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General kinetic equations between vacancies, divacancies, and impurity atoms are presented. Some
applications of these equations to the reactions during quenching are treated. The critical temperatures
or freezing temperatures which determine the status after the quench are also given. The treatment shows
that the cooling rate near the critical temperature is important, and these temperatures are rather low in
usual cases. The treatment is in good agreement with the results of the actual change during quenching
calculated by a digital computer. A relation between the binding energy By; of an impurity atom and a
vacancy and the solubility limit Cr, of the impurity is presented. A relation between the binding energy and
the heat of solution H is also discussed. The tentative relation is By;=0.52H = (—0.088 logC+0.088) eV.

I. INTRODUCTION

N recent years a number of quenching, equilibrium,
and diffusion experiments have been done on pure
metals and dilute alloys. It has been shown that the
point defects in pure metals and dilute alloys play an
important role in these experiments. Two major factors
for the interactions between vacancies and impurity
atoms and between impurity atoms themselves are the
distortion of lattice around the impurity atoms' and
the electrostatic interaction between vacancies and
impurity atoms.?
The total fractional concentration of single vacancies
and single-vacancy impurity complexes in a dilute alloy
at a thermal equilibrium is given by?

c=cv+cvi

=A:(1—12¢;) exp(—EvF/kT)
+12¢;45 exp{ — (EyF—By)/kT}, (1)

where ¢; is the fractional concentration of impurity
atoms. The first term represents the fractional concen-
tration of free vacancies ¢y, and the second term repre-
sents the fractional concentration of impurity-atom—
vacancy complexes cy;. 4; and A, are constants, and
EvT is the energy required to form a vacancy far from
an impurity atom. By;is the binding energy of impurity-
vacancy complexes.

A quenching experiment is one of the ideal experi-
ments to study the point defects in metals because the
major defects present at high temperatures are va-
cancies. However, in a practical quench the quench
speed is finite; and because of this the reactions between
vacancies and other defects progress even during a
high-speed quench. The quenched status, therefore, is
not the same as that of quenching temperature. Koehler

* Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

! For example, R. Swalin, Acta Met. 5, 443 (1957).
2 For example, D. Lazarus, Phys. Rev. 93, 973 (1954).
2a More correctly the first term of Eq. (1) is 4:(1—13¢c)

Xexp(—Ey¥/kT). The author is indebted to R. M. J. Cotterill
for pointing out this correction.
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et al? first investigated this problem. They realized that
there exists a critical temperature 7%, above which the
reaction is fast enough to maintain a thermal equi-
librium and that below T* the reaction is too slow to
maintain the thermal equilibrium. Kimura ef al.t also
discussed this problem. Koehler, de Jong, and Seitz®
extended this treatment. Fujiwara® analyzed the re-
action between vacancies during quenching by means
of a digital computer. Recently, Cotterill” also analyzed
the reactions by use of an analog computer. Mori,?
Meshii,?® and Kauffman?®? studied experimentally the
process occurring during quenching. This treatment
was extended by Flynn, Bass, and Lazarus.'® This paper
treats general kinetic equations between point defects
with impurity atoms. Simple applications of the equa-
tions to the process during quenching are also given.

II. KINETIC EQUATIONS OF POINT DEFECTS

The kinetic equations for vacancy motion in a dilute
alloy can be treated in analogy to the paper by Koehler,
de Jong, and Seitz,> who considered the case of pure
metals. The four configurations of divacancy-impurity
complexes and the three configurations of complexes
containing two single vacancies with an impurity atom
are shown in Fig. 1. The kinetic equations with geo-
metrical coefficients in a face-centered-cubic metal are
as follows:

13515)8. Koehler, F. Seitz, and J. E. Baurle, Phys. Rev. 107, 1499

(

4+ H. Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf, Acta
Met. 7, 145, 154 (1959).

8J. S. Koehler, M. de Jong, and F. Seitz, Proceedings of the
International Conference of Crystal Lattice Defects (1962); J. Phys.
Soc. Japan 18, Suppl. III, 1 (1963) ; M. de Jong and J. S. Koehler,
Phys. Rev. 129, 40 (1963); 129, 49 (1963).

¢ H. Fujiwara, Technical Report, University of Illinois, 1960
(unpublished).

7R. M. J. Cotterill, in Lattice Defects in Quenched Metals, edited
by R. M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii
(Academic Press, Inc., New York, 1965), p. 97.

8 T. Mori, M. Meshii, and J. W. Kauffman, J. Appl. Phys. 33,
2776 (1962).

® J. W. Kauffman and M. Meshii in Ref. 7, p. 77.

10 C. P. Flynn, J. Bass, and D. Lazarus in Ref. 7, p. 639.
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dew/di==2a(V,V—V—=V;a)cr*+20(V—V >V, V; a)cav—as(s, V — V—i, V;a)ciciv
Ftar(V—i—1, V; a)evitar (D — V—i, V; a:)cp®+ai(D®— V—i, V; a)cp®
Far(DP®— V—1i,V;a)ep*+20:(D*° — 4, V, V; a)cp®+a1(D®— V—i, V; a;)cp'0
Far(D®— V—i, V; a)ep™+2a1(D® — 4, V, V; a)cp™+ar (D8 — V—i, V; a;)c'®
F+ar(D¥— V—i, V; a)ep™+2a:(D*0 — 3, V, V; a)ep ™ +ar (T — V—i, V; a)cr®
Far(T* > V=i, V;a)er'®+ary (T — V—i, V; a)er'™®—ay (V—i, V — D%; a)cyicrv
—al(V—’i, V— Dgo; a)cw—al(V—i, V— D120; a)cv.-cw—al(V——i, V— Dlso; a)cv,'cly

—a1(V—1, V— T; a)cvicrv+ar(V—i, V — T120; a)cvictv—er(V—i, V— T g)cpicry
—2a1(i, V, V— D*; a)cicrv®—2a1(i, V, V — D; a)cic1v®— 201 (i, V,V — D" ag)cicyy?
—-al(V—-i, V— i, V— V; a)cwclv+a1(i, V—V— V—i, V; 0)6462v+D1Vv2C1v;

deav/dt=ar(V, V—V—V;a)err’*—ar(V=V =V, V; a)cov+ar(D®— i, V— V;a)cp®
+a1(D120—) ’i, V— V; d)CDmO-{"al(DlsO—) i, V— V; GQ)CDISO—al(i, V—V— DQO; (12)6,’621/

—a1(i, V=V; D*; ay)cicay—eu(i, V=V — D'®; ay)cicov+ar(V—i, V— i, V=V ; a)eyicry
—ai(6, V=V —>V—i,V; a)cicav+ Doy Vicyy;

dei/di=—a1(i, V= V—i;a)cicvtar(V—i— i, V; a)cvita(D® — i, V—V;a)cp®
(D= i, V, V; a)cp+ar(D®— i, V—V; a)cp®+ay (D — 4, V, V; a)cp
(D4, V—V; a2)cp'®+a1(D'®— 4, V, V; a)cp'®—ay(i, V—V — D% ay)cicay
—a1(i, V=V — D ay)cicov—as(i, V—V — D' ay)cicoy—as (i, V, V — D%; a)cicry?

