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Energy and Speci6c Heat Due to an Impurity Atom in a Dilute Alloy
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The ground-state energy for the Anderson model of an impurity atom in a paramagnetic host metal is
evaluated as a function of the impressed magnetic moment. Within the Hartree-Fock approximation we
find that the ground-state energy has an absolute minimum for a finite value of the magnetic moment,
corresponding to a stable localized magnetic moment. When correlations are included within the low-
density approximation, the energy has its minimum for vanishing magnetic moment and the system cannot
magnetize, in agreement with the results of Schrieffer and Mattis. The expression for the ground-state
energy is extended to nonzero temperature and the specific heat due to the dilute impurities is calculated.
It is shown that the anomalous specific heat derived by Anderson within the Hartree-Fock approximation
is spurious.

INTRODUCTION

'HE many-electron correlations associated with
the formation and stability of localized magnetic

moments on solute atoms in dilute alloys are only
partially understood at present. Theories for localized
magnetic states have been developed by Anderson, '
WolG, ' and Clogston. ' Anderson has introduced a model
in which the impurity atom is represented by an extra
d orbital immersed in the s-band states of the host.
This state is broadened into a virtual level in the sense
discussed by Friedel. ' The broadening is caused by a
one-body s-d interaction (scattering matrix element)
which mixes the d state with the band states. The
Coulomb interaction U of opposite spin electrons
occupying the d orbital is the only two-body interaction
taken into account and, with the s-d mixing, generates
the many-electron correlations of this model. In
Anderson's original discussion these correlations were
investigated by means of a self-consistent Hartree-Fock
calculation, and a stability condition for the existence of
localized moments was obtained along with a determina-
tion of the susceptibility and speci6c-heat contributions
of these correlations. Recently Schrie6er and Mattis'
have investigated the eBects of correlations beyond
Hartree-Fock. A stability criterion based upon the
occurrence of a singularity in the susceptibility was
shown to give the Anderson conditions within the
Hartree-Fock approximation. It is known, hov. ever,
that correlations between electrons of opposite spin,
neglected in the Hartree-Fock approximation, are
important. For the case in which the virtual level is
located with respect to the Fermi level so that it
contains only a small fraction of a particle (or a hole)
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the important correlations can be taken into account
by introducing a two-particle (-hole) I matrix. Schriefier
and Mattis showed that in this lov. -density' limit the
susceptibility is always 6nite, independent of the
strength of the Coulomb interaction U. This is in
contrast with the Hartree-Fock result which predicts
that for sufFiciently large U the susceptibility will
become singular and beyond this a local moment will
be stable. This is another example of the fact that the
Hartree-Fock approximation can overestimate the
strength of the effective exchange interaction.

In this paper, the ground-state energy for the
Anderson model of a dilute alloy is investigated. By
introducing an external magnetic field, it is possible to
study the energy associated with the many-electron
correlations as a function of the magnetization M of the
d orbital. If the minimum energy occurs for a f'nite
value of M, then a local moment v ill be stable. V ithin
the Hartree-Fock approximation we show that the
criterion for the occurrence of such a minimum is just
that deduced by Anderson and corresponds to a
singularity in the susceptibility. In the low-densit&
case, SchrieHer and Mattis showed that the energy has
a local minimum at zero magnetization (i.e., the
susceptibility does not become singular). Here we show
that no subsidiary minimum occurs and therefore there
is no localized moment. It v as in fact just this question
of the possibility of a subsidiary energy minimum at
nonvanishing values of M corresponding to a metasta-
ble or stable magnetic phase, which prompted this
investigation. The occurrence of a stable subsidiary
minimum would have far reaching consequences
indicating the necessity of a bootstrap approach in
which the presence of a local moment would have to be
assumed at the start of the calculation in order to
determine the onset criterion for such a moment.

