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Dissociative Attachment in Rearrangement Electron Collision with Molecules
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A projection operator which is capable of decoupling the elastic channel and all the rearranged open
channels from the rest of the Hilbert space is derived for dissociative attachment in rearrangement electron
collision with molecules. This then leads to an exact description. of the process by a finite set of coupled equa-
tions. Specialization of this method to account for resonance dissociative attachment is also carried out.

I. INTRODUCTION

'HE problem of dissociative attachment in re-
arrangement electron collision with molecules has

recently received considerable attention both theoreti-
cally' ' and experimentally. ' ' Among the features
associated with dissociative-attachment processes, the
pronounced isotope efI'ect recently observed' in the
electron-hydrogen system is most striking. Since the
proposed expansion method' does not give a clear
picture of auto-ionization, it is not convenient for dealing
with dissociative a.ttachment in the (e,H2) system. To
account for the competitive auto-ionization process, the
problem of dissociative attachment was later reformu-
lated by Bardsley et al.' using the Kapur-Peierls
resonance theory. ' Their treatment, however, was con-
fined within the adiabatic approximation. The purpose
of this paper is to present an exact formalism for
dissociative-attachment processes using projection-
operator techniques.

Dissociative attachment of electrons to molecules
may take place in di6'erent fashion. The most important
dissociative-attachment processes for diatomic mole-
cules are of the Franck-Condon type in which a transi-
tion takes place from a stable state of the molecule to
a continuum (with respect to nuclear configuration) of
the negative parent ion. Such direct capture of the
incident electron into a repulsive state of the parent
ion lying in the Franck-Condon region of the molecule
would lead to a dissociation of the molecule under
consideration in approximately a vibrational time of
the constituent nuclei. Dissociative attachment, how-
ever, may also take place in an indirect way in which
the incident electron is first captured into a discrete
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state of the negative parent ion. There follows a radia-
tionless intramolecular decomposition of the Auger type
(this is known as predissociation') as a result of the
overlapping of this discrete state with continuum.
There are also possibilities that dissociative attachment
may take place indirectly as a result of ion-pair produc-
tion followed by recombination of the electron with the
positive ion.

For simplicity, we will confine our discussion to
diatomic molecular systems and concern ourselves
mainly with dissociative attachment of the Franck-
Condon type. The description to be presented is, of
course, applicable to dissociative recombination in
rearrangernent electron collision with molecular ions
whenever it is appropriate.

The plan of the paper is as follows: In Sec. II, we
show how a projection operator which is capable of
decoupling the elastic channel and all the rearranged
open-channels from the rest of the Hilbert space may
be constructed for such a rearrangement collision. In
terms of the derived projection operator, an exact
description of dissociative-attachment processes by a
finite set of coupled equations is then obtained. The
size of the coupled equations is equal to one plus the
total number of opened rearranged channels. Ke close
this section by showing the simplifications that may
result by neglecting the recoils in the rearranged
channels. Specialization of this method to account for
resonance dissociative attachment is carried out in
Sec. III. The electronic scattering state involving
resonance is solved for a fixed nuclear configuration,
using Feshbach's treatment' for resonance. Ke then
construct the projection operator in terms of the scatter-
ing state by a straightforward application of the method
derived in Sec. II. Finally, in Sec. IV, application of
the formalism to the electron-hydrogen system is
discussed. A comparison of the present formulation
with that of Bardsley et a/. ' is also made.

II. COUPLED-EQUATION FORMALISM

The technique frequently used for describing re-
arrangernent collision is to assume that the total wave

6 For further discussion, see G. Herzberg, Spectra of Diatomic
Molecules, 2nd ed. (D. Van Nostrand Company, Inc. , New York,
1950), p. 387.