—a1(i, V, V— D a)cicrvi—an(i, V, V — D' a)cicr®+ar(V—i, V — i, V—V;a)cvicry
—a1(t, V=V = V—1i,V; a))cicov;

devi/di=—ar(V—i— i, V; a)evitai(D®— V—i, V; a)cp®+ar (DO — V—i, V; a5)cp®
+ar(D0— V—i, V; )cp®+ai (D — V—i, V; a:)cp™+a; (D — V—i, V' a)cp
Fa1(D'— V—i, V; ai)cp'®+ a1 (D — V—i, V; a)cp'®4-ay (T — V—1i, V; a)cr®
Fai(T®— V=i, V; a)er™™+ar (T — V—i, V; a)er'™—ay(V—i, V — D; a)cvicry

—ai(V—1, V— D% a)cvicrv—ar(V—1i, V — D5 a)cvicrv—ar(V—1i, V — D' g)cyicry
—al(V—i, V— TQO; d)Cv’;Clv——al(V—i, V— TIZO; a)cwclv—al(V—i, V— TIBO; a)cv,-clv
—ar(V—=4, V-1, V=V;a)cvicrv+ai(i, V—V — V—i,V;a)ccov+ Dy Vicys;

dCDGD/dtz _al(DGO —_ DQO; a2)CDGO"al(D60 — D120; 02)CD60_a1(D60 — TQO; ai)CDGO
—a1(D*— T 4,)cp®—ay (D — V—i, V; a)cp®+ay (D% — D%; g;9)cp®
+a1(D120 - DGO; (Z,’)CD120+G1(V'—1:, V — Do

; Q)Cvic1y;

chgo/df=a1(D6°—> D90; az)CDGD_aI(D90_> DGU; aﬂ)CDQO_al(DQO__)Dl?O; GQ)CDQO-al(DSO_) I/_,l', V, a,‘)CDQO

—ai(D®— V—i, V; a)cp®—a1 (D% — i, V=V;a)cp®—ar(D®— i, V, V; a)cp®

Fa1(D*— D®; a3)cp'+01 (T — D®; 1)cr+ay (T — D, a)er+ar(V—1, V — D®; a)cyicry

Fai(i, V=V — D%; ay)cicay;

1,)(;DIZO

dep'®/di= oy (D% — D'20; as)cp®+ay (DP— D0, a9)cp®—ay (D20 — T2, 1)cp'®—a; (D120 — D0 ¢
_al(DmO___) DQO) a2)CD120__a1(D120__) DlSO; a)cDWO_al(DlZO__) V—"l, V’ ai)CDmO
—a1(D*— V—i, V; a)cp'®—ay (D120 — 5, V—=V;a)cp™—a (D — 4, V, V;a)cp®
+a1(D'® — 2o, a2)CDls°+a1(T‘5°—>D12°;i)cT’2°+a1(V—i, V— D g)cyacry

+a1(i, V—V-— Dmo; ag)C¢62v+a1(i, V, V— Dlm; (Z)C,'Clvz‘}'DDmOVZCDmO;

dCDlSO/dlzal(Dl20"—) DlSO, G)Cblzo_al(Dlso_“) T!SO; i)CDISO_al(Dlso__)DIZO; GQ)CDIS(]
—a1(D'®— V—i, V; a)cp'®—ay (D% — V—i, V;a)ep®—ay (D8 — 4, V—V ; ay)cp'®
—a(D =1, V, V; a)ep!®4-an (T8 — DI80; 1) ot o) (V—i, V — D' a)cyicry
Fa1(t, V=V — D'®; a,)cic0v+a1 (3, V,V — D0
der®/dt=a, (D% — T%; a,)cp®0+ay(D® — T%; 4)cp® 401 (D — T9; a,)cp®—ay (79— D, §)cp®
_al(TQO__) DQO, a)CTQU__al(TQO__) DGO; ai)CT90__a1(T90__, T120; ai)cho
—a(T*— V—i, V; a)cr®+a, (112 — T, ai)er'®+ay(V--1, V; T

; a)cicrv?;

5 a)CViCIV )
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dCTIBO/dt=OL1(D180—> TISO; l‘)[:DISO_,I_al(TmO__) TISO; ai)CTIZO__al(TIS(),__) DIBO; 1‘)61,180
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dCTuO/dl:al(Dﬁo“') TIZO; a{)CDGO“i'al(Dmo_‘) T120; ,L‘)CD120+a1(T90__) T120; aj)CTgo—CY](T12O'—> T180; 01)67'120
—ay (T — V—i, V; a)er'®+ar(V—1i, V — T'; a)cyicay+Dr*Vier'®;  (2j)
— i (T — T'; 0,)epW—y (T — V—i, V; a)er'®+ar(V—i, V; T'®; a)evicry.  (2K)

In these equations ¢y is the fractional concentration
of single vacancies, ¢yv is the fractional concentration
of divacancies, c; is the fractional concentration of free
impurity atoms, cv; is the fractional concentration of
single-vacancy—-impurity-atom complexes, ¢p® is the
fractional concentration of divacancy-impurity-atom
complexes [Fig. 1], ¢p® is the fractional concentration
of divacancy-impurity-atom complexes D% having near-
est-neighbor bonds at 90° [Fig. 17, cp'® is the fractional
concentration of divacancy-impurity-atom complexes
D' having nearest-neighbor bonds at 120° [Fig. 1],
and ¢p'® is the fractional concentration of divacancy-
impurity-atom complexes D' having the divacancy
and impurity atom in a straight line [Fig. 17]. ¢7% is the
fractional concentration of two single-vacancy-impurity
complexes 7% having two single vacancies at 90°
[Fig. 1], ¢7'® is the fractional concentration of two
single-vacancy-impurity-atom complexes 7'% having
two single vacancies at 120° [Fig. 1], and c¢'® is the
fractional concentration of two single-vacancy—im-
purity-atom complexes 7' in a straight line [Fig. 1].
Larger vacancy clusters are not considered here. D,y is
the diffusion constant associated with the motion of
single vacancies. D,y is the diffusion constant associated
with the motion of divacancies. Dy; is the diffusion
constant associated with the motion of single-vacancy-
impurity complexes. Dp%, Dp'® and D7'® are the diffu-
sion constants associated with D% D% and 7%,

[
]
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Fi6. 1. The configurations of divacancy-impurity complexes
(D%, D%, D0, and D'®) and complexes containing two single
vacancies and an impurity atom (7%, 7% and 7'&),

respectively. The coefficients which appear in the differ-
ential equations are given in Table I. These coefficients
are very useful for numerical calculations. v, is the fre-
quency of vibration of the solvent atoms which are the
nearest neighbors of a vacancy in a pure matrix [Fig.
2(a)]. 2v, is the frequency of vibration of the four sol-
vent atoms which are the nearest neighbor of both of the
vacancies in a divacancy [Fig. 2(b)]. The frequency of
vibration of the other fourteen nearest neighbors of a di-
vacancy is taken to be 1v,, the same as in a pure matrix
[Fig. 2(c)]. w: is the frequency of vibration of the im-
purity atom which is next to a vacancy [Fig. 2(d)]. 1v.
is the frequency of vibration of the four solvent atoms
which are the common nearest neighbors of an impurity-
atom-vacancy complex [Fig. 2(e)]. The frequency of
vibration of the other seven nearest neighbors of the va-
cant site of an impurity-atom—-vacancy complex is taken
to be 1v, [Fig. 2(f)]. av: is the frequency of vibration of
the impurity atom in a D% configuration [ Fig. 2(g) ]. 27,
is the frequency of vibration of the solvent atom at the
top of a D® configuration [Fig. 2(h)]. The frequency of
vibration is taken to be v, for the two solvent atoms
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I'16. 2. The frequencies of vibration of atoms
next to imperfections.
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TasLE I. Coefficients of differential equations.