Generalizing this work to nonzero temperature, v.e
derive an expression for the energy associated with the
impurities. Using this, the specific heat due to the

' Here low density refers to a small particle (or hole) occupation
of an impurity d state and not to the concentration of impurities,
which we always assume is sufhciently dilute so that impurity-
impurity correlations can be neglected.
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impurities is calculated. The anomalous term obtained
and discussed by Anderson is shown to be spurious.
The expression which we obtain agrees with some
experimental results on dilute alloys of Ni in Be.'
Here the impurity atoms have a low hole concentration
and therefore the low-density t-matrix approximation
should be valid. Within this approximation, theory
predicts that there are no stable localized moments and
none are observed in the dilute alloys of Ni in Be.

The following discussion is divided into three parts:
In the first section, an exact expression for the ground-
state energy for the Anderson model of a dilute alloy
is constructed. The energy is given in terms of an
integral over the single-particle d-state Green's function.
In the second section, we evaluate this expression using
forms obtained for the Green's function in the self-

consistent Hartree-Fock approximation and the low-

density t-matrix approximation. In the Hartree-Fock
case, Anderson's results are reproduced and plots of the
ground-state energy as a function of magnetization are
given for a range of d-state level position and level
width parameters. In the low-density t-matrix case we

do not find a stable or metastable magnetic state. This
supports the conclusion of SchrieGer and Mattis that
the Hartree-Fock solution, v hich predicts a moment
in the large-U limit, is qualitatively in error for the
low-density case. In the final section, an exact expression
for the energy at nonzero temperature is derived and
used to calculate the specific heat.

for the extra orbital

Gdd (t) = 1(0
~
Tcd (st)cd &s(0)

~
0).

Our subsequent analysis is then based upon the evalua-
tion of this ground-state-energy expression using several
approximate forms for Gq~('.

In order to relate the ground-state energy to the
propagator (2), we consider the commutation relations

[CkssH] kkscks+ l kdCds s

and
[Cd,H] dd Cd +Q Vdk Ck + UCd nd

In terms of these commutators the Hamiltonian can be
v ritten

H=p(p ck,&[ck„H]+2&cd, &[cd„H-]

+ & dd. nd. +2g V-dk*cd &Cd, }.. (5)

Now it is convenient to introduce the four one-particle
Green's functions defined by

G;, '&(t) = —i(0~ Tc,, (t)c,,&(0) ~0), (6)

where i and j stand for indices k or d, and ~0) is the
true ground state of the system. The ground-state
energy is simply related to these Green's functions.
From the equation of motion for the operators ck, we get

EXACT EXPRESSIONS FOR THE GROUND-
STATE ENERGY

In Anderson's model, one assumes that the band
states of the host metal can be treated as independent
quasiparticles characterized by a momentum index k,
a spin index s and an energy ak, . In the presence of a
s-directed magnetic field H„ the band-state energy is
~I„——&A,

—sP where s=&1 and ) =ALII„ IJ, being the
Bohr magneton. We consider the system of the band
electrons and a single impurity atom. The impurity is
introduced as an extra localized orbital of energy
&~,

——&~—sX, which is mixed with the band states by a
matrix element Vj,q. All two-body Coulomb interactions
are neglected except the Coulomb interaction
between opposite-spin electrons on the localized orbital.
Using ct and c as the Fermi creation and destruction
operators, the Hamiltonian for this system is

H Q kksnks+2 ddsnds

+Q (Vkdck, &cd,+H c )+Und+nd, . .

where
12', =cy, tcjc, , and sg =cg ~cg (1)

We wish to write down an expression for the ground-
state energy in terms of the single-particle propagator

7 A. P. K.lein and A. J. Heeger, Phys. Rev. 144, 458 (1966).

01 c„Lc „H]IO) =~„,& &(t) I. ..
dt

or taking Fourier transforms

(0 i ck, &[ck„H] i 0)=
27ri

&dGkk &s& (&d)d&d,

(0
~
cd, &[cd„H]

~
0) = &dGdd&'& (&d)d&0,

27ri

(0In'I0) = Gdd" (~)d(o,
2%i

(10)

