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Inversion of Cubic de Haas-van Alphen Data, with an Application to Palladium

F. M. MUELLER AND M. G. PRIESTLKY

Department of Physics and Institute for the Study of Metals, University of Chicago, Chicago, Illinois

(Received 23 March 1966)

Ke have constructed to high order (l =30) all the linear combinations of spherical harmonics which trans-
form as the identity representation of the full cubic group 0&. These are used with Mueller's inversion scheme
to obtain the radius vectors of the palladium s-band surface from the de Haas —van Alphen areas. The ac-
curacy of this inversion is limited by the ambiguities inherent in data restricted to the symmetry planes.
The limits to which such data define the anisotropy uniquely are calculated explicitly in an analysis which
applies to any anisotropic quantity in a cubic system. The practical importance of this point is emphasized.
%'e find that the electron surface in Pd contains 0.364&0.004 electrons/atom.

I. INTRODUCTION
' 'N nearly all comparisons of de Haas —van Alphen

(dHvA) data with the results of band structure cal-
culations there is an unnecessary error associated with
the fact that the dHvA effect measures extremal areas
of the Fermi surface, whereas what is really needed for
a comparison is the Fermi surface radius. Lifshitz and
Pogorelov' have shown that a unique solution to this
inversion problem exists if the surface is closed, centro-
symmetric, and has a single-valued radius vector from
that center. A solution in terms of the expansion of the
data in the appropriate spherical harmonics has re-
cently been discussed by Mueller. ' In this paper we

apply the expansion technique to the dHvA data' 4 for
the palladium s-band electron surface centered at I'.

In the special case of the full cubic symmetry, i.e.,
the identity representation of the group O~, we have
derived to arbitrary order the appropriate linear com-
binations of spherical harmonics. Using these we invert
the Pd s-band dHvA data to the highest coeKcients
which can be fitted uniquely from the present data.
The question of how much information is contained
within the data is considered in detail in Sec. 3, where
it is shown that the usual method of taking data only
along symmetry lines in an anisotropic cubic system
determines only a limited number of expansion coeK-
cients. To avoid either unnecessary ambiguity or
excessive redundancy this point must be carefully con-
sidered if data can be obtained accurately. The analysis
in this section applies to any anisotropic quantity which
is being studied experimentally in a cubic system.

II. INVERSION

The Pd dHvA data (taken from Refs. 3 and 4) are
shown in Figs. 1(a) and 1(b). Note that the data were

~ Supported by the National Science Foundation and by the
Advanced Research Projects Agency.'I. M. Lifshitz and A. V. Pogorelov, Dokl. Akad. Nauk SSSR
96, 1143 (1954).

~ F. M. Mueller, Bull. Am. Phys. Soc. 10, 1089 (1965); and the
preceding paper, Phys. Rev. 148, 636 (1966).

3 J. J. Vuillemin and M. G. Priestley, Phys. Rev. Letters 14,
307 (1965).' J. J. Vuillemin, Phys. Rev. 144, 396 (1966).

taken only along the basic symmetry lines of the cubic
system, i.e., in the (100) and (110) planes. We use
atomic units (0= m = e = 1) throughout the calculation.
Using a standard matrix inversion technique, ' we make
least-squares fit of the area 2 (e,p) to the finite expansion

A(tt, s)=p,p„Z„

where the cubic harmonics

i+i P i+imciw

are linear combinations of spherical harmonics with
the appropriate cubic symmetry, and the, a& are the
symmetry coefFicients calculated in the Appendix and
listed in Table I. Here the indices l and ns are the
usual indices for spherical harmonics and the index i
labels independent irreducible representations for a
given /. The spherical harmonics C~ are real functions
related to the usual complex spherical harmonics by
the relations

4 =2 '"(1'i +l'i, ),
Cio= ~io

The y variation of C~ is thus cosmic. The functions
Cg so defined form an orthonormal set over the
unit sphere, and so do the;E~,