Migrating
atom Reaction Coefficients
a V-V a1(V = V;a) =12 waexp(—EvM™ /kT)
II 1 a: V-V ->V-V at(V—=V =V —V;az) =8 wsexp(—EwM/kT)
2 a V-V ->V+V ai(V—=V - V,V;a) =14 waexp{ —[Ev¥ +Bw f(V -V =V, V,; a)1/kT}
I 1 i V—i—-V-—i al(V—i =V —i;i) =wiexp(—1E:M/kT)
2 a V—i->V~—i ar(V—1i =V —1i; ai) =4 ivaexp(—uEM/kT)
3 a V—-i—-i+V ar(V—i =>4, V;a) =7 waexp{ —[EvM +1Bif(V —i — i, V;a)1/kT}
v 1 1 D60 — Dso @1(D0 — D60; §) =2 avi exp( —2E:M /kT)
2 as D& — Doo a1(D0 — D80; g2;) =2 2iva exp( —oElM/kT)
3 a2 Do — Do a1(D80 — D9%; a3) =2 2vs exp{ — [2EcM + (Bps —Bp%) f(D — D%; a2)1/kT )
4 a2 Dé0 — D120 a1(D% — D2 g3) =2 2va exp { — [2Eo¥ + (Bp% — Bp'®) f(D% — D1%; a2) 1/kT'}
s ai D60 — T% a1(D8 — T60; g;) =2 1iva exp | — [1iEaM + (BD% — Br%) f(D% — T6; ai) 1/RT }
6 a; Do — Ti20 a1 (D% — T10; a;) =2 1ivq exp { — [1iEaM + (Bp® — Br%) f(D% — T12; ai) 1/kT |
7 a D® »V —i+V a1(D® — V —i, V; a) =10 1va exp{ —[EvM 4 (Bp% —By i) f(D% — V —4, V; ) 1/kT)
V1 i D — T a1(D% — T%; §) =1v; exp { — [Ev™ + (Bp%® —Br%) f(D% — T%;4)]/kT}
2 aii D% — T% @1(D% — T9; a15) =1,iva exp { —[1,iEM + (Bp® —Br%) f(D% — T %;4) 1/kT'}
3 a2k D% — D% a1(D% — D9; as) =2 2_iva exp(—2-iEsM/kT)
4 a2 D% — D60 a1(D% — D%; g2 _3) =2 2_iva exp { —[2-iEsM + (Bp% — Bp®) f(D% — D®; a2)1/kT}
5 a2 D% — Di a1(D% — D'®; g3) =2 sva exp { — [EavM +(Bp% — Bp\®) f(D% — D'®; a2) ]/k T}
6 ai D% -V —i+V a1(D% — V —i, V; a1i) =2 1ivaexp{ —[1iEsM + (Bp® — By ) f(D® - V —1, V; ai)]/kT}
7 a D% -V —i+V a1(D% — V —i, V; a) =6 waexp{ —[EvM +(Bp® —By_i) f(D% - V —1, V;a)]/kT}
8 a2 D% -V —V+i a1(D% — V =V, i; a2) =2 waexp{ —[Ew¥ + (Bp® —Bw) f(D® — 1, V—V;a2)]/kT}
9 a D% —i4+V+V a1(D% — 4, V, V;a) =4 wsexp{ —[Ev¥ +Bp¥f(D% — 1, V, V; a)1/kT}
VI 1 i D120 — 720 a1(D"20 — T120; §) =1p; exp { — [Ev_i¥ + (Bp'2 — Br20) f(D'20 — T, §) 1/kT}
2 az2-i D120 — D120 a1(D120 — D'0; gy ;) =2_ivg exp(—2-iEsM /kT)
3 a: D120 — D20 a1(D120 — D'2; g3) =21 exp( —Ev_v™/kT)
4 az_i D120 — D60 a1(D'20 — D0; g3_;) =2_iva exp{ —[2-iEa¥ + (Ep'20 — Bp®) f(D'2 — D®; as_i) 1/kT}
5 a2 D120 — D90 a1 (D120 — DW; g3) =2vg exp { — [Ev_vM + (Bp!2 — Bp%) f(D'20 — D%; ) ]/kT'}
6 a2 D20 — D%o a1(D120 — D180; gg) =29pg exp { — [Ev_vM + (Bp'20 — Bpl®) f(D'20 — D180; g5) J/RT'}
7 an D20 -V —i4V a1(D120 — V —i4-V; au) =3 1ivaexp{ —[1:EaM + (Bp'2 — By i) f(D'2 —» V —4, V; a:i) J/kT}
8 a D20 -V —i+V a1 (D' — V —i+V;a) =7 waexp{ —[EvM + (Bp'? —By_i) f(D' —» V —i, V;a)1/kT}
9 a2 D% —i+V -V a1(D20 —i+V —V;a2) =3 waexp{ —[Ev_vM 4 (Bp® —By_v) f(D'® — 1, V-V, a2)]/kT)
10 a D20 — i+ V4V a1(D'? — i4+V +V; a) =3 waexp{ —[Ev¥ +Bp'2+ (D' — 4, V, V;a)1/kT}
VII 1 a D180 — T80 a1 (D180 — T180; g) =1p; exp { — [EvM + (Bp!8 — Br!8) f(D180 — T180; ¢)]/kT}
2 a2 D180 — D120 a1 (D180 — D120; g3) =4 apg exp { — [Ev_vM + (Bp'®) f(D'80 — D120; g4) ] /kT)
3 au D Y —i4V a1(D18 — V —34, V; a1i) =4 1iva exp{ — [1iEoM + (Bp'% — By i) f(D'80 — V —i, V; ai) J/kT}
4 a D80 -V —i4V a1(D'® — V —1, V;a) =7 waexp{ —[EvM™ + (B!8% —By_;) f(D'® —» V —i, V; a)J/kT}
5 a2 D180 — 4V -V a1(D'® — 4, V —V;a2) =4 waexp{ —[Ev-v¥ + (B8 —By_y) f(D'8 — i, V-V ;a2 1/kT}
6 a D180 — 4V +V a1(D# -4, V, V;a) =4 waexp{ —[Ev™ +Bp'80f(D180 — 1, V, V;a)]/kT}
VIII 1 1 T9% — Do a1(T9 — D%; j) =2 ;i exp{ — [Ev_i¥ 4 (Br% — Bp%) f(T9 — D%; ;) 1/kT}
2 a T90 — Do a1(T% — D%; q) =2 1vs exp{ —[EvM +(Br% — Bp%) f(T% — D%; a) 1/kT}
3 ajs| T — D60 a1(T9 — D®; a|i|) =4 |i|va exp{ —[|i|EaM + (Br% — Bp®) f(T% — D®; a|:|) 1/kT}
4 an T9 — T120 a1 (79 — T120; g1;) =4 15v6 exp { — [1:EM + (Br% — Br120) f(T9% — T120; 1) ]/kT}
5 a T% -V —i+V a1(T% - V —i, V;a) =12 waexp{ —[EvM +(Br® —By_:) f(T% —» V —1, V; a) J/kT}
IX 1 i T120 — D120 a1 (7120 — D120; §) =2 i exp{ — [1E:M + (Br120 — Bp!) f(T120 — D20; §) 1 /k T}
2 ali Tv20 — Deo a1(T120 — D%; a|i|) =2 |i|va exp | —[|i| E«M + (B7120 — Bp®) f(T120 — D%, a|s|) J/kT}
3 a T120 — 7% a1(T120 — T9; g1;) =2 1;va exp { — [1iEoM 4 (B7!20 — B7%) f(T120 — T%; 015) ]/kT}
4 a T120 — 712 a1 (7120 — T120; gy;) =2 1506 exp( —1EM/kT)
5 an T120 — T'180 ai(T120 — T180; g15) =2 1306 exp{ — [1:EaM + (Br!20 — Br180) f(T120 — T180; 01;) ] /kT}
6 a Ti20 » V—i4+V a(T120 - V —4, V; a) =14 waexp{ —[EvM + (B2 — By ;) f(T» - V —4, V; ) J/kT}
X 1 7 T80 — Diso a1(T180 — D180, §) =2 1y; exp{ —[1E:M + (Br!80 — Bp!80) f(T'180 — D180; §) 1/kT'}
2 an T80 — T120 a1 (T80 — T120; g1;) =8 106 exp { — [1:EoM + (Br'8 — Bri20) f(T180 — T120; g43) J/k T}
3 a T80 -V —i+V a1(T18 — V —4, V; a) =14 waexp{ —[EvM + (Br'8 — By _;) f(T180 - V —4, V; a) J/kT}
XI 1 a V —i+V — Dt ai(V —i, V — D%; a) =20 1ve exp{ —[EvM 4-(Bv_i —Bp®) f(V —i, V — D%, a) ]/kT}
2 ai1,1 V—i+V — D% a1(V —1, V — D%; ai1,1) =4 i1,1va exp{ — [i1,1EeM + (Bv_i —Bp®) f(V —i, V — D%; ai1,1) J/kT}
3 a V—i4+V - D% ar(V—4, V - D%; a) =12 wa exp{ —[EvM +(Bv_i —Bp%) f(V —i, V — D%; a) J/kT}
4 ai1,1 V—i+V — D20 ai(V =i, V. — D9, gi1,1) =12 i1,1va exp{ —[i1,1EM +(Bv_i —Bp!®) f(V —i, V — D20; a1,1) ]/k T}
N a V—i+V — D120 a(V —i, V. — D, q) =28 wva exp{ —[Ev™ +(Bv_i —Bp'?) f(V —i, V — D0, a) ] /kT)
6 ai1,1 V—i+V — D80 ai(V —i, V — D80 g;11) =4 i1,1v0 exp{ — [i11EaM +(Byv i = D8) f(V —1, V — D80; gy 1) 1/k T}
7 a V—it+V — Do ai(V =4,V = D8; g) =7 waexp{ —[EvM +(Bv_i—Bp'8®) f(V —i, V — D'8; q) 1/kT}
XII 1 a1 V—i+V > T% art(V—=i, V - T%;a,;) =12 1,ivaexp{ —[1iEM +(Bv_i —Br%) f(V —4, V — T9; a1:)]/kT}
2 ai: V—i+V - T2 a(V—i, V > T12; g1,;) =28 1,5va exp | ~ [1,iEeM +(Ry_i — Br'®) f(V —i, V — T120; a1,:) 1 /kT'}
3 a1i V—i+V — T80 a1r(V—i, V > T19; a1,;) =7 1,iva exp{ —[1iEa™ +(Bv_i = Br'8) f(V —i, V — T8, a1,:) ]/k T}
XIII 1 az; i+V -V — D% ai1(i, V—V — D%; a2,;) =48 2,iva exp{ —[2,iEsM + (Byv_v —Bp%) f(, V-V — D%, a2,:) J/kT}
2 azi i+V -V — Di2o ai1(i, V=V — D20, g3;) =144 2,iva exp{ —[2.iEcM 4 (Rv_v —Bp'®) f(i, V —V — D'2; a2,5) J/kT}
3 a2, i+V -V — D& ai(s, V=V — D80, a3,;) =48 3,iva exp{ —[2,iEaM +(Bv_v —BDp'®) (3, V —V — D'%; a,,:) 1/kT}
X1V 1 ai: i+V+V — D% ai(?, V, V — D%; a1,i) =96 1,iva exp{ —[1,iEsM —Bp%f(i, V, V — D%; a1,:) J/kT}
2 a1, i+V+V — D20 a1(3, V, V — D2; q1;) =144 1,iva exp{ —[1,iEs¥ —Bp20f(i, V, V — D1; a1 :) J/kT}
3 aii i+V+V — Do a1(s, V, V. — D180; g1;) =24 1,iva exp{ — [1:EM —Bp'®f(i, V, V — D'8; g1,3)]/kT}
XV 1 a V—itV -i+V—-V ar(V—4,V =i, V-V;a) =49 waexp( —[Ev™ +(Bv_i—Bv_v) f(V—i, V — i, V—V;a)1/kT}
2 aii i+V—V > V—it+V a1(i, V=V =V —1, V;a1:) =168 1,ivaexp{ — [1,iEaM +(Bvv —Bv_i) f(i, V—V = V —i, V; a1.:) J/kT)
XVI a V+V -V -V a(V, V>V —V;a) =84 1,vaexp{ —[11EM —By_vf(V,V - V—-V;a)1/kT}
XVII a i+V -V —i ai(f, V=V —i;a) =84 1,ivaexp{ —[1iEM —Bv_if(i, V = V —i;a) 1/kT}
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which are the common nearest neighbors of the two
vacant sites of a D® configuration, but these atoms are
not the nearest neighbor of the impurity atom of the
D% configuration [Fig. 2(i)]. The frequency of vibra-
tion is taken to be 17, for the four atoms which are
common nearest neighbors of the impurity atom and
one of the two vacant sites of a D% configuration, but
not for the atom which is the common nearest neighbor
of the impurity atom and the divacancy of the D%
configuration [Fig. 2(j)]. The frequency of vibration is
taken to be 1v, for the other six nearest-neighbor solvent
atoms of the divacancy of the D% configuration [Fig.
2(k)]. 1,74 is the frequency of vibration of a solvent
atom which is between an impurity atom and a va-
cancy [Fig. 2(1)]. ¢,iv, is the frequency of vibration of a
solvent atom which is a common nearest neighbor of an
impurity atom and a divacancy. The frequency of
vibration is taken to be i,;v, for an atom which is a
common nearest neighbor of an impurity atom and
one site of a divacancy.

