).' J. S. Koehler, M. de Jong, and F. Seitz, Proceedings of the
International Conference of Crystal Lattice Defects (1962);J. Phys.
Soc. Japan 18, Suppl. III, 1 (1963);M. de Jong and J. S. Koehler,
Phys. Rev. 129, 40 (1963); 129, 49 (1963).

H. Fujiwara, Technical Report, University of Illinois, 1960
(unpublished).

' R. M. J. Cotterill, in Lattice Defects in Quenched Metals, edited
by R. M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii
(Academic P'ress, Inc. , New York, 1965), p. 97 ~

T. Mori, M. Meshii, and J. W. Kauffman, J. Appl. Phys. 33,
2776 (1962).

9 J. W. Kauffman and M. Meshii in Ref. 7, p. 77."C. P. Flynn, J. Bass, and D. Lazarus in Ref. 7, p. 639,
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dczy/dl= —2al(V, V ~ V—V; a)czv +2nz(V V—~ V, V; a)czv —az(z& V —+ V—2, V; a)c,czy
+nz(V i —si, V; a)cv;+az(D" —& V —i, V; a,)czz~+nz(D&0~ Y —i, V; a)cD"
+nl(D' ~ V i—, V; a)CD'0+2az(D ~i, V, V; a)czzso+az(Dzzo +V— i,—V; a;)cD"0
+az(D"' —& V i—, V; a)cD'"+2nz(D'"~i, V, V; a)cD'"+nz(D'"~ V i—, V; a,)c'"
+Q (D'"~ V i, U —g)cD'~+2n (D'&0~i U V a)czzz&oyaz(T90~ V i—, V g)czso
+a (T120 + V i, V' —a)cpzzo+az(Tz&0~ V—z, V) a)cz n—z(V z—, V + D ) a)cv, czv

a—z(V i—, V~ DO; a)cy, n—l(V i—, V ~D";a)cv;clv nz(V —i, V~—D";a)cv;clv
az(V z) V + T ) a)cviclv+Ql(V 2) V ~ T

q g)cviczv (21(U z) V ~ T ) g)cviczy—2nl(z, V, V —9 D 0& a)c,czy —2az(z, V, V ~D";a)c,czv —2nl(z, V, V~ D'8'& a)c;clv'
—Qz(V —

zq V ~ zq V—V) g)cv„czv+'nz(zy V V ~ V 2& V j g)ciczv+DlvV clv i (2(2)

dczv/dt=nz(V, V~ V—U; a)czv' —az(V —V~ V, V; a)c,v+az(D" ~i, V—V; a)czz"
+n (D" ~ i, V—V; a)cD" +nl(D' 0 ~ i, V—V; az)czzz&0 —nl(i, V—V ~ Dso; az)c;czy

az—(i, V—V; D";az)c;czv nz(i—, V—V 9 D";az) c;czv+nz(V i, V—~ i, V—V; a)cv;czv
—nz(i, V—V —+ V —i, V; a)c;czv+DzvV'czv, (2b)

dc,/dt= nl(i—, V~ V i; a)c,c—zv+al(V i ~—i, V; a)cv, +al(Dso~i, V—V; a)cD90
+az(D" +i, V& V; a)—c "+nz(D"' +i& V——V; a)cD"'+az(D'" —+i, V, V; a)czzzzo

+n (Dz&0~ i P" V ~ g )c 80+az(D 80 ~ i V V' g)cDz&0 nz(z V V ~ Dso ' gz)c csv
az(—z, V—V ~D'"; az) c czv nz(i—, V—V ~ D'"; az)c czv —nz(i, V, V ~ D"; a) c czv'—az(i, V, V-+ Dzzo& a)cczy' nz(i, —V, V 1 D'"; a)cczv'+nz(V 2 , V ——+'i, V—V; a)cz;czy

—nz(z, V—V —+ V z, V;—az)c;c,v., (2c)
dcv, /dt= —nz(V —i —+i, V; a)cv+nl(D' + V i, V; a)czz' +—nz(D" ~ V i, V—; a;)cD'

+Ql(DS ~ V i, U—; a)cD' +nz(D" ~ V i, V—; a()cD" +.Qz(D' 0 ~ U i, U—; a)CDzz

+a (Dz&0~ V' z V. g )c 180+a (D180~ V 2 P'. g)c 1&0+a (Tso~ V z V'. g)c 90

+n (Tzz'~ V i, V—; a)czzz'+nz(Tz" +V i V——; a)czz&0—nz(V —2, V —+ D"; a)cv;czv—az(V —i, V~ D"; a)cv,czv nz(V—i, V ——+ D"', a)cv,czv nz(V i, V ——+ D'80; a)cv;cl'v—nl(V —i, V ~ T'; a)cv;czv —nz(V —z, V ~ T";a)cv,czv —nz(V —z, V ~ T'; a)cy;czv
nl(V —i, V~—i, V —V; a)cv;czv+az(z, V—V~ V i, V; a)c;c,y+Dy;—V cy;, (2(j)

60/dt — a (D&0~ Dso. g )c 60 a (D&0~ D120. g )c 60 a (D&0~ Tso. g )c 60

nz(D60 ~ T120 ' g~)czz&0 a (D&0~ V i V g)CD60+az(DSO ~ D60 ~ g, )c so

+ az(D120 ~ D&o. g )czzzzo+nz(. V 2 V + D&o. g)cy, czv, (2e)'
dcD"/dt=n (D" 1 D" a )c "—a (Dso~ D" a )c "—n (D" +D'" a )c " n(D—"—+V zV a )c "——

—al(D" ~ V z, V; a—)czzso Qz(DSO ~i, V—V; a)czsso nz(DSO ~i, V, V; a)czP'
+az(D" ~Ds; az)czzzz +a (Ts ~D; i)czs +nz(TS ~ Ds a)czso+Qz(V i v ~ Ds —

j a)cv(czv
+nz(i, V—V ~D"; az)c,czv, (2f)

dcD120/dt=az(D&0~ Dz 0' az)cD&0+nz(DS ~ D 0' gz)cD —az(D 20~ T ' z)c~ 2 —Q (D 2 ~ D& ' g~)c~zz
(Dzzo ~Dso. g )c 120 a (D120~ Dz&0. g)c 120 a (D120~ Y' z V. g )c 120

Qz(D120~ U z V' g)cD120 nz(D(20~ z V Y ' a)cD(20 nz(D(20~ z V V' a)c~z20
+n (D180~ D120 ' g )czzz&0+n (Tz '0 ~ Dzzo z)c 120+a (V' z P' ~ D120 . g)cv czv

+nz(i) V—V ~ D'2; az)c,czv+nz(i& V, V ~ D120; a)ciczy +Dc) V cg) (2g)
c 180/dt=n (D(20~ D180' a)c zzo Q (Dz&0~ T180' z)c 80 n (Dz&o~ Dzzo' a )c 180