' H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962)~
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Fro. 1. Schematic diagram of interaction potentials for
Franck-Condon type dissociative attachment.

function T is a linear combination of the initial and
final states with unknown scattering and rearranged
functions, respectively, in each. Thus for dissociative
attachment AB+e~ A+B (Fig. 1), one may start
with the two-state approximation

T(r, R)—(P.(r', R)x„„(R))F„„~'i(ro)

+ tt(4-(r. )4- '(r~))G- "'(0), (2 1)

where P„(r',R) and X„„(R)are, respectively, the initial
electronic and nuclear wave functions of the target
molecule AB, @„(r.) and P .'(r~) are the final electron
wave functions of the atoms A and 8—,respectively,
and 8 is the antisymmetrization operator operating
only on the electrons. The coordinates of the system
containing an incident electron and two heavy nuclei
a and b are illustrated in Fig. 2. For simplicity the
coordinates of the Eo bound electrons are not included
in Fig. 2.

Equation (2.1) is then substituted into a variational
expression which is made stationary by an approximate
choice of the two unknown functions, thus leading to a
pair of coupled equations. These equations are then
solved for the unknown functions with the following
asymptotic boundary conditions

is capable of improving the coupled-equation approach
so that it becomes exact. The method involves construc-
tion of projection operators which project out from the
total wave function the channels of immediate concern

and treatment of the remaining channels as fields for
generating effective optical potentials. The existence of'

a projection operator II which can project out from the
total wave function the two desired channels simul-

taneously has been demonstrated by Mittleman. '

IIT(r, R) = (P„(r',R)x„„(R)}F„„(ro)
+~{4-(.)4-'( ))G- (p) (2 4)

This then provides, except for the Pauli principle be-
tween the projectile and target molecular electrons, an

exact description of the rearrangement collision by a
pair of coupled equations. However, the projection
operator II which can decouple the two channels from

the rest of the Hilbert space is a solution of an integral
equation which could not be solved easily (if at all).
The difhculties arise from the change in coordinates
between the initial and the rearranged channels due to
the rearrangement of the colliding system, thus resulting
in equations which are intrinsically nonlocal.

An alternative method was later proposed by Chen
and Mittleman' which accomplishes the same purpose
but is much simpler in constructing the projection
operator. The technique used in this method is to con-
strain the coordinates in the two channels to be the
same, thereby eliminating the intrinsically nonlocal
aspect of the problem. En this section, we propose for
dissociative attachment another method of constructing
the projection operator which is exact and suSciently
simple to be numerically useful. The new method in-

volves construction of the projection operator II in
terms of the elastic scattering channel which is assumed
to be predetermined from the electronic Hamiltonian
for a fixed nuclear configuration. The resulting coupled
equations that are obtained from this method provide
solutions for the rearranged scattering channels.

The total electronic Hamiltonian for the %=%0+1
electron can be defined as

H, =H+ (1/2p) Va' (2 5)

Ii =M,Mi,/(M, +M i,), (2.6)

where H is the total Hamiltonian of the system, V'~' is
the Laplacian operator associated with the relative

p„„Ãi(ro)

gslcsaro

:e'~' "'+f ' '(k r"o)
p'p ~ oo

Fzo. 2. Coordinate system
for the one-electron model. o

e2Kf vP

G'-'"'(p) - a."'(l*,P)

n= (n, v), (2.2)

i = (m, m'). (2.3)

Recently, Feshbach' has proposed a method which

b

8 M. H. Mittleman, Ann. Phys. (N. Y.) 28, 430 (f9).
9 J. C. Y. Chen and M. H. Mittleman, Ann. Phys. {N. Y.) (to

be published).
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nuclear motion, and M and M~ are the masses of
nuclei a and b, respectively. For each fixed nuclear
coniguration, we may solve the electronic Schrodinger
equation

{H, b, (R—)}+,(r, R) =0, i= (k, ,o),
for the scattering state 4';(r, R):

~t'4pr0

4;(r, R) — ' fo(ro', R) e*""+fo(k;, ro)

with

(2 7)

(2 8)

h;(R) = ep(R)+-,'kP, (2.9)

where ep(R) is the electronic energy of the initial target
state. The zero-point energy is set at the initial level of
the nuclear state of the initial electronic state. Thus, at
the equilibrium internuclear separation, R„h;(R) is
equal to the total energy E of the system; and at any
other R, 8,(R) is equal to the F.corrected by the energy
stored in the nuclear motion which is governed by the
relevant potential curve generated by the target
electronic state.