EyM| E.,y™, and (E; are the activation energies for
the migration of a single vacancy, a divacancy, and an
impurity atom, respectively. 1,£, is the activation
energy for the migration of one of the four solvent
atoms which are the common nearest neighbors of an
impurity-atom-vacancy complex, namely, the motion
of the atom ¢,y in Fig. 2(e) into the vacant site.
2 EM is the activation energy for the migration of the
impurity atom in a D® configuration, which is moving
into one of the two vacant sites [Fig. 2(g)]. «E.M is
the activation energy for the migration of the common
nearest-neighbor atom of a D% configuration which is
moving into one of the two vacant sites [Fig. 2(h)].
1—iE£.™ is the activation energy for the migration of a
solvent atom which is between an impurity atom and a
vacancy moving into the vacant site. , ;E,” is the
activation energy for the migration of a solvent atom
which is between an impurity atom and a divacancy
and is moving into one of the two vacant sites. B,y,
By, Bp®, Bp®, Bp'®, and Bp'® are the total binding
energies of a divacancy, an impurity-atom-vacancy
complex, and the D%, D% D% and D'® configurations,
respectively. Br%, Br'®, and Br'® are the binding
energies of the 7%, 7720 and 7% configurations, re-
spectively. The f’s are constants between unity and

zero. The relation between f(4— B;C) and
f(B—A4;C)is
JA—->B;C)+f(B—4;C)=1, (3)

f(4 — B; C) is often taken to be zero for an exothermic
reaction and unity for an endothermic reaction.

Some of the applications of the kinetic equations will
be considered in the following sections.

III. REACTIONS DURING QUENCHING

When a specimen is quenched from a high tempera-
ture to a low temperature, imperfections in thermal
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equilibrium at the high temperature can be frozen in.
However, the vacancies can migrate and reactions
between the defects could progress even during quench-
ing because the cooling rate is finite in the practical
experiments. It can be considered that above a critical
temperature 7* the reactions between the defects are
in thermal equilibrium during quenching because the
reactions between the defects are fast enough to main-
tain the thermal equilibrium between the defects.
Below T* however, the reactions are too slow to main-
tain the thermal equilibrium and the situation at 7*
is frozen in. It is assumed in this section that the total
number of imperfections do not change during quench-
ing; i.e., the imperfections are not absorbed during
quenching. This assumption is not very serious because
the loss of vacancies above T* does not affect the
argument. At T* the vacancies are in thermal equi-
librium with impurity atoms. Therefore, the loss above
T* just lowers the apparent quench temperature. The
cooling rate above T* determines the loss of vacancies
during quenching and the cooling rate at T* deter-
mines the relative concentrations between the
quenched-in defects. It is important to emphasize that
T* is fairly low as shown in the latter part of this
section.

A ey

In the case in which the fractional concentration of
impurity atoms is much smaller than the fractional
concentration of total defects, the treatment is the
same as that of pure metals. Since this case has been
treated in detail 3:5-6.8710 we will not discuss it here.