—a (Dz"~ V i v a)c—zz'" nl(D'" +U —i, V a)c——zz'"—a (D'"~i U —V. a )CD'"
(Qz'D~i U V a)cD'~ jaz(T'" —&D'" i)cp'"/nz(V i v —+ D—'"' a}cy czv

+ (ia, zV —V 9 D"0; az)c,czy+az(i, V, V ~D'; a)c,czv (2h)
dcr /dk=nl(D ~ T&; a;)cz&6 +nz(DS ~ T~; i)cd +al(D +T; a,)CD~ —al(T 1 D'; i)cz-

(T90~ D90 ~ g)c 90 n (T90~ D60. a )c 90 (Tso~ T120. ) 90

nz(T" ~ V —2, V—
) a)c&"+nz(T'"~ T; a;)cz'"+az(V i, V; T";a)cv,c,v —(21)
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der"'/d(=o (D"~ T'" a.)cn60+o (D120 v T120 ~ z)r&120+G1(T90 v T120 ~ a )cr '~1(T120 v T180 ~ a, )r~120

061(T" 1 V i—, V; a)cz" +621(V —i, V ~ T";a)cv,c1v+Dr''"Pcz", (2j)

180/d( o (D180~ T180. 2)c 180+~ (T120~ T180 ~ a.)r 120 o (T180~ D180 ~ 2')c, 80

(T180~ T120. a )0 180 ~ (T180~ V 2' V . a)~ 180+~ (V 2 (v'. T180. a)c c, (2)c)

In these equations ctI is the fractional concentration
of single vacancies, c~I is the fractional concentration
of divacancies, c; is the fractional concentration of free
impurity atoms, t..I, is the fractional concentration of
single-vacancy —impurity-atom complexes, c~" is the
fractional concentration of divacancy —impurity-atom
complexes [Fig. 1], cD90 is the fractional concentration
of divacancy —impurity-atom complexes D' having near-
est-neighbor bonds at 90' [Fig. 1], cD'20 is the fractional
concentration of divacancy —impurity-atom complexes
D" having nearest-neighbor bonds at 120' [Fig. 1],
and c~'80 is the fractional concentration of divacancy-
impurity-atom complexes D" having the divacancy
and impurity atom in a straight line [Fig. 1].cr90 is the
fractional concentration of two single-vacancy —impurity
complexes X" having two single vacancies at 90'
[Fig. 1], 6r120 iS the fraCtiOnal COnCentratiOn Of tWO

single-vacancy —impurity-atom complexes T" having
two single vacancies at 120' [Fig. 1], and 6r'80 is the
fractional concentration of two single-vacancy —im-
purity-atom complexes T'~ in a straight line [Fig. 1].
Larger vacancy clusters are not considered here. D&& is
the diffusion constant associated with the motion of
single vacancies. D2~ is the diRusion constant associated
with the motion of divacancies. D~; is the diRusion
constant associated with the motion of single-vacancy—
impurity complexes. DD9, DD"0, and D&" are the diRu-
sion constants associated with D", D'", and T'",

r——
q

0
(o) (va

Qv

tc} ~v

0
(d) iV

respectively. The coefIicients which appear in the diRer-
ential equations are given in Table l. These coeKcients
are very useful for numerical calculations. Iv is the fre-
quency of vibration of the solvent atoms which are the
nearest neighbors of a vacancy in a, pure matrix [Fig.
2(a)]. 2v, is the frequency of vibration of the four sol-
vent atoms which are the nearest neighbor of both of the
vacancies in a divacancy [Fig. 2(b)]. The frequency of
vibration of the other fourteen nearest neighbors of a di-
vacancy is taken to be I v„ the same as in a pure matrix
[Fig. 2(c)]. 1v, is the frequency of vibration of the im-

purity atom which is next to a vacancy [Fig. 2(d)]. 1, v,
is the frequency of vibration of the four solvent atoms
which are the common nearest neighbors of an impurity-
atom —vacancy complex ['Fig. 2(e)]. The frequency of
vibration of the other seven nearest neighbors of the va-
cant site of an impurity-atom —vacancy complex is taken
to be 1v [Fig. 2(f)]. 21, is the frequency of vibration of
the impurity atom in a D" configuration [Fig. 2 (g)]. 2,v,
is the frequency of vibration of the solvent atom at the
top of a D" configuration [Fig. 2(h)]. The frequency of
vibration is taken to be 2v, for the two solvent atoms

0 0
(f) (vo (g) (h)

o/
Qv

G 8
0 Qv

( J) (1Va (&) (, i "a

p90 p(20 p(80 0
(m) (n)

T90 T(20 T(80 0„

FIG. 1. The configurations of divacancy-impurity complexes
(D~, D, D'~, and D'~) and complexes containing two single
vacancies and an impurity atom (I, T'~, and T''0).

I'IG. 2. The frequencies of vibration of atoms
next to imperfections.
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TABLE I. Coefficients of differential equations.

Migrating
a, tOm Reaction Coefficients

I
II 1

2

III 1

3
IV 1

2
3
4
5
6
7

V 1

2
3
4
5
6
7
8
9

VI 1

2
3
4
5
6
7

8
9

10
VII 1

2
3
4
5
6

VIII 1

2
3
4
5

IX 1
2
3

5
6

X 1

2
3

XI 1

2
3
4
5
6
7

XII
2
3

XIII 1
2
3

XIV 1

2
3

XV

XVI
XVI I

as

asi

as,i
Csi

as

cs
Cli

Qs

ali

alii
Cli

alii
a li
C li
a li

a li

Cil, l

cis, s

ail, 1

as, s

as, i
Cl,i
as, i
as, i
as, i
as, i

cs,i
as, i

Q l,i

V —+V
V —V~v —V
V —V~V+V
V —i ~y —i
y —i —+V —i
V —i —+i+V
D60 ~ Deo

Deo ~ D60

Deo ~ D90

Deo ~ Dlso

Deo ~ T90

Deo ~ Z'»o

Dso ~ V i+y
Dso ~ Too

D90 ~ T90

D90 ~ Dso

D90 ~ Deo

Doo ~ Diss

D» ~ V —i+V
D90 -+ V —i+V
Doo ~ V —V+i
Doo ~ j+V+y
Dlso ~ Z'iso

Dlso ~ Dlso

Dno ~ Dsso

Dsso ~ Deo

Dsso ~ D90

D»o ~ Dseo

Dsso ~ y 6+y
Dsso ~ y 6+V
Dlso i+V —y
Dlso ~ j+y+y
Dsso ~ Ts«
Dsso ~ Dlso

Dsso ~ y i+y
Dsso ~ y 6+.V
Dsso ~ j+V
Dlso ~ i+y+y
Too ~ Doo

Zso ~ Doo

Tso ~ Deo

~ Tlso

Too ~ V —i+y
Tlso ~ Dsso

Tsso ~ Deo

Tlso ~ T90

Tlso ~ Tlso

Tlso ~ Tseo

V —j+y
Tsso ~ Dseo

Tlso ~ Tsso

Tsso ~ V j+V
6+y ~ Deo

V —i+V —+ D»
V —i+V Doo

i+y ~ Dsso

j+y ~ Dsso

y j+V + Dieo
y' 6+y ~ Dsso

y —j+V + Tso

y —j+y ~ Tiso

V —i+V ~ T~eo

i+V —V Doo

6+y y ~ Dsso

i+V —V -+ D»0
i+V+ V Doo

i+V+V D»0

j+V+ y' ~ Dsso

V —i+V ~ i+y —y
i+V —V ~ V —i+V
V+V V-y
i+y ~V —j

al(V ~ V; a} =12 lvo exp( —Ey~/AT)
al(V —V ~ V —V; as) =8 sva exp( —Esv~/AZ')