To constrain the coordinate in the rearranged channel
to be R, we may use the relation (obtained from Fig. 2)

y= R—(1/Mb+1)rpb (2.10)

Since, in Eq. (2.4), Q' (rb) w. ith rb= (rpb, rbb, )
vanishes exponentially as its argument ro& becomes
large, we may write for large R.

p=
i Vi =&—(1/Mb+1)+ rob+0(&-'). (2.11)

Substitution of (2.11) for p into Eq. (2.3) yields

G ~ (p) — - {g„(k,,R) (e'"ivy/R)}e '& &fv &Ob (2.12—)
p ~ C

with
Icr KfvRvv X= 1/(Mb+1) . (2.13)

This demonstrates that if one constrains the rearranged
channel coordinate to be R, one encounters a recoil
factor exp( ihvf, —rob) in the rearranged channel.

In view of Eqs. (2.9) and (2.12), we introduce the
notations

The projection operator defined by Eq. (2.16) must
satisfy the following equations:

(i,oi (1—II)T)=0, (2.18)

(f,v
i (1—II)T)=0, v = 1, 2, vp. (2.19)

Equations (2.18) and (2.19) are just statements that
the asymptotic forms of IIT and T should coincide for
the elastic channel and all the rearranged channels. By
de6ning

Up(R) =(i,oi T), (2.20)

(2.21)

(2.22)

(2.23)

V.(R)=(f, I»,
hp„(R) =(i,oi f,v),

~-'(R) =(f; I f '),
Eqs. (2.18) and (2.19) may be written as

xo(R)+Q Ao, (R)G.(R) = Uo(R), (2.24)
v=t,

Q g„„G„(R)+Ap„*(R)xp(R)= V„(R) . (2.25)
v'=1

x,(R)= (1+aDa*)U, —a D V, (2.26)

(2.27)G(R) = D(V—&*Up),
where

D={~—~*~}-'=(d .) (2.28)

Now substituting Eqs. (2.26) and (2.27) into Eqs. (2.16)
and using the definitions for Up and the V„'s Li.e.,
Eqs. (2.20) and (2.21)], we obtain

Vp Vp

rr=~(z, z') ~i,o) I++ p~,g„„~,„,* (i,o~
v=1 ve=l

vp vp

+Z Z lf, )d-(f, 'I
v=1 v'=1

Functions Xp(R) and G„(R) are now solved from
Eqs. (2.24) and (2.25) in terms of matrix notations

ii,O)=e;(r, R),

If, )=~{4-(')4-'(rb)e-'"' "},
and define a projection operator such that

(2.14)

(2.15)

vp vp-2 Z lf, )d."~., *(,OI
v~1 v' l

Vp—P P ii,o)ho„d„„(f, i
. (2.29)

v=1 v'=l

IIT(r, R) =
I i,o)Xp(R)+P i f,v)G„(R), (2.16)

v=1 It may easily be shown that II is Hermitian and
idempotent II'=II, so that it is a projection operator.

Since II projects out from T, the complete elastic
channel, it then follows that QT with 0= 1—II does not
contain any incident wave (Eq. (2.18)]. Thus, the
Schrodinger equation for the colliding system

(2.30)

(E—X)IIT=0, (2.31)

where Xp(R) is bounded in E and the G„(R)'s have the
boundary condition inferred from Eq. (2.12):

G„(R) - gv(k;, A) (e'"iv "/R) . (2.17)

We emphasize that the recoil states if, v) are normalized
but are not orthogonal, so that all the rearranged open HT= ET
channels must be included in the summation in Eq.

may be solved for IIT in terms of 0, yielding(2.16). The asymptotic boundary condition for rp —b po

is satisfied by IIT due to
i i,o) LEq. (2.8)].



R. EARRANGEM ENT ELECTRON COLL (8 tON KVI TH MOLECULE~

with
1

%=II H+HQ — -QH II,
E—QHQ+ig

(2.32)

where q —+ 0+ is introduced beca.use II does not include
all the scattered open channels. From Eq. (2.31), the
desired coupled equations are then obtained:

{F.—3Coo) Xo(R) =Q, {3Cp„—Ebp, }G.(R), (2.33a)

{E—3C,.)G.(R) = Q {3C.„EiI„„—)G„.(R)
V QV

+{K.p—Ehp. *)Xp(R) (2.33b)
with

3Coo= (i,OI H+HQ QHIi, O&,
E—QBO+i&

~- =&f,vlH+HII —IIHI f,v'),
E—OHQ+ig

(2.34)

where we have used the relation IIli,0)= li,0), and
III f,v)=

I f,v&, for v=1, vo.