(0Icd, 'ck, I0)= Gkd&'& (~)d~
2~i

Now we have expressed the expectation value of the
terms in the Hamiltonian (5) as certain integrals of
Green's functions. However these Green's functions are
not independent, but coupled to each other through the
s-d interaction V. From the equations of motion v e get

where C is the contour consisting of the real axis and
a semicircle at infinity in the upper half plane. In the
same way we get the relations
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the following relations:

kdGkd '(kd) = d~.Gkd" (kd)+ VkdGdd (kd), (12)
FIG. 1. Hartree-Fock approxi-

mation of the self-energy. (s)
i Z (o&)

(-s)
~Gdd ( )

l U

k&)G&&k' (k&)) ))kk'+d&; Gkk' (k&))+ Vl:dGdk' (k&)) ~ (13)

Elimination gives
Kith this relation, Eq. (18) can be rewritten in a
form which will be useful in the subsequent analysis

G~dk'& (~)= [V~d/(~ —~~,)]Gddk') (~), (14) 1
(~ '&—"-(~))Gdd" (~)d~2' s p

(20)and
[ v., [+ G«" (")

&Ics ~ &ks

G),),
('& (kd) =

EVALUATION OF THE GROUND-
STATE ENERGY

YVe also introduce the one-body self-energy S(') co

given by

S'*&(~)=Z
&((: (O—gl s

()
Hartree-Fock Approximation

In the Hartree-Fock approximation the self-energy
z'*& (kd) is given by

Thus we can write the ground-state energy
U

Z('&(kd) = Gdd( '&(kd)dkd=—Un „
2%i

(21)

1.

(oieio) =
234

corresponding to the diagram shown in Fig. 1. Thus we
can write the Green's function

~+ed +S"(~)
+ Gddk'&(kd) dkd. (17)

2 where
Gdd'& (k&) = 1/(kd E,+iF—sgnkd),

1',= kd, +Z '
(k&)) = dd $)k+ Un—

(22)

(23)
As in Anderson's analysis v e can neglect the real

part of the self-energy S since it primarily leads to a
level shift which can be taken care of by a redefinition
of ed, . Furthermore we assume the self-energy to be
spin-independent, and take

+S
2gi

1 (Ey
dkdGdd" (kd) =—cot '~ —

~
.

&, F)

and n, is the expectation value of nq„given by

where
S&'&(kd) = —iF sgnkd,

F = n.1V (0) j V&,d ~,„'.

The ground-state energy (20) is now

1
E= Q (kd ——,

' U n}G k'dd( )ckkd. d(25a)
Here we have assumed that the density of states in the
~ b&»d varies slowly»d replaced it by its a ue at the F ld' th t ' F' 2 d

'
h

Fermi surface Ã (0). In this approximation w e can write

P kdGkk('& (k0) dkd
kd ImGdd«& (kd)ckd Un+n—(25b),

1 M

2'
8—G„&'&( ) S( ))d

t9(d

= P ek, =const,
k~& kg

since k&k)S(kd)/k)kd is of the form kd()(kd). Neglecting this
constant we have

g 2+F2
E=Q ed, n, +Un+n +Q —ln

S 8 2'
(25c)

F2

To evaluate the energy from this expression we must

To make the integral convergent we only perform the
integration from a cutoB energy, the contribution
from which we consider as a constant and neglect.
Doing this the energy can be written

E=(o~a~o)=
2Ãz

kd+ dd«+ S (k&)) -"() ( )

G«" (~) =Go" (~)+Go"(~)E"(~)Gdd" (~) (19)

Taking Go&'&(kd) '=kd —kd, —S(kd) v'e define a proper
Coulomb self-energy by the Dyson equation

Fn. 2. Cut struc-
ture of the Green's
functions and the
contour C.
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y(E /U ~ p )
E, from Fq. (25) which gives

r
L=g pq, n, , —l—nsinmn, +Un+ad .

7r
(28)

V=5
Denoting the total number of electrons on the impurity
by E=n++n, the energy can be written

y E./U

(a)

y X/U

2

)=s

r
E= p plV Uf— ln—ip—(cosn.M —cosn X)

+,'U(E-' M')— (29)

Here E and M should be viewed as certain functions of
U and F. As E is the ground-state energy, it is

stable to variations in E and M. Hence they are
determined from the requirements

BE/8(V=0 and BE/8M=0. (30)

l/2

I'IG. 3. Curves of yBo/U and yX/U for: (a) —ed/U= k
and (b) —ed/U=-,'. y= U/1 .

solve the Eqs. (24) self-consistently for r4 and use
these values in (25c). In this way we find the ground-
state energy as a function of the chemical potential p,
the external magnetic 6eld H„ the impurity level
position eq, the strength of the Coulomb repulsion U
and the strength of the s-d scattering F. The value of
the chemical potential is set by the host metal.