al{V—V ~ V, V; a) =14 lva exp{ —fEy~+Bsv f(V —V ~ y, y; c)j/kT}
al(V —i ~ V —i; i) =lvi eXp( —SEi~/AT)
al(V —i ~ V —i; ai) =4 siva exp( —siEo~/AT)
al(V —i ~i, V; a) =7 lva exp( —fEv~+sBif(y —i ~ i, V; a}j/kT j

as (Dso —+ D«; i) =2 svi exp( -sEi~/kT}
al(D6 -+ D«; asi) =2 siva exp( —siEo~/AT)
as{Des —+ D90; as) =2 sva exp( fsEa~+(B~so BDso) f(Deo ~ D90 cs)g/kZ'}
al(D60 ~ Dsso as) =2 sva exp {—fsE m+(BDeo BDlso) f(Deo ~ Dsso cs) j/kT j

as(D ~ Teo; gi) =2 siva exp {—fsiEa~+(BD60 —Br») f(D ~ Teo; ai)g/AT}
al(Deo ~ T so' ai) =2 siva exp ( fsiEa~+(Bg)6o Br»}f(D o ~ Tssoi ci) j/kT
as(D« -+ V —j, V; g) =10 lvo exp ( —fEv~+(Baeo —By i) f(D6 ~ V —i, V; a) 5/AT }

al(D» -+ T»; i) =lvi exp{ —fEy~+(BD» —Br») f(D» ~ T»; i) j/kT}
al(D'0 -+ T~; as, i} = l,iva exp ( —fl,iEa~ + (BD90 —Br») f{Dso ~ T 0; i) g/k T }

al(D90 -+ D'0; asi} =2 s iva exp( —s—iEa~/AT)
al(D» -+ Deo; cs i) =2 s iva exp( —fs iEo~+(BD» —BD 0) f(DO ~ D ' csi) j/AT}
as(D90 ~ Ds; as) =2 svo eXp { fEsv~+(BD90 —Basso) f(D» ~ Ds»; as) j/kT j

al(D» ~ V-i, V; ali) =2»va exp (
—f»Ea~+(BD» —Bv i) f(D' ~ V —i, V; ai) j/kT }

al(D90 ~ V -i, V; c) =6 lva exp {—fEv~+(BD» —Bv i) f(D» ~ V —i, V; a) j/kT }

al(D90 ~ V —V, i; as) =2 svo exp {—fEsv~ +(BD» —Bsv) f(D» ~ i, V —V; as) j/kT j
al(D» ~ i, V, V; a} =4 lva exp {—

f Ev~+Baoo f(D90 ~ i, V, V; a) j/AT j
al(D»o -+ T so'i) =svi exp{ —fEy i r+(BD' —Br»0) f(D'so -+ Ts»; i)$/AT}
as(D so —+ Dsso; as i) =s iva exp( —s iEa~/kT)
al(D»0 ~ Dsso; gs) =sva exp(-Ev v/AT)
as(Dsso ~ Deo; cs i) =s iva exp {—fs —iEo~+(PD' —Bg) 0) f(D-'so ~ Deo; as i) g/AT j
al(D ~ D»' cs) =sva exp { fEy v~+(BDsso —BD») f(D'so ~ D; as) j/AT j
al(Dlso ~ D'«; as) =sva exp {—fEv vtsr+(BD»0 BDlso) f(D»o ~ Dsso as) j/kT j
as(D» ~ V —i+V; ali) =3 siva exp{ —fsiEa~+(BD so —Bv i) f(D s ~ V —i, V; ai) j/kT j
al(Diss -+ V —j+y'; g) =7 lva exp( —fEy~+(BDs 0 —Bv i}f(D' 0 ~ V —i, y; a)g/AT j

al(D so -+i+V V cs) —3 sv, exp{ fEv y~+(Pano Bv v) f(D»0 -+i V —V; as) j/kT j
al(D»0 ~ i+V+V; a) =3 lvo exp {—{Ey~+BD'so+(D' 0 ~ j, V, V; a) j/AT j
al(D'80 -+ T'80' a) =lvi exp {—fEv~+(Bas« —Br'8 ) f(D'80 ~ T'«; c) j/AT j
al(D' ~ D'; as} =4 sva exp{ —fEv vsse+(BD» ) f(D' ~ D's; as)]/kT}
al(D 80 -+ V —6, V; gli) =4 siva exp ( —fsiEo~+ (BD By—i) f(D ~ V 6| Vi ci) j/kT }
al(D'« —+ V —i, y; a) =7 lva exp( —fEvjI+(Bsso —Bv i) f(D'« ~ V —i, V; c) j/kT}
al{Dl« —+ j, y' —V; as) =4 sva exp{ —fEv-v~+(Bs —Bv-v) f(Dl -+ 6, V —V) as) j/kT}