B. C1'>>Ct
1. ¢;>>c¢; and By <B,;

We will next consider the case in which the fractional
concentration of impurity atoms is much higher than
the fractional concentration of vacancies and in which
the binding energy B,y of a divacancy is smaller than
the binding energy By; of a single vacancy and an
impurity atom. In this case the formation of divacan-
cies can be ignored because a single vacancy has more
chance to encounter an impurity atom than another
vacancy. The reaction between single vacancies and
impurity atoms is important in this case. Since it is
assumed that the vacancies do not anneal out to sinks
during quenching, the number of total voids is constant,
ie,

cwvtevi=c:. 4)

The differential equations governing the process are

deyy/di= —BiciveitBacvi,
deyi/ di=Bicrvei—Bacvs,
dei/dt= —BicrveitBacys,

®)
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and single-vacancy-impurity-atom complexes is given by

doww/di=—dey/di=dei/dl, cvi=12c1ve; exp(Bvi/kT). (7)
where

To obtain the rate of formation of vacancy-impurity-
atom complexes we differentiate Eq. (7) with respect
to time . Combining this with Eq. (5), the rate of
formation of vacancy-impurity-atom complexes in
thermal equilibrium is

ﬁ1=841l1 exp(——EvM/kT) s

B2="Tv1 exp{— (Ev™+Bv:)/kT} . (6)

If there is thermal equilibrium between single vacancies
and impurity atoms, the fractional concentration of

(dCV‘i) 12¢1ve:Bv; exp(Bvi/kT) /dT)
it /. ET{1+12(citcrr) expBri/RT))\ dt /|

®)

As the temperature goes down during a quench, the motion of vacancies becomes too slow to maintain the equi-
librium concentration of vacancy—impurity-atom complexes. It is assumed that above the critical temperature 7
the formation of vacancy—impurity-atom complexes maintains a thermal equilibrium but below 7* no vacancy-

impurity-atom complexes are formed. One obtains the following equation:

aT TkT*2y, ( EVM){IZ( et < BV:‘)}
— =— exp| — citc exp| — ,
<a’l )at - L\ TR\ T e

B‘ i
where

©)

By

1 By 2 By 12
ci=cu—c¢+—[—— ‘exp(——)-{—lZ(cu——ct)}+|:{exp(———~>+12(c“—c,)] +486¢exp(——>:| },
24 kT kT kT
1 By By 2 By 12
el o oo sl 25 )

These equations can be derived from Egs. (4), (7), and
cie=ci+cvi. Here ¢y is the fractional concentration of
impurity (the sum of fractional concentration of free
impurity ¢; and that of associated impurity cv.).

The right side of Eq. (9) will be called the critical
cooling rate hereafter. The values of the critical cooling
rate for aluminum are plotted in Fig. 3. vy, EvY, ¢y,
and ¢, are taken to be 10'3 sec™!, 0.68 eV, 103 and 1073,
respectively. Knowing the cooling rate during the
quench, one can calculate the critical temperature 7.
If one plots the cooling rate during the quench on Fig.
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F1c. 3. The values of the critical cooling rate versus tempera-

ture in aluminum. The figure is equivalent to the plot of quenching
rate versus critical temperature.

3, while the cooling curve is below the critical-cooling-
rate curve the reaction between vacancies and impurity
atoms is in thermal equilibrium. The intersection of the
cooling curve and the critical-cooling-rate curve gives
the critical temperature 7%*. This characteristic tem-
perature depends upon the cooling rate only at the
critical temperature, the binding energy of an impurity-
atom-vacancy complex, the fractional concentration of
impurity atoms, and the activation energy for the
migration of a vacancy. The shape of a quenching
curve is not important for this treatment if the cool-
ing rate at 7* is the same. In Fig. 4 the values of the
critical cooling rate for aluminum are plotted. », Ev¥|
¢i, and ¢, are taken to be 10 sec™!, 0.68 eV, 10~* and
1075, respectively. Some of the values of the critical
temperature 7% in aluminum are given in Table II.
As shown in Figs. 3 and 4, the critical temperatue is
lower as the quenching rate becomes lower. The critical

TaBLE II. The values of critical temperature in aluminum
(¢;=1078, ¢,=1075) (in °C).

LyB Quenching rate (deg/sec)

V)  10° 10+  2X10*  5X10* 105 108
0.1 31 56 64 76 84 118
0.2 50 80 90 104 115.5 158
0.3 55.5 88 99 113.5 125 173
0.4 59 93 103 118 131 179
0.5 63 96 107 123 135.5 185
0.6 65 99 111 126 139 189
0.7 67 102 113 129 142 193
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F16. 4. The values of the critical cooling rate
versus temperature in aluminum.

temperature is lower as the binding energy between
a vacancy and an impurity atom becomes lower.
This is shown in Fig. 5. It was also found that the
critical temperature is not so sensitive to the concen-
tration of vacancies in the range near ¢;=107% The
lower the critical temperature is, the higher the quench-
ing temperature is. The critical temperature is prac-
tically independent of the quenching temperature in
aluminum containing ¢;=107% The fractional concen-
tration of vacancy-impurity-atom complexes after the
quench is given by

(cvi)o=12(c1v)oci exp(By:/RT*),

Cvi By;
(—) =12¢; exp(———) .
civ/o ET*
This ratio is plotted in Fig. 6 as a function of cooling
rate.

The kinetic Egs. (3) were numerically integrated by
means of a CDC-3600 digital computer for the case of
dilute aluminum alloys. The values of the binding
energy between a vacancy and an impurity atom are
taken to be 0.1, 0.2, and 0.3 eV. The quench tempera-
ture, the quenching rate, the concentration of impurity,
and the vibrational frequency were taken to be 400°C,
3% 10* deg/sec, and 1X10¥ sec™!, respectively. The
change of the fractional concentration of free vacancies
and the change of the fractional concentration of
vacancy-impurity complexes during quenching are
plotted in Figs. 7 and 8, respectively. The dotted lines
are the fractional concentrations at the equilibrium
state. As discussed previously, the actual concentra-
tions of free vacancies and complexes deviate fairly
sharply from the equilibrium curve near the critical
temperature. The concentrations of free vacancies or
complexes do not change below the critical temperature.
The reactions between free vacancies and impurity
atoms are frozen. The values of the critical temperature

or

(10)
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F16. 5. The logarithm of the ratio of the fractional concen-
tration of vacancy-impurity-atom complexes to that of free
vacancies after quenching versus cooling rate.

calculated by the integration of kinetic equations are in
good agreement with the values given in Table II,
which were calculated by means of Eq. (9). The general
tendency is in good agreement with the results obtained
by an analog computer.” The ratio of the concentration
of free vacancies to that of complexes is not compared
here because Cotterill used all of the geometrical factors
the same for simplicity. The concentrations of free
vacancies and vacancy impurity atom complexes cal-

T | BE—
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w
[+ 4
>
-
P>
o 1074, Gy 21078
W ol 6y #1074 Gt |
=
w
-
2 610”4
10
§ 6 =107 Ot
[
% 100 |- B
a =3 x10% °C/sec
50 1 ] i 1 { 1
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BINDING ENERGY BETWEEN A VACANCY
AND AN IMPURITY ATOM IN ALUMINUM

Fic. 6. Relation between critical temperature and the binding
energy between a vacancy and an impurity atom in aluminum as
a function of the fractional concentration of total vacancies and
of impurity. The cooling rate is taken to be 3X 10* deg/sec.
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culated from Eq. (9) are also in good agreement with
those calculated by the elaborate integration of Egs.
(5).