For reacting systems where only the lowest re-
arranged channel v is open, we have for II the simple
expression from Eq. (2.29)

11=b(R —R') {Ii,O&&i,0l+ I f,v&&f,vl
—~"*If v&(iOI 6p li,O&&f vl)/(I l~p I') (235)

The coupled equa, tions (2.33) then reduce to a pair of
coupled equations. In order to discuss the nature of the
coupling, we approximate X'. by its first term IIBII.The
pair of coupled equations becomes

{Va'+2pLE —'Up(R)]) Xo(R)
= {ep„(R)+2ii'Up„(R)}G„(R), (2.36a)

{7'a'+ 2@LE—'U „(R)])G„(R)
= {'U„o(R)—C„o(R,&R))Xo(R) (236b)

with

'Uo(R) = 8;(R)—(2p)-'C;, (R,VR),
~.(R)=&f, IH. lf, »,
~„(R)= &i,ol H. l f,v&,

'ltp (R) = —Dp (R)L2pE+ 9'a ),
~„,(R) =a„*{2~Ib, (R)—E]—V o),

C,;(R,Va) =2&%';I (V'a+;)& V'a+(+;I (V'a'@,)&,

(2.37)

where the C; s are the Born-Oppenheimer coupling
terms between the electronic and nuclear motions.

The important thing to notice in Eqs. (2.36) is that
the coupling potentials contain the nonadiabatic terms
which are also contained in the coupled equa. tions de-
rived from the expansion method. ' Examining Eq,
(2.36b) we notice that if the overlapping between the
electronic states is small, i.e.„h0„~=0, the coupling
potential responsible for transitions from Xp(R) to G„(R)

is solely due to those nonadiabatic coupling terms in the
"static" approxima, tion (i.e., 3C=IIHII).

Ke close this section with some remarks concerning
the recoil factors in the rearranged channels. Since for
most practical cases of interest the criterion f{:f((X is
often satisfied for dissociative attachment because of
the favorable mass ratio Lace Eqs. (2.12) and (2.13)],
the recoil in the rearranged channels may then be
neglected. In this approximation we need not include
in IIY all the rearranged open channels, but only the
desired ones because of the orthonormality properties
of the atomic wave functions. %e, thus, may want

with

11'f(r,R) =
I
i,O&Xo(R)+

I f,v)G, (R) (2.38)

If &= Ct{4-(r.)4- '(ro)) (2.39)

From Eqs. (2.29) and (2.33), we obtain immediately
the simple expression I Eq. (2.35)] for the projection
operator and the corresponding pair of coupled
equations.

may take place within the nuclear configuration R&R,
(Fig. 3). The attachment process is then complicated
by the possibilities of auto-ionization of the intermediate
AB, thus leaving the system to decay back to various
possible nuclear states of 0'; and populating nuclear
excitation of AB molecule. Here we show how the
situation may be accounted for by the projection-
operator techniques discussed in Sec. II. For simplicity
we confine our discussions to cases where at a given
energy region only one compound negative ion state is
of importance for dissociative attachment (i.e., isolated
resonance).

Ke start with our discussion from the total electronic
Ha.miltonian Eq. (2.5) for a lixed nuclear configuration
and consider the case illustrated in Fig. 3 in which only
the elastic and the lowest rearranged channels are open.
Thus,

H,%,= h;(R)4;= Lop(R)+-,'kP]+, . (3.1)

Following Feshbach's treatment of resonance, v we con-
struct a projection operator P such that

P% (i' R) = 8{4'p(ri' ' rir R)tp( p)) rR&R (3.2)

P4.;(r,R) =+;(r,R) R& R, , (3.3)

III. RESONANCE DISSOCIATIVE
ATTACHMENT

The negative ion A 8—which acts as an intermediate
for the process of dissociative attachment (Fig. 1) may
in some cases be unstable with respect to the configura-
tion of the incident electron. Once the reacting system
is localized into this state, two competitive processes

AB ~ AB+e (auto-ionization),

AB ~A+B (diss—ociation),
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The eigenvalue h, (R) so obtained approximates the
position of resonance. The shift in energy between
B,(R), and the exact resonance comes from the neglected
coupling with the continuum in Eq. (3.8).