(Dsso ~i V, V; a) =4 svaexp{ —fEy~+BDssof(Diss ~6 V y a)g/AT
al(T» ~ D»;i) =2 lvi exp{ —fEv '~+(Br» —BD»)f(T' ~ D»; i) j/kT }
al(T90 ~ D»; a) =2 lvo exp{ —fEv~+(Brso —BD90) f(T90 -+ D»; a) j/kT}
al(T90 ~ D«; alii) =4 lilva exp{ —flilEa~+(Br» —BIse )f(T» ~ Deo~ alii) j/kT}
al (Too ~ Ts»; ali) =4 siva exp ( —fsiEa~ + (Broo —Br»0) f(T» —+ T»o; ali) j/kT j
as(T'0 ~ V —i, V; a) =12 lva exp {—fEv~+(Broo -Bv i) f(T9' ~ V -j, V; a) j/AT }
al(Tlso -+ D»; j) =2 lvi exp ( —fsEi+(Br so —Basso) f(Tlso ~ D s; i) j/kT }
as(T»0 ~ Deo glil) =2 lilva exp( —flilEa+(Br»0 BDeo) f(T»o ~ Deo alii) j/kT}
al (T' 0 ~ T»; cli) =2 siva exp {—fsiEa~+(Br»0 —Pros) f(T'so ~ Too; asi) j/kT j
al(T»0 ~ T'so; cli) =2 siva exp(-»Ea~/AT)
a, (Tno ~ Tlso ali) =2 siva exp{ —fsiEam+(Br»0 Brseo) f(Tsso ~ Tsso a») j/AT}
al(Tsso -+ V —i, V; a) = 14 lvo exp {—fEy~+(Br»0 —By 6) f(T»0 —+ V —i, V; a) )/AT j
al(Tsso —+ D 80; j) =2 lvi exp {—fsEi~+(Br —FD») f(Tsso -+ D 8; i)g/AT j
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al(i, V —V -+ D o; as, i) =144 s,iv, exp{ —fs„Ea~+(Pv y —Bus) f(i, V —V -+ D»o; as, i) j/kT}
al (i, V —V ~ Dl»; as, i) =48 s,iva exp {—fs, iEa~ + (Bv y —Basso) f(i, V —V -+ Dsso; as, &) j/kT }
al(i, V, V -+ Doo; as, &) =96 s,iva exp {—fs,iEa~ —Blsoof(i, V, V -+ Dso; as, i) j/kT }
as(i, V, V ~ D gl i) =144 s, ivo exp {—fs, iEoM —BDnof(i V, V -+ Dno al i) j/kT}
al(i, V, V ~ Ds«; cs,i) =24 s, ivo exp {—fs,iEa r —BDs»f(j, V, V ~ D'so; as,i) 7/AT j
al(V —i, V ~i, V —V; a) =49 lva exp{ —fEv~+(Bv 6 —Bv v) f(V —i, V ~i, V —V; a) j/kT }
al(i, V —V ~ V -i, V; al, i) =168 s, iva exp ( —fs,iEa~+(Bv y —Bv i) f(i, V —V ~ V —i, V; as, i) j/kT j
as(V, V ~ V —V; a) =84 l, lva exp {—fs.sEa~ —Bv-y f(V, V ~ V —V; a) j/A'T j
al(i, V ~ V —i; a) =84 l, iva exp{ —fs,iEa~ —Bv if(i, V -+ V-i; a) j/kT}



QUENCH I A G OF M ETALS CONTAI N I ttt G I M PURITY

which are the common nearest neighbors of the tv o
vacant sites of a D" configuration, but these atoms are
not the nearest neighbor of the impurity atom of the
D" configuration )Fig. 2(i)]. The frequency of vibra-
tion is taken to be ~;v for the four atoms which are
common nearest neighbors of the impurity atom and
one of the two vacant sites of a D" configuration, but
not for the atom which is the common nearest neighbor
of the impurity atom. and the divacancy of the D"'
configuration t Fig. 2(j)].The frequency of vibration is
taken to be iv, for the other six nearest-neighbor solvent
atoms of the divacancy of the D" configuration )Fig.
2(k)]. i, ,v, is the frequency of vibration of a solvent
atom which is between an impurity atom and a va-
cancy I Fig. 2(l)]. ~,;i, is the frequency of vibration of a
solvent atom which is a common nearest neighbor of an
impurity atom and a divacancy. The frequency of
vibration is taken to be ~, ;v, for an atom which is a
common nearest neighbor of an impurity atom and
one site of a divacancy.

E~ ~, E„.~-~, and ~E; are the activation energies for
the migration of a single vacancy, a divacancy, and an
impurity atom, respectively. i,E, is the activation
energy for the migration of one of the four solvent
atoms which are the common nearest neighbors of an
impurity-atom —vacancy complex, namely, the motion
of the atom ai r in Fig. 2(e) into the vacant site.
2E;~ is the activation energy for the migration of the
impurity atom in a D" configuration, which is moving
into one of the two vacant sites LFig. 2(g)]. &;F, is
the activation energy for the migration of the common
nearest-neighbor atom of a D' configuration which is
moving into one of the two vacant sites t Fig. 2(h)].
i;E, is the activation energy for the migration of a
solvent atom which is between an impurity atom and a
vacancy moving into the vacant site. 2,E ~ is the
activation energy for the migration of a solvent atom
which is between an impurity atom and a divacancx
and is moving into one of the two vacant sites. B&~-,

By,, BD", B~",BD", and BD'" are the total binding
energies of a divacancy, an impurity-atom —vacancy
complex, and the D" D" D'" and D'" configurations,
respectively. Bg", Bz'", and B~'" are the binding
energies of the T", T'" and T"0 configurations, re-
spectively. The f's are constants between unity and
zero. The relation between j(A ~ 8; C) and
f(B—+A; C) is

f(A —+8;C)+f(B—+A. C)=1 (3)

f(A ~8; C) is often taken to be zero for an exothermic
reaction and unity for an endothermic reaction.

Some of the applications of the kinetic equations will
be considered in the following sections.

IH. REACTIONS DURING QUENCHING

When a specimen is quenched from a high tempera-
ture to a low temperature, imperfections in thermal

eqiiilibrium at the high temperature can be frozen in.
However, the vacancies can migrate and reactions
between the defects could progress even during quench-
ing because the cooling rate is finite in the practical
experiments. It can be considered that above a critical
temperature T* the reactions between the defects are
in thermal equilibrium during quenching because the
reactions between the defects are fast enough to main-
tain the thermal equilibrium between the defects.
Below T~, however, the reactions are too slow to main-
tain the thermal equilibrium and the situation at T~
is frozen in. It is assumed in this section that the total
number of imperfections do not change during quench-
ing; i.e., the imperfections are not absorbed during
quenching. This assumption is not very serious because
the loss of vacancies above T* does not aGect the
argument. At T* the vacancies are in thermal equi-
librium with impurity atoms. Therefore, the loss above
T* just lowers the apparent quench temperature. The
cooling rate above T* determines the loss of vacancies
during quenching and the cooling rate at T* deter-
mines the relative concentrations between the
quenched-in defects. It is important to emphasize that
T* is fairly low as shown in the latter part of this
section.

B. c,))ct
1. c;))ct and B2y&B„;

We will next consider the case in which the fractional
concentration of impurity atoms is much higher than
the fractional concentration of vacancies and in which
the binding energy B2& of a divacancy is smaller than
the binding energy B~-, of a single vacancy and an
impurity atom. In this case the formation of divacan-
cies can be ignored because a single vacancy has more
chance to encounter an impurity atom than another
vacancy. The reaction between single vacancies and
impurity atoms is important in this case. Since it is
assumed that the vacancies do not anneal out to sinks
during quenching, the number of total voids is constant,
1.e.,

C1V+CVi —Ct ~ (4)

The differential equations governing the process are

derv/dh= plclvcg+p2cvj,

dc'/4 plcivcc —p2cvg,

dc,/d& = Pic inc,+P2c v
—
~,

A. cz(get

In the case in which the fractional concentration of
impurity atoms is much smaller than the fractional
concentration of total defects, the treatment is the
same as that of pure metals. Since this case has been
treated in detail, ' "' "we will not discuss it here.
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where
derv/dt = —dcy, /dt =dc;/dt,

single-vacancy —impurity-atom complexes is given by

cv, = 12crvc, exp(By;/kT) . (7)