2. ¢>>co and Byy> By;

When the binding energy By between a vacancy and
an impurity atom is small compared with the binding
energy B,y of a divacancy, not many impurity-atom—
vacancy complexes are formed during quenching, even
if a vacancy encounters an impurity atom. An impurity-
atom-vacancy complex breaks up in a short time. If,
in this case, the binding energy of a divacancy is large,
the production of divacancies is more important than
the production of vacancy-impurity-atom complexes.
The reactions during quenching can be treated as fol-
lows: As the temperature goes down during the quench,
the divacancy formation is first frozen, then, the im-
purity-atom-vacancy complex formation is frozen.
Finally, the divacancies which are made during the
quench form impurity-atom-divacancy complexes, and
when the temperature is low enough the impurity-atom—
divacancy complex formation is frozen. In this case three
critical temperatures can be defined: Tov*, Tv*, and
Tyv_i*. Tov* is the critical temperature above which the
divacancy formation is fast enough to maintain thermal
equilibrium. Below T',y* the divacancy formation is too
slow to maintain the equilibrium divacancy concen-
tration. T'v;* is the critical temperature above which the
impurity-atom-vacancy complex formation is fast
enough to maintain thermal equilibrium between the
vacancy concentration and the complex concentration.
Below T'v;* the complex formation is too slow to main-
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Fic. 7. The change of free vacancies during quenching
in aluminum dilute alloys.
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Fi1c. 8. The change of vacancy-impurity complexes during
quenching in aluminum dilute alloys.

tain the equilibrium complex concentration. Toy_* is
the critical temperature above which the impurity-
atom~-divacancy complexes formation is fast enough to
maintain the thermal equilibrium between the com-
plexes and the divacancies, but below T,y_* the
formation of impurity-atom-divacancy complexes is
too slow to maintain the equilibrium complex concen-
tration. It is again assumed that the annealing to sinks
is negligible during quenching. However, this effect is
not critical as was mentioned in the previous section.
We first consider the reaction between single vacancies
and divacancies as treated by Koehler e/ al.5 The
kinetic equation governing the process is

dC],v EVM
=— 168V161 V2 exp(—- >
dt kT

428 ( EVM+32V>
vicev exp| ————— ),
1C2v €XP BT
where

cav+2cv=c,
Cov="06c1v® exp(Bav/kT).

The following equation can be obtained™

dT 14kT2*V1 B2V
), {22
At/ porys Bay RTo*
( E”M) (12)
Xexp| ———— ). (12
P kT*

A specimen quenched from 7' will therefore contain a
fractional concentration of divacancies given by

cov=04 exp(—2EyT/kTq) exp(Bav/kT:*). (13)

(11)

' M. Doyama, in Ref. 7, p. 185; Eq. (22) on p. 205 was mis-
printed.
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TABLE III. The values of critical temperature in aluminum (in °C).

Binding Quenching rate °C/sec (c;=107%, c,=10"°)

energy 1X10¢ 2X104 SX10¢ 108
(eV) Tvi* Tav_* Tyi* Tav—* Ty* Tavi* Ty:* Tay_i*
0.01 2 —170 8 —65.5 17 -39 24 —55
0.02 11.5 —61 18 —57 27 —50 34 —45
0.03 19 —55.5 26 —50.5 35 —43 43 —38
0.05 32 —45 39.5 —40 49 -32 57 —26
0.07 42 —37 50 -31 60 —23 68 —17
0.10 56 —28 64 —-21 76 —13 84 —5.5
Tov* 84.5 93.5 105.6 115

Ty* can be found in the same manner, i.e., solving the
following equation
exP(_ )

(dT) TkT vi*% EyM
dt TeTy*

By;

X[12(c,+cw)+exp(——>} . (14)

kT

kT

Vi

We will next determine how many divacancy—-impurity-
atom complexes are present after a quench. Initially
divacancies are formed during the quench. Their con-
centration is determined by Ty*. If ¢>>c1v, then the

Formation of Vacancy-
Impurity Ci

Formation of Divacancy-
Impurity Complexes

Formation of
oi .

¥
Tav

COOLING RATE (x 10 deg/sec)

-60 -40 o] 20

-20
CRITICAL TEMPERATURE (°C)

40 60

F16. 9. Critical temperatures Tey_i*, Ty:*, and
Tav* versus cooling rate.

divacancies thus formed move about forming diva-
cancy-impurity-atom complexes. The treatment is the
same as before. In this section, however, D%, D% D120,
and D' are not distinct and, therefore, will be repre-
sented by D for simplicity. The equations are

cavtep= (cav)o,
Cp= 1862 vC; CXP{ (BD_BZV)/kT} ’

(-5

kT
—9¢cpvs exp( -

(15)
(16)

dCD
—=240v5csvc; exp
dt

EvM+4-Bp—Byy
kT

-

). an

/

where (cav)o is the fractional concentration of divacan-
cies at the critical temperature T»v*; and c.v, ¢p and
c; are the fractional concentration of divacancies,
divancy-impurity-atom complexes, and free-impurity
atoms, respectively. Bp(=Byy_;) and B,y are the
binding energies of an impurity divacancy complex and
a divacancy, respectively. Ey¥ and E,y™ are the
activation energies for the motion of a single vacancy
and a divacancy, respectively. The critical temperature
Tyy_i* for the process of making divacancy-impurity-
atom complexes can be treated in the same manner.
The critical temperature T»y_* can be evaluated by
solving the following equation:

(@)
At /ot Toy_i

X{lS( )t < B2V—i_B2V>} (18)
CiTC2v eXp kT .

40v2k T, v_¢*2
Bt —— exp(
3(Byv—i—Bav)

Eyy™

kTyy_*

This temperature is also independent of the quench
temperature. The value of the right side of Eq. (18)
can be evaluated if vy, Eqy™, Byy_;— Boy, and ¢; are
known. The critical temperature Toy_* can be calcu-
lated if the cooling rate during the quench (dT/dt) at
Toy_i* is known. Therefore, the fractional concentra-
tion of divacancy-impurity-atom complexes after the
quench is

(cp)o=18cicev exp{ (Bp—Bsv)/kT*}

2EvF By
=1084c¢; exp(— ) exp( )
kTq kT *
BZV—i_BZV
Xexp(—-————) . (19
2V—1

Some of the values of the critical temperatures T,yp*,
Tv:*, and Top_.* are given in Table III for the case of
aluminum. These critical temperatures are also plotted
in Fig. 9.
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1IV. DISCUSSIONS

A. Apparent Activation Energy for Formation
of Vacancies

The equilibrium fractional concentration of vacancies
in a metal containing impurity atoms is higher than
that in a pure matrix if the binding energy between a
vacancy and an impurity atom is positive. The relation
between the concentration of vacancies and the tem-
perature can be written from Eq. (1) as follows:

c=Ayexp{—EvA(T)/kT}
=Asexp{—[Ev"—f(T)]/kT}.

Here Ey* corresponds to the formation energy of a
vacancy in a pure metal Ey¥. Ey4is called the apparent
formation energy hereafter. Ev4(7") and f(7T) are not
constants but functions of temperature. 43 is a function
of A, and 4,. At high temperatures Egs. (1) and (20)
can be compared. The following relation can be
obtained :

(20)

A 3=A 1[1— 126,(1_(2)] s
where
Ay=0aAd;.

f(T) and Ey4 can be rewritten as

1—12¢;4+12¢,0 exp(Bv./kT)
[(T)=kT m[ } ,
1—12¢;(1—a) (1)
1— 1261'—!-12610 exp(B V,/kT)
E;”1=EVF-—len|: :I
1—1261'(1—(1)

The difference f(7") between the formation energy of a
vacancy in a pure matrix and the apparent formation
energy is plotted in Fig. 10. It should be noted that
f(T) is independent of the formation energy of a
vacancy in the pure matrix, but it is dependent upon
the fractional concentration ¢; of impurity atoms, the
temperature, and the binding energy By; between a
vacancy and an impurity atom. The fractional change
F from the number of vacancies in an alloy to the
number of vacancies in the pure matrix is

Calloy — Cpure
F=———=12c{aexp(Bvi/kT)—1}.

Cpure

The value of the ratio of the fractional concentration
of vacancies in the alloy and that in the pure matrix is
plotted in Fig. 11, where a and ¢; are taken to be unity
and 1X1073 This value also is independent of the
formation energy of vacancies in the pure matrix. As
shown in Fig. 10, if the impurity atom concentration of
the alloy is less than 0.19, and the binding energy By
between an impurity atom and a vacancy is less than
0.15 eV, it is not easy to determine the binding energy
from the apparent formation energy or measuring F.
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F16. 10. The difference f(T) between the formation energy of a
vacancy in a pure matrix and the apparent formation energy
versus temperature.