Equation (3.6) which contains the coupling can be
solved exactly for isolated resonance yielding

S%;=Pe;(+)
+(h;(R) ~'—+in) '~.(-R)PH.Q IC ), (3 9)

with

(h;(R) —BC,')E% (+&=0, (3.10)

O

C

Ol

O
CL

a{4,}.6{4,}~,{k}

a{()e}e.{(k,'}

x, (R) = (c„lQH.PI e,{+»/(h, (R)—h, (R)
—(C,QH.P[h;(R) —BC.'+i)&] 'PH.QC', )), (3.11)

where A(R) is the capture probability of the electron
into the quasistationary state 4„. By defining the
following quantities

D, (R) = (c&,QH, P{P(h;(R)—3c,') 'PH, Qc „), (3.12)

AB{r)re}~ e{k;} 1'.(R) =2~
I v.(R) I'fdflr, (3.13)

internuclear Separation R

FIG. 3. Schematic diagram of interaction potentials
for resonance dissociative attachment.

~, (R) =(C,IQH,Pl+, (+&),

the capture probability may be rewritten as

(3.14)

where 0', is the antisymmetrization operator operating
only on electrons. The choice in Eq. (3.3) is made in
order to account for the fact that after the crossing
point R, of the potential curves the negative ion state
is no longer unstable with respect to the electronic
configuration of the incident electron, so no auto-
ionization may take place.

Solving the electronic Schrodinger equation (3.1) in
terms of Q=1 P, we obtain—

with
{3C,—h;(R))PCe, =0, (3 4)

sc,=P{a,+ H,Q(S, (R) QH.Q) Qa, }—P, (3.5-)

where X, is the effective electronic Hamiltonian for a
fixed nuclear configuration. For nuclear configurations
lying outside of the crossing point R„ i.e. R&R„ the
e6ective electronic Hamiltonian X, reduces to H, and
P%', to%', , since P= 1 and Q= 0. Thus, Eq. (3.4) reduces
to Eq. (3.1) for R)R,. For isolated resonance, Eq. (3.4)
may be written as

(h, (R)—SC,')Pe,
=P[a,QC),&(h, (R)—h, (R))-((C,QH.]~,, (3.6)

with

SC,'=ae, —P[H,QC,&(h;(R)—h, (R)) '

X&C,QH, ]PC „(3.7)

where 4„ is the quasistationary representation of the
auto-ionization state of AB—and is obtained by solving
the stationary state of the projected Hamiltonian QH, Q.

A, (R) =y, (R)/
[h;(R)—h„(R)—A„(R)+(i/2)F„(R)], (3.15)

where D„(R) is the energy shift in the position of
resonance as approximated by h„(R), the symbol {P is
introduced to indicate that a principal value is to be
taken when integrating across the singularity, I'„(R)
is the half-width of the resonance and y, (R) is the
partial capture width. In the expression for F„, we have
chosen to make the integration over the possible final
angle Qr with { as the density of states.

It can be easily shown that I'4'; asymptotically
satisfies the boundary condition (2.8). A description of
resonance dissociative attachment in terms of a pair of
coupled equations can now be found by a straight-
forward application of the formalism described in
Sec. II. We construct II such that

nY(r, R) =
I
PC,&x,(R)+ If,.)G„(R), (3.16)

where If,v) is defined by Eq. (2.15). This leads to the
pair of coupled-equation description

«—&PC" I~I''*&}Xo(R)=&PC"l~—Elf v&G (R)
(3.17a)

{E—
&f,v I~if v&}G,(R)=(f vl~ EIP4"&Xa(R).