Pq=84vr exp( —EvM/kT),

P, =7v, exp{—(Ev™+Bv;)/kT}. (6)

If there is thermal equilibrium between single vacancies
and impurity atoms, the fractional concentration of

To obtain the rate of formation of vacancy —impurity-

atom complexes we differentiate Eq. (7) with respect
to time i. Combining this with Eq. (5), the rate of

formation of vacancy —impurity-atom complexes in

thermal equilibrium is

(
dcy; 12civc;Bv; exp(Bv~/kT) dT

dt, kT'{1+12(c,+catv) exp(By;/kT)) dt
(8)

As the temperature goes down during a quench, the motion of vacancies becomes too slow to maintain the equi-

libriurn concentration of vacancy —impurity-atom complexes. It is assumed that above the critical temperature T
the formation of vacancy —impurity-atom complexes maintains a thermal equilibrium but below T no vacancy-

irnpurity-atom complexes are formed. One obtains the following equation:

M By,
exp — 12 c;+ciy +exp—

where
1 By; By, 2 —1/2-

c;=c;~—c&+——exp — +12(c;&—c~) + exp — +12(c;&—c&) +48c~ exp
24 kT kT

1 By, -ij2.
c&v= ——exp — +12(c;~—c&) + exp — +12(c;&—c&) +48c~ exp

24. kT kT kT

These equations can be derived from Eqs. (4), (7), and

c;&
——c,+cy;. Here c;~ is the fractional concentration of

impurity (the sum of fractional concentration of free
impurity c„and that of associated impurity cv,).

The right side of Eq. (9) will be called the critical
cooling rate hereafter. The values of the critical cooling
rate for aluminum are plotted in Fig. 3. vi, J.'y -'~, ctt,
and c& are taken to be 10"sec ', 0.68 eV, 10 ' and 10 ',
respectively. Knowing the cooling rate during the
quench, one can calculate the critical temperature T*.
If one plots the cooling rate during the quench on Fig.

IO

IO'-
Z

O
IO

3, while the cooling curve is below the critical-cooling-
rate curve the reaction between vacancies and impurity
atoms is in thermal equilibrium. The intersection of the
cooling curve and the critical-cooling-rate curve gives
the critical temperature T*. This characteristic tem-
perature depends upon the cooling rate only at the
critical temperature, the binding energy of an impurity-
atom —vacancy complex, the fractional concentration of
impurity atoms, and the activation energy for the
migration of a vacancy. The shape of a quenching
curve is not important for this treatment if the cool-
ing rate at T* is the same. In Fig. 4 the values of the
critical cooling rate for aluminum are plotted. v, Ey~,
c;, and c~ are taken to be 10" sec ', 0.68 eV, 10 ' and
10 ', respectively. Some of the values of the critical
temperature T* in aluminum are given in Table II.
As shown in Figs. 3 and 4, the critical temperatue is
lower as the quenching rate becomes lower. The critical

Tmz.E II. The values of critical temperature in aluminum
(.;=10-,~,=10-) (in 'C).

C3

lo

8eV
sec '

J'i, .B

(eV) 103
Quenching rate (deg/sec)

104 2X104 5X104 10' 106

10
50 IOO I50 200 250 300

CR I T I GAL TEMP E RATURE {'C)

FIG. 3. The values of the critical cooling rate versus tempera-
ture in aluminum. The figure is equivalent to the plot of quenching
rate versus critical temperature.
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FIG. 4. The values of the critical cooling rate
versus temperature in aluminum.

temperature is lower as the binding energy between
a vacancy and an impurity atom becomes lower.
This is shown in Fig. 5. It was also found that the
critical temperature is not so sensitive to the concen-
tration of vacancies in the range nea. r c;=10 4. The
lower the critical temperature is, the higher the quench-
ing temperature is. The critical temperature is prac-
tically independent of the quenching temperature in
aluminum containing c;=10 '. The fractional concen-
tration of vacancy —impurity-atom complexes after the
quench is given by

(cv )o= 12(civ)oc; exp(8q.-;/kT*),

")=t2c;exp( ").

0.2

IP

O. I

I I

IP4 IP5

Cppl ING RATE ('C/sec)

I

IP6

I'IG. 5. The logarithm of the ratio of the fractional concen-
tration of vacancy-impurity-atom complexes to that of free
vacancies after quenching versus cooling rate.

calculated by the integration of kinetic equations are in

good agreement with the values given in Table II,
which were calculated by means of Eq. (9).The general
tendency is in good agreement with the results obtained
by an analog computer. ' The ratio of the concentration
of free vacancies to that of complexes is not compared
here because Cotterill used all of the geometrical factors
the same for simplicity. The concentrations of free
vacancies and vacancy impurity atom complexes cal-

This ratio is plotted in Fig. 6 as a function of cooling
rate.

The kinetic Eqs. (5) were numerically integrated by
means of a CDC-3600 digital computer for the case of
dilute aluminum alloys. The values of the binding
energy between a vacancy and an impurity atom are
taken to be O.i, 0.2, and 0.3 eV. The quench tempera-
ture, the quenching rate, the concentration of impurity,
and the vibrational frequency were taken to be 400'C,
3X10' deg/sec, and 1X10" sec ', respectively. The
change of the fractional concentration of free vacancies
and the change of the fractional concentration of
vacancy-impurity complexes during quenching are
plotted in Figs. 7 and 8, respectively. The dotted lines
are the fractional concentrations at the equilibrium
state. As discussed previously, the actual concentra-
tions of free vacancies and complexes deviate fairly
sharply from the equilibrium curve near the critical
temperature. The concentrations of free vacancies or
complexes do not change below the critical temperature.
The reactions between free vacancies and impurity
atoms are frozen. The values of the critical temperature

200—

I 50—
X
I-

IOO-
ED

50 I I I I I I

0 0.I 0.2 P.3 OA 0.5 0.6
BINDING ENERGY BETWE EN A VACANCY

AND AN ?MPUR ITY ATOM IN ALUMINUM

FIG. 6. Relation between critical temperature and the binding
energy between a vacancy and an impurity atom in aluminum as
a function of the fractional concentration of total vacancies and
of impurity. The cooling rate is taken to be 3&(10' deg /sec.
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culated from Eq. (9) are also in good agreement with
those calculated by the elaborate integration of Kqs.
(3)