Hasiguti'? has found an interesting empirical rule on
the vacancy-impurity binding energy in aluminum.
According to Hasiguti, the experimental rule is ex-
pressed by

Byi=EgoE,+[(d—do)/do]E,,

where By; is the binding energy, E,, E,, and E, are the
constants with the dimension of energy, v is the valence
of a solute impurity atom, d is the atomic diameter of a
solute impurity atom, and d, is a constant (or a critical
diameter). The third term on the right-hand side is
omitted if dZdo. Fasiguti determined the values of
the constants for B-group impurity atoms in aluminum
dilute alloys. The values are E,=0.20 eV, E,=0.02 eV,
E,=0.54 eV, and dy=2.55 A.

The binding energy By of a vacancy and a gold atom
in aluminum was determined to be 0.38 eV.3 The
binding energy By; of a vacancy and a silver atom in
aluminum is reported to be 0.08=£0.01 eV * and 0.25
eV.15 It is difficult to explain the difference of these two
cases only by Hasiguti’s rule, because the atomic di-
ameter of gold and silver are both 2.88 A and the
valence is one for both cases. In these cases a factor
other than the valence effect and the size effect is
important.

The solubility limit of impurity atoms in a matrix
is considered here. The solubility limit has indeed a
close relationship with the valence effect and the size

2 R. R. Hasiguiti, J. Phys. Soc. Japan 20, 625 (1965).
(1‘3 N{ Doyama and J. S. Koehler, Bull. Am. Phys. Soc. 9, 295
964).
1 D. R. Beaman, R. W. Balluffi, and R. O. Simmons, Phys. Rev.
134, A532 (1964).
15 F. Hashimoto, J. Phys. Soc. Japan 20, 366 (1956).
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BINDING ENERGY BETWEEN SOLUTE
ATOM AND VACANCY IN ev

effect. Table IV gives the values of the experimental
binding energy and the solubility limit®! of solutes. The
relation between the vacancy-impurity binding energy
By; and the logarithm of the solubility limit of the
impurity is shown in Fig. 11. It is still early to draw
any definite quantitative relationship between the
solubility limit and the binding energy By; because the
analysis of the experiments is based upon many as-
sumptions. If one assumes the linear relationship
between the logarithm of the solubility limit and the
binding energy By, the following formula is obtained:

Byi=—0.088 logC+0.088 (eV),  (22a)

16 C. Panseri and T. Federighi, Acta Met. 8, 217 (1960).
17 J, Takamura in Ref. 7, p. 521.
18 H. Kimura, A. Kimura, and R. R. Hasiguti, Acta Met. 10,
607 (1962).
( 1» M. Ohta and F. Hashimoto, J. Phys. Soc. Japan 19, 130
1964).
2 J. Takamura, K. Okazaki, and I. G. Greenfield, J. Phys. Soc.
Japan 18, Suppl. III, 78 (1963).
21 K. Okazaki and J. Takamura, Suiyokaishi 15, 89 (1963).
( 2 M. Ohta and F. Hashimoto, J. Phys. Soc. Japan 19, 1331
1964).
(1")" 613 Ohta and I'. Hashimoto, J. Phys. Soc. Japan 19, 1987
% H. Kimura and R. R. Hasiguti, Acta Met. 9, 1076 (1961).
% H. Kimura and R. R. Hasiguti, J. Phys. Soc. Japan 18,
Suppl. III, 73 (1963).
26 R. Kloske and J. W. Kauffman, Phys. Rev. 126, 123 (1962).
( 276% Cattaneo and E. Germagnoli, Nuovo Cimento 28, 923
1963).
( 2358. D. Gertsriken and B. P. Slyusan, Ukr. Fiz. Zh. 4, 137
1959).
2 Y. Quéré, J. Phys. Soc. Japan 18, Suppl. III, 91 (1963).
3 T. Federighi, in Ref. 7, p. 217.
3t M. Hansen, Constitution of Binary Alloys (McGraw-Hill Book
Company, Inc., New York, 1958).

where By; is the binding energy between a vacancy
and an impurity atom in eV, and Cy, is the fractional
concentration at the solid solubility limit of the solute.
The calculated values of the binding energy using the
above equation are also given in Table IV. The values of
the constants in Eq. (22a) should not be taken seriously
for the case of gold- and silver-base alloys because the

TaBLE IV. The relation between the solubility limit and the
vacancy-impurity binding energy.

Solubility Binding energy By
limit Calculated Observed
Solvent Solute  (at. %) (eV) (eV) Reference

Al Zn 66.5 0.10 0.06 16
0.14 30
0.19 18
Ag 23.8 0.14 0.08 14
0.25 15
Mg 18.9 0.15 0.18 17
0.20 20
Cu 2.5 0.23 0.20 18
0.16 30
<0.23 19
Si 1.59 0.23 0.26 17
0.27 21
0.28 22
Cd 0.1 0.35 0.32 24
Au ~0.05 0.38 0.38 13
In 0.04 0.39 0.39 23

Sn 0.023 0.41 0.42 24, 25
0.43 22
Au Ag 100 0.09 0.05 20
Ni 100 0.09 0.05 27
Ag In 20 0.15 0.24 28
Sn 11.5 0.17 0.15 28
(6} 0.01 (0.44) 0.35 29
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data are not sufficient, particularly for the case of
oxygen in silver. Pure oxygen is gaseous at the tem-
perature when the experiment was performed, and the
solubility limit is a function of the pressure of oxygen.
It is not difficult to understand the relationship
between the solubility limit and the binding energy,
By, of a vacancy and an impurity atom. If the energy
required to replace a solute atom with an impurity
atom, that is, the heat of solution, is high, the solu-
bility limit is low; and also the distortion (lattice and
electronic) near the impurity atom is high. When a
vacancy is trapped next to the impurity atom, this
distortion is relaxed. The relaxation energy, that is, the
binding energy, is higher as the distortion is higher.
According to the above discussion the heat of solution
and the binding energy By; of a vacancy and an im-
purity atom must have some relationship. In the
simplest case the solubility ¢ can be written as®

c {—H(l—Zc)} ’ (22b)

——=4 ex
1—c¢ P kT

where % is Boltzmann constant, 7" is the absolute
temperature, 4 is a constant related to the vibrational
entropy, and H is the heat of solution. The heat of
solution H is given by33

H=3V=2{Vas—3(Vaat+Vss)}.

Here z is the coordination number of the crystal
structure, ¥ 44 is the interaction energy between two
solvent atoms, Vpp is the interaction energy between
two solute atoms, and V4p is the interaction energy
between a solute atom and a solvent atom. One can
determine H by fitting Eq. (22b) to the solubility
curve H was determined from the tangent of
Inc/(1—¢) and (1—2¢)/T. There may exist some com-
plexity in relating directly H and the experimental heat
of solution which is the heat absorbed by the system
when 1 g mole of solute atoms enters into solution.
Sometimes the precipitated phase does not have the
same crystal structure as the pure solvent crystal or
the pure crystal structure of solute.

In Fig. 12 are plotted the binding energy, By,
between a vacancy and an impurity atom, and the
heat of solution H determined by fitting Eq. (22b) to
the solid solubility curve. It is quite surprising that it
has indeed a proportional relationship:

BV,'=(1H N

where ¢ was found to be 0.52. This means that about
one-half of the distortion energy around an impurity

3 J. H. Hildebrand and R. L. Scott, The Solubility of Non-
electrolytes (Dover Publications, Inc., New York, 1964).

¥ For example, A. H. Cottrell, Theoretical Structural Metallurgy
(St. Martin’s Press, Inc., New York, 1955), p. 156.

# C. Zener, Thermodynamics in Physical Metallurgy (The
American Society for Metals, Cleveland, 1950), p. 20.

3% C. E. Birchnenall, Thermodynamics in Physical Metallurgy
(The American Society for Metals, Cleveland, 1950), p. 158.
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Fi1c. 12. A proportional relationship between the vacancy-
impurity binding energy By: and the heat of solution H deter-
mined from the solid solubility curve. The relation is By;=0.52H.

atom is relaxed when a vacancy associates with it. Using
this equation and Eq. (22b), Eq. (22a) can be derived
in the case that the solid solubility is low. When the solid
solubility is high Eq. (22b) has to be modified. In this
respect, zinc, magnesium, and silver, which have high
solid solubility in aluminum, may deviate from this rule.
It is inadvisable to use the heat of solution measured by
a calorimetric method here, because accurate measure-
ments are difficult for the case of low solid solubility
and Eq. (22b) is not valid for the case of high solubility.