(3.17b)

The amplitude for dissociative attachment g„(k;,2(.') is
then given by

g„(k;,R) = —(4&r) '(G,"'(R)
I

V'. (R) I X()(R)) (3.18)

with
(h, (R)—QH, Q)c,=o. (3.8) E,(R) =2&a(f, v IK—E

I
PC';&, (3.19)
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where G„"'(R) is the solution of the homogeneous part
of Eq. (3.17b) and 9",(R) defined by Eq. (3.19) can be
interpreted as the effective electronic transition matrix
for a fixed nuclear configuration.

To examine 1, qualitatively we make the "static"
approximation BC—IIHII. Equation (3.19) then reduces
to

with

v'. (R) =a(R)+A(R) vR (3.20)

R(R)=&f vl U I~ &
—

&fvl (~a'P+')&, (3 21)

A(R) = —2(f, v
I
(V'aPe', )), (3.22)

where the potential U, responsible for adiabatic elec-
tronic transition is defined in terms of ~; and xp(R)

I 2&i(H, —E)—v,jP&I;xp(R)=PC';(VR'xp(R)). (3.23)

Again we observe the nonadiabatic coupling terms ap-
pearing in the transition matrix. Now if we assume that
the electronic matrices are primarily determined at
R=R„ the equilibrium nuclear configuration of the
ground target state, we obtained for dissociative-attach-
ment amplitude the familiar expression

g„(kp,R) = —(4n) '{$(—R,)&G„&&(PR)
I
xp (R))

+A(R,) (G„&'&(R)
I
V'&pxp(R)&}. (3.24)

IV. APPLICATION TO THE ELECTRON-
HYDROGEN SYSTEM

Calculation of the cross sections for dissociative
attachment in the (e,Hp) system has been carried out
using the expansion method. ' This calculation was,
however, overshadowed by the lack of accurate in-
formation concerning the intermediate state of H2 .
After investigating all the available calculations in the
literature for the 'Z„+ state of H2

—which was assumed
to be responsible for the lowest resonance dissociative-
attachment peak of the cross section in the (e,Hp)
system, "it was suggested that the third electron in the
2Z„+ state of H2 is not stationary at small nuclear
configurations. ' This then violates the assumption of
the distorted-wave approximation used to approximate
the expansion method, since the neglected back coupling
which accounts for the auto-ionization must now be
treated explicitly by solving the coupled equations.

In order to account for the observation that the
intermediate 2Z„+ state of H2

— for the dissociation
attachment is a resonance state, Bardsley, Herzenberg,
and Mandl have later treated the problem in the
adiabatic approximation using the Kapur-Peierls reso-

"Note added in proof. Recently a paper on measurement of H
formation in the (e,H2) system has appeared t G. J. Schulz and
R. K. Asundi, Phys. Rev. Letters 15, 946 (1965)g which reports
that the lowest resonance dissociative attachment peak appears
at about 3.75 eV very close to the theoretical threshold for H
formation.

'0 For a discussion, see footnotes 31 and 32 of Ref. 1, and H.
S. Taylor and F. E. Harris, J. Chem. Phys. 39, 1012 (1963).

nance formalism. No calculation was reported in this
treatment. "It can be shown however that their expres-
sion is equivalent to the "static" approximation equa-
tion (3.24) with the nonadiabatic terms and the recoil in

the rearranged channel neglected. Unfortunately, a
complete calculation using formulas derived in Sec. III
for resonance dissociative attachment is not yet practical
at the present stage. The difhculty still lies in the
calculation of the resonance state C„appearing in the
expression for P%', LEqs. (3.9) and (3.11)j.

We start our discussion with the amplitude for
dissociative attachment g„(k;,R) LEq. (3.18)) in the
"static" approximation 3C—IIHII. Substituting ~;
from Eq. (3.9) for a fixed nucles, r configuration into 9 „
we may separate the electronic transition matrix into
two terms

'r. (R) = 1;&d& (R)+V",&"& (R) . (4.1)

and the second term is the resonance electronic transi-
tion. We have for the latter term

&.&"& (R) =A (R)&f,v
I
U. (I/a)PH. Q I C"&

—2A, (R)&f,v
I
(V&p(1/a)PH, Qe,)&.V

-2(~.A.(R))(f, I(1/ )».QIC.& ~., (43)

with

a '= ($(-R) X,'+—i»).

where we have dropped the term involving (1&a'P4;)
in Eq. (4.3) because of its smallness in comparison
with A(R) &v'R.