IP-4 0
TIME DURING QUENCHING (in msec I

5 IO
~ ~

I
I I I ~ ~ T

8„;~ 0.& eV

Z. CQ)CO CRd ggyQgy's

When the binding energy BT/; between a vacancy and
an impurity atom is small compared with the binding
energy 8&z of a divacancy, not many impurity-atom—
vacancy complexes are formed during quenching, even
if a vacancy encounters an impurity atom. An impurity-
atom —vacancy complex breaks up in a short time. If,
in this case, the binding energy of a divacancy is large,
the production of divacancies is more important than
the production of vacancy —impurity-atom complexes.
The reactions during quenching can be treated as fol-
lows: As the temperature goes down during the quench,
the divacancy formation is first frozen, then, the irn-
purity-atom —vacancy complex formation is frozen.
Finally, the divacancies which are made during the
quench form impurity-atom —divacancy complexes, and
when the temperature is low enough the impurity-atom-
divacancy complex formation is frozen. In this case three
critical temperatures can be defined: T&~*, Ty;*, and
T2y;*. T2y* is the critical temperature above which the
divacancy formation is fast enough to maintain thermal
equilibrium. Below T2& the divacancy formation is too
slow to maintain the equilibrium divacancy concen-
tration. Ty;~ is the critical temperature above which the
impurity-atom —vacancy complex formation is fast
enough to maintain thermal equilibrium between the
vacancy concentration and the complex concentration.
Below T~;* the complex formation is too slow to main-

TIME DURING QUENCHING {in msec)
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TF MPFRATURE DURING QUENCHING {'C)

Frc. 8. The change of vacancy-impurity complexes during
quenching in aluminum dilute alloys.

dc' y M

= —168vyciv exp
kT

tain the equilibrium complex concentration. T2~, is
the critical temperature above which the impurity-
atom —divacancy complexes formation is fast enough to
maintain the thermal equilibrium between the corn-
plexes and the divacancies, but below T2y;~ the
formation of impurity-atom —divacancy complexes is
too slow to maintain the equilibrium complex concen-
tration. It is again assumed that the annealing to sinks
is negligible during quenching. However, this efI'ect is
not critical as was mentioned in the previous section.
We first consider the reaction between single vacancies
and divacancies as treated by Koehler ef al. ' The
kinetic equation governing the process is

IO-4 0
I I ~

IO I5
I 1

I I I

Aluminum Dilute Alloys

+v +B2v
+28v~cg~ exp—

kT

Io-'—

Bvi' 0 where

cyy+ 2c2y =cg,

cmv ——6cqv' exp(B, v/IIT) .

O
I-

I-
tLIo
K
O
O

I-
O
CL
LL

,0-6

IO ~
400

To i 400'C
a ~ & x I04 'C/sec
C;t I x IO"3
v ~ I x IO&/sec

I

300
I

200 I 00 0 -50
TEMPERATURE DURING QUENCHING ('C)

The following equation can be obtained"

14kT2*vg B
24c„+exp~—

M

Xexpl — . (12)
kT*

A specimen quenched from Tq will therefore contain a
fractional concentration of divacancies given by

c2v=6A exp( —2Ev~/IITq) exp(B2~/AT2*). (13)

FIG. 7. The change of free vacancies during quenching
in aluminum dilute alloys.

"M. Doyama, in Ref. 7, p. 185; Eq. (22) on p. 205 was mis-
printed.
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IV. DISCUSSIONS 0.25

A. Apparent Activation Energy for Formation
of Vacancies

The equilibrium fractional concentration of vacancies
in a metal containing impurity atoms is higher than
that in a pure matrix if the binding energy between a
vacancy and an impurity atom is positive. The relation
between the concentration of vacancies and the tem-
perature can be written from Eq. (1) as follows:

c=A o exp( k:r"—(T)/kT)
=2 o exp( —[Fr~ f(T)j/k—T) .

Here Ey.~ corresponds to the formation energy of a
vacancy in a pure metal Ey~. E~~ is called the apparent
formation energy hereafter. Er"(T) and f(T) are not
constants but functions of temperature. A 3 is a function
of A& and Ao. At high temperatures Eqs. (1) and (20)
can be compared. The following relation can be
obtained:

A o= A gL1 —12c;(1—n) j,
where

A2=oAi.

j(T) and Er" can be rewritten as

1—12c;+12c,n exp(8 r,/kT)
f(T) =kT ln

1—12c,(1—n)
(21)

1—12c;+12c;n exp(8 r,/kT)
F.v" ——Ey~ —kT ln

1 —12c;(1—n)

The difference f(T) between the formation energy of a
vacancy in a pure matrix and the apparent formation
energy is plotted in Fig. 10. It should be noted that
f(T) is independent of the formation energy of a
vacancy in the pure matrix, but it is dependent upon
the fractional concentration c; of impurity atoms, the
temperature, and the binding energy By; between a
vacancy and an impurity atom. The fractional change
F from the number of vacancies in an alloy to the
number of vacancies in the pure matrix is

Cai]oy CpureI'= —= 12c.;(n exp(8 v;/kT) —1) .
Cpure

The value of the ratio of the fractional concentration
of vacancies in the alloy and that in the pure matrix is
plotted in Fig. 11, where n and c; are taken to be unity
and 1X10 '. This value also is independent of the
formation energy of vacancies in the pure matrix. As
shown in Fig. 10, if the impurity atom concentration of
the alloy is less than 0.1% and the binding energy 8&,.
between an impurity atom and a vacancy is less than
0.15 eV, it is not easy to determine the binding energy
from the apparent formation energy or measuring F.
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I io. 10. The difference f(T) between the formation energy of a
vacancy in a pure matrix and the apparent formation energy
versus temperature.

"R. R. Hasiguiti, J. Phys. Soc. Japan 20, 625 (1965)."M. Doyama and J. S. Koehler, Bull. Am. Phys. Soc. 9, 295
(1964).

'4 D. R. Beaman, R. W. BallufB, and R. O. Simmons, Phys. Rev.
134, A532 (1964)."F. Hashimoto, J. Phys. Soc. Japan 20, 366 (1956).

Hasiguti" has found an interesting empirical rule on
the vacancy-impurity binding energy in aluminum.
According to Hasiguti, the experimental rule is ex-
pressed bi.

8v* = Eo+ r1'-.+ L(d do) /bio]f'—
where B~, is the binding energy, Eo, E„,and L, are the
constants with the dimension of energy, v is the valence
of a solute impurity atom, d is the atomic diameter of a
solute impurity atom, and do is a constant (or a critical
diameter). The third term on the right-hand side is
omitted if d~do. I asiguti determined the values of
the constants for 8-group impurity atoms in aluminum
dilute alloys. The values are Eo ——0.20 eV, E,=0.02 eV,
F.,=0.54 eV, and do ——2.55 A.

The binding energy B~-, of a vacancy and a gold atom
in aluminum was determined to be 0.38 eV." The
binding energy B~., of a vacancy and a silver atom in
aluminum is reported to be 0.08&0.01 eV '4 and 0.25
eV."It is difFicult to explain the diRerence of these two
cases only by Hasiguti's rule, because the atomic di-
ameter of gold and silver are both 2.88 A and the
valence is one for both cases. In these cases a factor
other than the valence eRect and the size eRect is
important.