B. Equations for Thermal Equilibrium
and for Quasi-Equilibrium

In thermal equilibrium the fractional concentration
of single vacancies (c1v). is written as

(cav)e=A1rexp(—EvF/kT), (23a)

where Ey¥ is the formation energy of a single vacancy,
and 4, is a constant. Using Egs. (2) and (23a) the
fractional concentrations in thermal equilibrium are
as follows:

(cav)e=6A44v exp{— (2EyF— Byy)/kTY} , (23b)
(cvi)e=12Avic; exp{— (EvF—By.)/kT} , (23¢)
(cp®),=24A4p%; exp{ — (2EvF— Bp®)/kT}, (23d)
(cp™),=24A4p%; exp{ — QEv*—Bp®)/kT}, (23e)
(cp'™) =484 p'c; exp{ — (2Ey¥— Bp20)/kT},  (23f)
(cp') =124 p'%c; exp{ — (2EvF— Bp'®)/kT}, (23g)
(c7%)e=12A7%c; exp{ — (2Ey*— Bs*)/kT},  (23h)
(cr'®), =244 7", exp{— 2EvF—Br®)/kT}, (23i)

(c7'®) =64 1'%, exp{ — (Ev¥—Br'*)/kT} . (23p)
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Here the A’s are constants related to the vibrational
frequencies. At a temperature T4 a quenched specimen
has a fractional concentration of single vacancies much
higher than the equilibrium concentration of a specimen
that has been fully annealed at the temperature T 4.
However, a quasithermal equilibrium can be obtained
during aging at a suitable annealing temperature. This
quasi-equilibrium state is defined as the equilibrium
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between two or more types of defects. For example,
the quasi-equilibrium between single vacancies and
divacancies does not require that the total concen-
tration of vacancies be in thermal equilibrium with the
lattice. In quasithermal equilibrium the fractional con-
centration of divacancies, vacancy impurity atom
complexes, and the D%, D®, D%, D' T9% T20 and
T'% configurations are as follows:

cav=6c1v?*Fay exp(Bav/kT) , (24a)
Cyi= 12c1vc,-FV,- eXp(BVi/kT) ’ (24b)
Bp*— By , Bp®® y Bp*— Bay
cp®=2c¢yvcviFp® exp(T) =24c,c1v*Fp® exp< T ) =4c¢icovFp® exp(—-—k—T-— , (24¢)
Bp®— By ) Bp® y Bp*— Bay
61)90= 2(,‘1VCV,-F[)90 CXP<T> = 246,{2"2F1)90 C\p(*;}‘) = 46{62"FD90 CXP(T) ’ (24(1)
Bp®— By, Bp® By®— B,y
cp'P=4dcyveyiFp? exp< v~> =48c;c112F p'™’ exp( >= 8cicovFp'2” exp(————) , (24e)
kT kT kT
Bp'®—By; , Bp'® y Bp'®— B,y
61)180= C]VcViFDISO exp(T) = 1ZC{C1V2FD180 exp( kT )= 265(:va1)180 eXp(—-k—T"—") , (24f)
Br®—By; Br*® Br®— B,y
cr®=cyvev:Fr* exp(———————) =12¢cc1v*Fr%®’ exp(—) =2¢icavFr*” exp(——-—-——) s (24g)
kT kT kT
Br®— By, B2 Bpl2— Boy
cr'®=2c,vevFr'? exp(—-———————) =24¢ic1vF ' exp( > =4cicovFr'?” exp(—————) , (24h)
kT kT kT
Br'®—By; Bp'® Br'®— B,y .
cr'®=3crveyFr'® exP(~————> =06cic1v*Fr® exp( ) =ciCavF ¥’ exp(——————) (241)
kT kT kT

The F’s are constants related with the vibrational
frequencies. The ratio of the fractional concentration
of vacancy-impurity-atom complexes to that of single
vacancies in a dilute alloy does not depend upon the
formation energy of a vacancy.

C. Critical Temperature

The critical temperature, or the freezing tempera-
ture, was defined by the temperature at which the
reaction freezes. As we calculated in the previous
sections, these temperatures are rather low.

The critical temperatures shown in Table II are
typical examples for the case in which the fractional
concentration of impurity atoms is much higher than
the fractional concentration of vacancies and in which
the binding energy B,y of a divacancy is smaller than
the binding energy By; of a single vacancy and an
impurity atom. This case is for impurities in aluminum.
As we see from Table II, the critical temperature is
near 100°C in practical quench experiments. This shows

that the quenched state is governed by the quench
speed near 100°C and that the quench speed near 100°C
is important. The critical temperature can be seen
clearly in Figs. 7 and 8. The values of the critical tem-
perature calculated by the numerical integration of
kinetic Egs. (5) are in good agreement with the values
given in Table IT which were calculated by means of
Eq. (9). This indicates that a simple treatment such as
Eq. (9) gives a good approximation during quenching.
The critical temperature 7* is not sensitive to the total
fractional concentration of defects. The plot of the
logarithm of (cvi/civ)e versus the logarithm of the
cooling rate gives a straight line (Fig. 5). This can be
shown as follows: Eq. (9) can be written as

d 84vc kT*? EyM
() B g
dt /o e By; kT*

when 12¢>exp(— Byi/kT*). (T* is near 100°C. There-
fore, this condition occurs when By;>0.1 €V in the case
of aluminum.) Taking the logarithm of Eqs. (17) and
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(18), one obtains the following equation:

(cvi)o By; daT
In =— ln(———> +1In12¢;
(c1v)o EyY dt /44 s

84vicikT*?

By;
In —. (26)

EA\[V BVi

+

Since the last term is not very sensitive to (dT/d#),
one can plot the logarithm of the quench speed against
In(cvi)o/ (c1v)o. The resulting curve is a straight line
as is shown in Fig. 4. The slope of thelineis — Bys/E”.
When 12¢;<exp(— Bv/kT*) (this condition normally
exists when By;<0.1 eV),

(dT> TvikT*? ( EVM+BV1‘>
— )= exp| ——— ),
dt

By, kT
(evi)o By; aT
In =— ln(—) +In¢; 27
(c1v)o EyM4-By; dt /. s
By TvikT*?
+ In
EvM+4By, By;

The curve is again a straight line and the slope is
—Byi/ (Ev™+Bv:).

Table III is a typical example for the case that
c¢>co and Bpy> By,. The constants are chosen for
aluminum dilute alloys. As we expected, the highest
temperature is Ty* at which the divacancy formation
freezes. The next highest temperature is 7'y;* at which
the formation of vacancy and impurity freezes. Table
IIT shows that the critical temperature Toy_* is below
0°C. This suggests that the reactions between divacan-
cies and impurity atoms after a normal quench are in
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thermal equilibrium at the temperature of the quench-
ing medium. Therefore, during a quench, most of the
divacancies are bound with impurity atoms.

V. SUMMARY

(1) General kinetic equations between vacancies,
divacancies, and impurity atoms are presented.

(2) As an application of these kinetic equations the
reactions during quenching were discussed.

(3) The quenched state can be estimated by calcu-
lating the critical temperatures or freezing tempera-
tures. These temperatures are rather low. The critical
temperatures for the formation of vacancy-impurity
atom complexes are near 100°C for the case of alumi-
num. The critical temperatures for the formation of
divacancy-impurity atom complexes are below 0°C for
aluminum dilute alloys. The simple analytical treat-
ment gives results which are in good agreement with
the actual numerical integration of the Kkinetic
equations.

(4) A relation between the binding energy By; of
an impurity atom and a vacancy and the solubility
limit Cr and the heat of solution H of the impurity is
given. The tentative relation is

By;=0.52H = (—0.088 InC1+-0.088) eV .
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