It is not diHRcult to see that the direct transition
matrix of the Born-type V, (d) is much smaller than the
resonance transition matrix 1,(") in the region of the
resonance energy, so that V,(") can be neglected in this
energy region. The cross section cr corresponding to
resonance dissociative attachment is then given by

1 1 2—(G,"&(R)l 7',&"&(R)lxo(R)) d(k;,8), (4.5)
k, 4x

where we have chosen to normalize G,(" in the ~f, scale,
so that the wave number f{.f „ for the relative motion of

"A single configuration calculation for the resonance state of
H2 were recently presented by Bardsley, Herzenberg, and Mandl
at the IVth International Conference on the Physics of Electronic
and Atomic Collisions, Quebec, Canada, August 1965.At the same
conference the treatment of Bardsley et al. was discussed by
T. F. O' Malley in terms of Feshbach's resonance formalism. See
Abstracts of the Fourth International Conference on the Physics of
Electronic and Atomic Collisions, Quebec 1065 (Science Book-
crafters, Hastings-on-Hudson, New York, 1965).

The first term is simply the contribution due to direct
potential scattering (including the broad potential
resonance)

V', &"(R) = (f, v
I w,

I
P4, &+»—(f,v

I
(Wa'P4, &+&))

—2&f, vl (~a~"+&)&, (4 2)
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(4.6)

1
xo(R) =P —Xoim(R) &i"(~),

t„~ g
(4.7)

we obtain from Eq. (4.5) the adiabatic cross section

0,—o.i(R,) g„~oi*(R)XO(R)dR (4 g)

the two nuclei in the final state is included in 6„(').The
three terms appearing in the expression for V', ("'

[Eq. (4.3)$ have simple physical interpretations. The
first term gives, in the adiabatic sense, the product of
probability of capturing the incident electron into the
4, state of H2—[i.e., A, (R)] and the matrix element for
propagating from the 4, state into the desired final
state via a propagator a—'. The second and third are the
nonadiabatic terms which account for the coupling
between the electronic and nuclear motions in the
rearrangement collision process.

When the colliding system is localized into the
resonance state C„dissociation of AB—may take place
with an acceleration depending on the steepness of the
repulsive potential generated by 4, in the Franck-
Condon region. This gives rise to a resonance peak in
the cross section which is closely related to the broad-
ness of the Franck-Condon region and to the steepness
of the repulsive potential in this region. We refer to the
width of such a resonance as the Franck-Condon width
I'~ (see also Figs. 1 and 3). The dissociative process is,
however, damped because 4„is coupled with continuum
states having a resonance width for auto-ionization.
This results in a reduction in the magnitude of the cross
section and constitutes a possible explanation of why
the dissociative-attachment cross section for the
(e,H&) [Fig. 4j system is much smaller than for other
systems.

Now we compare the present formalism with that
of Bardsley et al.' and O' Malley. " If we neglect the
nonadiabatic terms and the recoil e6ects in V, '"), and
make the angular decomposition of the nuclear wave
functions of Z state

determined at the equilibrium nuclear separation E, of
the initial nuclear target state. The cross section should
then be averaged over the initial distribution of the
rotational states lo according to the experimental con-
ditions. Equation (4.8) has the familiar interpretation:
o,i(R,) is the electronic cross section for the process of
dissociative attachment averaged over the nuclear rota-
tional states and the second factor is simply the nuclear
overlap integral. The electronic cross sections constitute
two factors [see Eq. (4.10)j; one gives the probability
of capture of the electron into the compound state, and
the other gives the matrix element for propagating from
the compound state to the desired final electronic state
via a propagator a '. Now, if we assume that the distor-
tion effects on the nuclear wave function &0 due to the
field (EK, IH, I E%;) (Eq. 3.17a) is negligible so that Xo

may be approximated by the initial nuclear target state,
then we obtain the expression derived by O' Malley
using delta-function approximation"- for the continuum
nuclear wave function g„io'(R). This assumption for &o

is, however, not desirable, since the nuclear state Xo

associated with the electronic state Pk; is strongly
distorted as the electronic system going through a
resonance.