The solubility limit of impurity atoms in a matrix
is considered here. The solubility limit has indeed a
close relationship v ith the valence effect and the size
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O.OI,

SOLUBILITY LIIVIIT ATOMIC 7

OOI 0 in Ag

0.023 Sn in Al

0.04 In in Al
0.05 Au in Al

FIG. 11.A relation between the va-
cancy-impurity binding energy By;
and the solubility limit Cz, of the im-
purity in aluminum, gold, and silver.
The straight line is By; = —0.088 logCL,
+0.088 where By; is in eV and CL, is in
the fractional concentration.
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effect. Table IV"' ""gives the values of the experimental
binding energy and the solubility limit" of solutes. The
relation between the vacancy-impurity binding energy
By; and the logarithm of the solubility limit of the
impurity is shown in Fig. 11. It is still early to draw
any definite quantitative relationship between the
solubility limit and the binding energy B&; because the
analysis of the experiments is based upon many as-
sumptions. If one assumes the linear relationship
between the logarithm of the solubility limit and the
binding energy By;, the following formula is obtained:

v here B~-; is the binding energy between a vacancy
and an impurity atom in eV, and Cz, is the fractional
concentration at the solid solubility limit of the solute.
The calculated values of the binding energy using the
above equation are also given in Table IV. The values of
the constants in Eq. (22a) should not be taken seriously
for the case of gold- and silver-base alloys because the

TABLE IV. The relation between the solubility limit and the
vacancy-impurity binding energy.

8~-;= —0.088 logCr. +0.088 (eV),

"C.Panseri and T. Federighi, Acta Met. 8, 217 (1960)."J.Takamura in Ref. 7, p. 521.
"H. Kimura, A. Kimura, and R. R. Hasiguti, Acta Met. 10,

607 (1962).
"M. Ohta and F. Hashimoto, J. Phys. Soc. Japan 19, 130

{1964).
~ J. Takamura, K. Okazaki, and I. G. Greenfield, J. Phys. Soc.

Japan 18, Suppl. III, 78 (1963)."K. Okazaki and J. Takamura, Suiyol. aishi 15, 89 (1963).
"M. Ohta and F. Hashimoto, J, Phys. Soc. Japan 19, 1331

{1964).
"M. Ohta and I'. Hashimoto, J. Phys. Soc. Japan 19, 1987

(1964).
'4 H. Kimura and R. R. Hasiguti, Acta Met. 9, 1076 (1961)."H. Kimura and R. R. Hasiguti, J. Phys. Soc. Japan 18,

Suppl. III, 73 (1963)."R.Kloske and J. O'. Kauffman, Phys. Rev. 126, 123 (1962).
'7 F. Cattaneo and K. Germagnoli, Nuovo Cimento 28, 923

{1963).
2'S. D. Gertsriken and B. P. Slyusan, Ukr. Fiz. Zh. 4, 137

(1959)."Y. Quere, J. Phys. Soc. Japan 18, Suppl. III, 91 {1963}."T.Federighi, in Ref. 7, p. 217."M. Hansen, Constitzdion of Binary .4LLoys (McGraw-Hill Book
Company, Inc. , New York, 1958).
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data are not sufhcient, particularly for the case of
oxygen in silver. Pure oxygen is gaseous at the tem-
perature when the experiment was performed, and the
solubility limit is a function of the pressure of oxygen.

It is not dificult to understand the relationship
between the solubility limit and the binding energy,
B&;, of a vacancy and an impurity atom. If the energy
required to replace a solute atom with an impurity
atom, that is, the heat of solution, is high, the solu-
bility limit is low; and also the distortion (lattice and
electronic) near the impurity atom is high. When a
vacancy is trapped next to the impurity atom, this
distortion is relaxed. The relaxation energy, that is, the
binding energy, is higher as the distortion is higher.

According to the above discussion the heat of solution
and the binding energy B~; of a vacancy and an im-

purity atom must have some relationship. In the
simplest case the solubility c can be written as"

0.4

4' 0.3
O2
g) X

0.2
CL Z

&- Qo &
Z &
ow

0.2 04 0.6
HEAT OF SOLUTION DF TERM I NED

FROM SOLUB ILI TY (IY)

0.8

( 2nMg Ag ) Cu Si Cd In Sn

—H(1 —2c)
=A exp (22b)

FIG. 12. A proportional relationship between the vacancy-
impurity binding energy By; and the heat of solution H deter-
mined from the solid solubility curve. The relation is Bz;=0.52H.

where k is Boltzmann constant, T is the absolute
temperature, A is a constant related to the vibrational
entropy, and H is the heat of solution. The heat of
solution H is given by"

Here s is the coordination number of the crystal
structure, V~~ is the interaction energy between two
solvent atoms, V~g is the interaction energy between
two solute atoms, and V~~ is the interaction energy
between a solute atom and a solvent atom. One can
determine H by fitting Eq. (22b) to the solubility
curve. '4 H was determined from the tangent of
inc/(1 —c) and (1—2c)/T. There may exist some com-
plexity in relating directly H and the experimental heat
of solution which is the heat absorbed by the system
when 1 g mole of solute atoms enters into solution.
Sometimes the precipitated phase does not have the
same crystal structure as the pure solvent crystal or
the pure crystal structure of solute.

In Fig. j.2 are plotted the binding energy, By,,
between a vacancy and an impurity atom, and the
heat of solution B determined by fitting Eq. (22b) to
the solid solubility curve. It is quite surprising that it
has indeed a proportional relationship:

where a was found to be 0.52. This means that about
one-half of the distortion energy around an impurity

~ J. H. Hildebrand and R. L. Scott, The Solubility of Eon-
dectrolytes (Dover Publications, inc. , Neer York, 1964).

~ For example, A. H. Cottrell, Theoretical Structural Metallurgy
(St. Martin's Press, Inc. , Neo York, 1955), p. 156.

~ C. Zener, Thermodynamk s in Physical Metallurgy {The
American Society for Metals, Cleveland, 1950), p. 20."C. E. Birchnenall, Thermodynamics in I'hysical Metallurgy
(The American Society for Metals, Cleveland, 1950), p. 158.

atom is relaxed when a vacancy associates with it. Using
this equation and Eq. (22b), Eq. (22a) can be derived
in the case that the solid solubility is low. When the solid
solubility is high Eq. (22b) has to be modified. ln this
respect, zine, magnesium, and silver, which have high
solid solubility in aluminum, may deviate from this rule.
It is inadvisable to use the heat of solution measured by
a calorimetric method here, because accurate measure-
ments are dificult for the case of low solid solubility
and Eq. (22b) is not valid for the case of high solubility.