In order to investigate the magnetic behavior of this
system, it is useful to study that part of the ground-state
energy which is not associated with the coupling to the
external field H, . This is given by

Ep =E+pMH, . (26)

Here pM is the magnetic moment caused by the d
electrons and

(27)M=n —n

Qy using Fqs. (24) and (26) with H, as a parametric
variable, we can study Ep as a function of the magnetiza-
tion M for various values of the parameters e~, U and F.
If Ep has a minimum for a 6nite value of M, vre conclude
that the system will have a localized moment. Note
that the introduction of H, is merely a formal device,
since in any laboratory field the magnetic energy—H,Mp, is negligible compared to U and F. As an
illustration we have carried through this graphically
for four different cases, namely —pp/U=-, ' and
U/I'=1 and 5. In Fig. 3 we give Ep as a function of M
and also the magnetic field as function of M.

We can get a bit more insight into the behavior of
the ground-state energy as a function of M by rephras-
ing the problem slightly. Using Eqs. (24) we eliminate

Taking e~, U and F as fixed, these equations give the
variation of E, rV, and M with respect to the applied
magnetic field.

It is, however, more interesting to take the magnetiza-
tion M as independent variable. Ke are interested in
the internal part of the ground-state energy Ep which
does not depend on the external 6eld as a function of
M in the interval 0&M& 1. The variation of Ep with
magnetization is

Gap l9Ep BX BEp 8+ QEp
+ +

dM BX BM 8$ BM BM
(31)

Using Eqs. (26), (29), and (30), we find

dEp/dM = I'LsinvrM/(cosM —cosvrE) j—-', UM. (32)

It follows from Eq. (29) that Ep is an even function of
M tending to + in6nity as M ~E, and to a finite
value as M —+ 0. Furthermore, the curvature of the
derivative is positive since

O'Ep 2—(coswM —cosmÃ)sing M costs%=~'F & 0. (33)
BM3 (cosvrM —cosvrX)'

(JEp/dM= M (-,'F+L1/si (-,'mn(V) j ', U) . ——(34)

(-s)
Gdd (~')

(s)
ig(ap)= IU +

(-s)
Gdd (g)')

i( 3
lu U I +
I I

(-s)
Qdd (~+ ~ )

I

I i I

FIG. 4. Low-density approximation to the self-energy.

This means that Ep can have at most one extremum
v hich has to be a minimum. Consequently, if and only
if the sign of the derivative at the origin is negative, a
minimum will occur.

For small values of M,
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The condition for a localized moment in the Hartree-
Fock approximation is therefore that

( U/I'ir) sin'(-,'w1V) & 1. (35)

This is the same as Anderson's condition.
In the special case —eq/U=-, ', we find that Eqs. (30)

can be solved analytically giving %=1 and

2F
E,= U —~i —-', M' — ln cos(-', irM)

mU
(3fi)

F
1&=dEO/dM = U —-',M+—tan(-,'m M)

U
(37)

Within the Hartree-Fock approximation the occur-
rence of a minimum in Ep at finite M is simply related
to the sign of the curvature O'Eo/8M2 at M=o. Also
it is related to the sign of the weak-field magnetic
susceptibility X, as can be seen from the following
argument. For small M we can write

E= H, i&M+—aM'+0(M') .