The similarity between the present approach with
that of Bardsley et al,.' is however not as apparent. The
reason for this comes from the differences in the defi-
nition of the electronic compound states. In the present
approach, the compound states are defined as bound
states in the excited field of the target molecule. This
permits us to remove the energy dependence from the
resonance energy 8„.Instead, the energy dependence is
carried in the Hamiltonian K.' [Eq. (3.7)]. In the
approach of Bardsley et al. , the electronic configuration
space is divided into two regions and the resonant states
are then defined as solutions of the electronic
Schrodinger equation in the internal region with
homogeneous boundary conditions at the joining radius.
This then leads to complex eigenvalues for the resonant
states with energy-dependent boundary condition.

These two approaches are of course completely
equivalent in their exact forms. ' This can be demon-
strated as follows. If we eliminate the open channels in
the absence of any incident wave, we obtain from
Eq. (3.1) an effective electron Hamiltonian 3C,"for the
closed channels

with

(E K,")PI =QHPP—&+& (4.»)

X 2 (I' "(R)I &.'"'(R)l & "'(&)) K,"=Q(H,+H,P(E PH, P+iil) 'PH, —) Q, (4.12)

(L PH, P)Pf &+' =0. — (4.13)

where we have taken 0;i(R) outside of the R integral
assuming that the electronic matrix are primarily

The solutions P& of the effective electron Harrultonian
BC."[Eq. (4.12)j,

(3C,"—Wi) $i——0 (4.14)
~ E. U. Condon, Phys. Rev. 32, 858 (1928};J. G. Winans and

E. C. G. Stueckelberg, Proc. Natl. Acad. Sci. U.S. 14, 807 (1928}.
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form a biorthogonal set. The eigenvalues tV~ are com-
plex whose imaginary part ImS'& is

&m~'~= —~
I 9 '-'IPI&,QI E~) I'&o (4 &5)

This demonstrates that the functions $& which are
derived using the present approach are the Kapur-
Peierls type resonance states.

Now instead of Eq. (3.9), we mav express the scatter-
ing states PC, in terms of the Kapur-Peierls state (~

P%;= (P PH, P—+iq) 'PH, Q(i, (4.16)

where I'C, contains no incident wave and satisfies the
Kapur-Peierls type of boundary condition. This then
permits us to derive complex potentials for the nuclear
wave function &o associated with PC';, and to derive
the results of Bardsley et al. without evoking the concept
of channel radius. It should be noted that the electro-
magnetic interactions present in the molecular system
are of the long-range nature. Thus the treatment of
Bardsley et al. on resonant states with a joining radius
outside of which the interaction of the electron with the
molecule is neglected is probably not as accurate. This
may become even more critical for dissociative recom-
bination. The importance of the long-range nature of
the interaction potential which support the projectile
electron in forming compound states has been demon-
strated by Gailitis and Damburg. "

Returning now to Eq. (3.20) and examining the
adiabatic electronic transition matrix (f,vl'U.

l PC;), we
obtain with the help of Eq. (3.23) the approximation

(f I
U l~')=—(f l~')(2~(b'(R) —E)—~ 'I

+2~(f, vl Q&.PI ~') (4 ~&)

"M. Gailitis and R. Damburg, Proc. Phys. Soc. (London} S2,
192 (1963}.
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Fro. 4. The energy dependence of the total cross section for
dissociative attachment of electrons in H2, HD, and D2 as ob-
served by Rapp, Sharp, and Briglia t Ref. 3].
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This result is consistent with the coupling potentials
derived in Eq. (2.36b). Thus again we notice that the
magnitude of the adiabatic electronic transition matrix
is linearly dependent on the overlapping integral
(f,vl P%';), assuming the exchange integral is small. For
the case where the electronic states

I f,v) and l~,) are
almost orthogonal, the nonadiabatic terms in the
electronic transition matrix may become the dominating
terms.