B. Equations for Thermal Equilibrium
and for Quasi-Equilibrium

In thermal equilibrium the fractional concentration
of single vacancies (c~y), is written as

(cgy), =A g exp( —Eyy/kT),

where Ey~ is the formation energy of a single vacancy,
and Aq is a constant. Using Eqs. (2) and (23a) the
fractional concentrations in thermal equilibrium are
as follows:

(co v), = 6A ov exp( —(2Evy B2v)/k T), —(23b)

(cv,).= 12A y,c, exp( —(Evv By,)/kT), (2—3c)

( co) =24AD' c, exp( —(2Ev Bg) )/kT), (23d)—

(cD"),= 24A o"c;exp( —(2L' v Bg)oo)/k T), (23e)—

(cq&" ),= 48A m"'c; exp{—(2Eq."' —B ')n/k T), (23f)

(cD"o),=12AD"oc; exp( —(2Ãvy — ~B'~)/ Tk), (23g)

(cr"o),= 12A r"c.; exp{—(2Ev" Br~)/k T), (23h)—
(cr"o) 24Ar&'oc. exp{ (2Evy Bruo)/kT) (23i)

(cr ),= 6A r'"c; exp( —(Ey Br'~)/kT) . (23j)—
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Here the A's are constants related to the vibrational
frequencies. At a temperature T~ a quenched specimen
has a fractional concentration of single vacancies much
higher than the equilibrium concentration of a specimen
that has been fully annealed at the temperature T&.
However, a quasithermal equilibrium can be obtained
during aging at a suitable annealing temperature. This
quasi-equilibrium state is defined as the equilibrium

between two or more types of defects. For example,
the quasi-equilibrium between single vacancies and

divacancies does not require that the total concen-

tration of vacancies be in thermal equilibrium with the
lattice. In quasithermal equilibrium the fractional con-

centration of divacancies, vacancy impurity atom
complexes, and the D", D", D", D'", T'0, T", and
T'8' configurations are as follows:

C0& 6C&v F0v exp(B0v/kT) 1

cv'=12civc, Fv; exp(Bv;/kT),

Bvs'tt BD Bg) —B2v
co00——2c,vcv;Fo00 exp !

= 24c;c&v FD00' exp =4c,c0vFr&00" exp
kT ) kT kT

(24a)

(24b)

(24c)

B" B, — B00& B0' Bv)—
cg&00= 2c&vcv;FD'0 exp = 24c;c0v'FD00' exp !

= 4c;c0vFr&~" exp
kT kT/ kT

(24d)

BD'20—Bv; 120 120

cg' = 4cl vcvsFD exp —= 48c;cyv FD exp = Sc;,c2vF~ " exp
kT kT kT

(24e)

kT

BD'80—Bv; 180 180

cD' =cj.vcv;FD' exp =12c;c~+FD' '
exp — = 2c,c2vF~'~" exp

kT kT
(24f)

Br~—Bv, Br~) Br~—B2v
cr =c&vcv;Fr~ exp =12c;c~v'Fr~' exp !=2C,C0vFr~" exp

kT kT] kT
(24g)

&00 B B &00) Br&00

!cr'~ = 2c&vcv~Fr'00 exp = 24c;c& Fv'~'rexp !
=4c;c0vFr"' exp

kT kT I kT )' (24}1)

Br& Bv,) Br& ) B 180

cr'~=0c~vcv;Fr'~ exP !=6c;c~v Fr'~' exP !=cc0vFr'~" exP
kT / kT 3 kT

(24i)

The F's are constants related with the vibrational
frequencies. The ratio of the fractional concentration
of vacancy —impurity-atom complexes to that of single
vacancies in a dilute alloy does not depend upon the
formation energy of a vacancy.

C. Critical Temperature

The critical temperature, or the freezing tempera-
ture, was defined by the temperature at which the
reaction freezes. As we calculated in the previous
sections, these temperatures are rather low.

The critical temperatures shown in Table II are
typical examples for the case in which the fractional
concentration of impurity atoms is much higher than
the fractional concentration of vacancies and in which
the binding energy B2v of a divacancy is smaller than
the binding energy Bv; of a single vacancy and an
impurity atom. This case is for impurities in aluminum.
As we see from Table II, the critical temperature is
near 100'C in practical quench experiments. This shows

that the quenched state is governed by the quench
speed near 100'C and that the quench speed near 100'C
is important. The critical temperature can be seen
clearly in Figs. 7 and 8. The values of the critical tem-
perature calculated by the numerical integration of
kinetic Eqs. (5) are in good agreement with the values
given in Table II which were calculated by means of
Eq. (9).This indicates that a simple treatment such as
Eq. (9) gives a good approximation during quenching.
The critical temperature T* is not sensitive to the total
fractional concentration of defects. The plot of the
logarithm of (cv,/crv)0 versus the logarithm of the
cooling rate gives a straight line (Fig. 5). This can be
shown as follows: Eq. (9) can be written as

dT't

dt), t, p.

84vc;kT*2 Ev~
exp—B„ ' k~ ' (25)

when 12c&)exp(—Bv'/kT*). (T* is near 100'C. There-
fore, this condition occurs when Bv;&0.1 eV in the case
of aluminum. ) Taking the logarithm of Eqs. (17) and
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Since the last term is not very sensitive to (dT/dt),
one can plot the logarithm of the quench speed against
ln(cv;)0/(civ)0 The resulting curve is a straight line
as is shown in Fig. 4. The sloPe of the line is Bv,/g—~v.
When 12c,&&exp( —Br;/kT*) (this condition normally
exists when Bv,«0.1 eV),

(~v,)0
ln

c1V 0

8T
ln — +inc;

I' v~+8 v; dt

+P,M+P

7vAT~'
ln

The curve is again a straight line and the slope is
—Br,/(&vs+Br, ).

Table III is a typical example for the case that
c;))cg and 82'&By;. The constants are chosen for
aluminum dilute alloys. As we expected, the highest
temperature is T2&* at v hich the divacancy formation
freezes. The next highest temperature is Ty;* at which
the formation of vacancy and impurity freezes. Table
III shows that the critical temperature T~y;* is below
0 C. This suggests that the reactions between divacan-
cies and impurity atoms after a normal quench are in

(18), one obtains the following equation:

(cr;)0 Bv; dz'
ln- = — ln- +lni2c,

(ClÃ)0 A3f 4 at T+

8v; 84vgc;kP"'
+ ln —. (26)

F~11 8+j

thermal equilibrium at the temperature of the quench-

ing medium. Therefore, during a quench, most of the
divacancies are bound with impurity atoms.

V. SUMMARY

(1) General kinetic equations between vacancies,
divacancies, and impurity atoms are presented.

(2) As an application of these kinetic equations the
reactions during quenching were discussed.

(3) The quenched state can be estimated by calcu-
lating the critical temperatures or freezing tempera-
tures. These temperatures are rather low. The critical
temperatures for the formation of vacancy-impurity
atom complexes are near 100'C for the case of alumi-
num. The critical temperatures for the formation of
divacancy-impurity atom complexes are below O'C for
aluminum dilute alloys. The simple analytical treat-
ment gives results which are in good agreement with
the actual numerical integration of the kinetic
equations.

(4) A relation between the binding energy Br, of
an impurity atom and a vacancy and the solubility
limit C~ and the heat of solution H of the impurity is
given. The tentative relation is

B~-;=0.52H= (—0.088 1nCr+0.088) eV.
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