Equation (30) then gives

Z&'&((u) = U «ri

U,«= U/[1+ Up(0)]. (42)

Using this self-energy in the Green's functions we find

SchrieBer and Mattis showed that the zero-fieldsuscepti-
bility remains positive (and finite) in the low-density
limit, independent of the strength of U. This behavior
of the zero-field susceptibility does not rule out the
possibility that a localized moment exists in the
low-density approximation. To investigate this, it is
necessary to determine the behavior of the ground-state
energy as a function of the magnetization. A subsidiary
minimum could exist at a finite value of M and not be
reflected by the behavior of the zero-field susceptibility
which senses only the behavior of the energy in the
region of small magnetization. Here we will present
results for the low-density approximation which show
that the ground-state energy is a monotonically increas-
ing function of M so that no localized moment can
occur.

In order to solve Eqs. (38) and (40) self-consistently
we approximate (38) by

01
pH, = 2aM+0(M')

a= pH, /2M=i&'/2X.

jV jV

4(o)=- are tan—+are tan—,(43)
(E+E) r I

Hence we can write generally for small M

Eo (i&'/2&)3P . ——

Thus we see from the small-M limit that the criterion
for the appearance of a local moment is associated with
x changing sign. In the vicinity of the magnetic thresh-
old X exhibits a simple pole [1—(U/xl')sin'(-, 'irlV)] '

and switches from + ~ to —~.

CORRELATION EFFECTS

If the impurity has a small number of electrons (or
holes) occupying the d level (I'/E((1), the correlations
are predominantly 2-particle since higher particle
correlations are suppressed by increasing powers of the
effective number of particles F/E. In this case, as
discussed by Schrie6er and Mattis, the two-body
contributions to the self-energy can be obtained from
the diagrams of Fig. 4. In this approximation, the
self-energy is

where I', is now defined as

E,= ed —sP +U.ggn, .

The number of electrons is the solution to the coupled
equations,

n, ,= (1/ir)cot '(E,/I') . (44)

2F singE

Substituting this expression into Eq. (42) we find how
the effective potential depends on A and M. As in the
Hartree-Fock case we are interested in the ground-state
energy in the absence of an external magnetic field.
Taking U,« instead of U in Eq. (29) this energy is

Eo e&1V—(I'/ir) ln-,' (cosirM ——cos7&1V)—

+-,'(1V' —M')U/[1+Up(0)). (46)

With the help of this expression g(0) can be rewritten in
the following way

1—X cosmM —cosmic
(45)

Q&s) (~)=
2%i

1((o+(a')Ggd &
—'& (&d') da&'. (38)

In the same way a,s before from Eq. (31) we have

Here the t matrix is given by

t(&d) = U/[1+ Uy(a))]
with

sin~M1 dEp U/I'—2M1

(39) I' dM coss M —cosirlV 1+U&f (0)

y(~) = Gas&+& (~+~')G~~&-'( —~')d~'. (40)
2m-i
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simply written as an integral over the spectral weight

E zG. 5. Cut and poles
of Z(r).

1
A&'&(co) = ——ImG«&'&((u), (52)

and if Z, denotes the real part of Z we have for the
energy per impurity

Neglecting the last term in Eq. (47) which is positive
and noting that U/[I+Up(0)]&1/P(0) it follows that E(T)=Z '"(")("—'&"(~))f(~)d- (53)

1dEp M

I" dM cosxM —cosvrlV 2pg(0)

sinmM

M sing M sinxS

cos~M —cosa' M 1—S

THE SPECIFIC HEAT

In order to determine the impurity contribution to
the specific heat, we calculate the energy associated with

the presence of an impurity at nonzero temperatures.
Using the standard imarinary-time Greens-function
techniques, Eq. (20) goesover to

E(T)=kTE(~ —-' '*'(~))G«"(~) (49)

By writing this as a contour integral, Fig. 5, we get

E(T)= —2
2&1

G«" (~)(-—"*'(~))

In the low-density limit the total number of d electrons

(holes) is small, say E(-', (E)—,'). Thus we find that

Ep always has a positive derivative for positive M,
and the only minimum that can occur is for M=0.
Consequently a subsidiary minimum cannot exist and

within the low-density approximation there is no
localized moment.

The above form clearl& exhibits the energy a,s the
weighted average of co where the weight is the average
occupation f(co) times the effective density of states
A(a&). The term —2Z(~) prevents double counting the
two-particle interaction energy. This term just cancels
the anomalous specific-heat contribution discussed by
Anderson.

To perform the integration in (53) we make use of
the formula

g(~)f(~) =
m.-"k'T' dg

g(~)d&+ —,(54)
6 du) „p

where p(T) is the temperature-dependent part of the
chemical potential. Terms of order T' and higher are
neglected. In the following we assume that »(T) is
proportional to T'. Thus we have

E(T)=g
v(&) 'k'T'

~&'(~)(~—-', U», )d.+

BA&'&((u)
X A() 0 ——,Vn,

&9M

The contribution to the specific heat C from the
impurityis C=BE/BT so thatneglecting termsof order
T' we have

-here f(~) is the Fermi function

X f{(a)c&0, (50)
Bp,

C=Z '"(0)(—2«-.)
e

f(~) ['&k2'+1]—&

By deforming the contour so that it runs just above and
just below the cut along the real axis, we find

E(T)= —P

BA {') ~n—s+ (~—2«) —~A" (a)U Cky
—00 BT BT

1I'k T( Bg&s&(~)
+

I
~"(o)—lU» . . (5fi)

3 Bco „p
In the s™-ay as Eq. (53) was obtained, it follows

X Im(G &,&(.)( x&&,&()))~ {51)
agenum erofdelectronsattemperature1 that the avera e number

m T is given by

»,= A&'&{(v)f((a)dco, (57)We are interested in evaluating this for situations in
whichonly therealpartof Zisimportant(e. g. ,Hartree-
Fock approximation). In this case Eq. (51) can be Taking the derivative with respect t&& t«spec o emperature ana
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using Eq. (54), we obtain to order T'.

BN BA &'& (co) &i@,

ha+ A '*'(0)
BT oc& BT BT

(5g)

Making a partial integration v e can v rite

(60)

Rearranging terms using Eqs. (58), (59), and (60) the
specific heat is

Here the first term on the right-hand side of Eq. (61) is
just the ordinarily expected contribution. Making the
Hartree-Fock approximation for Z, we now show that
the remaining terms vanish. In the Hartree-Fock
approximation we simply have Z(')= Un, and the
assumption that Z is independent of co niade in (59) is
valid. Inserting this expression for the self-energy into
Eq. (61) we obtain

C= 'x'k'T Q, A &'&-(0) . (62)

Thus in the Hartree-Fock approximation the specific-
heat contribution associated with the impurities shows
no irregularities and depends simply on the density of
states at the Fermi surface. A measurement of the
specific heat will therefore give information about the

From the definition of the spectral v.eight function
Eq. (52) we find that the temperature dependence is
contained in the self-energy Zi. Assuming that this does
not depend on the frequency, v e have

~A (') aA (') ar, &(')

(59)

increase in the density of states due to the added d state.
See (6).

CONCLUSION

The essential results of the above analysis are:

(1) If one treats Anderson's extra-orbital model of an
impurity in a dilute alloy within the Hartree-Fock
(HF) approximation, the energy of the system plotted
as a function of magnetization M has a minimum at
M=O for A (0)U(1, and at a nonzero value of M for
A(0)U)1, where A(0) is the density of states of the
self-consistently determined virtual level without spin
polarization evaluated at the Fermi surface. The value
of M at the minimum is in agreement with that found
by Anderson by solving the HF equations.

(2) If one treats correlation effects for the above
model in the low-density limit, the energy has a
minimum at M =0, regardless of the size of U, and is a
monotonically increasing function of ~M, having no
subsidiary minima. This result completes the discussion
of Schrieffer and Mattis regarding the absence of a
localized moment, in Anderson's model at low tempera-
ture, in a treatment which includes correlation effects
in the low-density limit.

(3) A correct treatment within the Hartree-jock
approximation of the specific heat C associated with the
impurity does not give rise to the anomalous term
obtained by Anderson. Rather, one finds the intuitive
result,

C= 'x'k'T P, A-&'& (0)

where A "(0) is the density of states of the self-
consistently determined virtual level for spin orientation
s evaluated at the Fermi surface.

The above results are in agreement with the recent
experiments of Klein and Heeger~ on Ni in Be.
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