The least-squares fit determines a set of coefFicients
;pi. The number of these coefficients that may be fitted
uniquely depends on the number of planes in which
data is taken and is discussed in detail in Sec. 3. It is
enough at this point to remark that data taken only
in symmetry planes do not contain complete informa-
tion, in practice as well as in principle. For the data
discussed in this paper we cannot make a complete
expansion beyond i=18. In fact we can fit just the
first 11 coeKcients, Pi with data in the (100) and (110)
planes, although our present computer program will
handle 27 of these coefFicients without modification.
It is shown in Sec. 3 that the only further coefFicients
that we can fit are those of the form P~. It is doubtful
whether it is worthwhile to include these while omitting

~ C. Lanczos, A pplied Analysis (Prentice-Hall, Inc. , Englewood
Cliffs, New Jersey, 1961), p. 230.
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TaaLE I. The coeScients;a& of symmetrized spherical harmonics which transform as the identity representation F1 of the group 0&

These are commonly referred to as cubic harmonics. These coefBcients were calculated in double precision and are accurate to one
digit in the last place.

1 0 1.00000000
1 4 0.76376261
1 6 0.35355338
1 8 0.71807033
1 10 0.41142537
1 12 0.69550265

12 0
1 14 0.44009645
1 16 0.68136168
2 16 0
1 18 0.45791513
2 18 0
1 20 0.67141495
2 20 0
1 22 0.47032747
2 22 0
1 24 0.66391779
2 24 0
3 24 0
1 26 0.47959634
2 26 0
1 28 0.65799998
2 28 0
3 28 0
1 30 0.48685080
2 30 0
3 30 0

0
0.64549722—0.93541434
0.38188130—0.58630197
0.31412555
0.55897937—0.45768183
0.27586801
0.63704821—0.38645598
0.14872751
0.24982619
0.66299538—0.33986007
0.21497472
0.23043627
0.67270178

0—0.30642626
0,26049909
0.21519893
0.67603415

0—0.28097712
0.29408104

0

0
0
0

0.58184332—0.69783892
0.34844954—0.80626751—0.49113230
0.29048987—0.32999033—0.40209462—0.63774601
0.25782846—0.11295259—0.34871252—0,67045552
0.23542093—0.00361069
0.26563038—0.31202488—0.63956244
0.21856660
0.05632341
0.37778608—0.28478765—0.59701923
0.06993604

12

0
0
0
0
0

0.54422797
0.19358400—0.59634848
0.32756975—0.64798073—0.43746593
0.72334167
0.27469333—0.42738441—0.36650299
0.15126929
0.24510494—0.24496919—0.68036113—0.32263184—0.11681329
0.22482529—0.12515216—0.63788873—0.29176328—0.24375591—0.36082391

0
0
0
0
0
0
0
0

0.51764542
0.25572816—0,53657149—0.21894515
0.31248919—0.52810433—0.401.83160
0.62745985
0.26292776—0.44669340
0.63424215—0.34116419
0.36798485
0.23535695—0.31376506—0.01342908—0.30317406
0.13917957
0.67571677

20

0
0
0
0
0
0
0
0
0
0
0
0

0.49719956
0.29347435—0.49587665—0.29611988
0.30074488—0.43171389—0.25204068—0.37590092
0.50757374
0.25360376—0.43318803
0.56861801—0.32189928
0.42377798—0.59060740

24

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.48066030
0.31864943
0.02759743—0.46577346—0.34119025
0.29116473—0.35350399—0.35289583—0.35589278
0.40271380
0.24146388

28

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.46682221
0.33626918
0.04830504—0.44227251—0.36950003—0.03464088

those of the other degenerate sets, and indeed a 14-term
fit (i.e., with the addition of p&s, Bffss ]Ns4) yields an
only marginally better fit to the observed areas. The
11-term fit to the area is shown in Fig. i.

For cubic symmetry the inversion relation derived
by Mueller' yields

ness of fit. The random errors in the data are almost
all less than 0.1%.Figure 2 shows the calculated radius
vectors in the (100) and (110) planes for both the
11-term fit and the incomplete 14-term fit discussed
above. The difference between these gives some estimate

( )
TABLE II.The expansion coeffrcients found by the least-squares fit.

where the I'g are Legendre polynomials and the,g~ are
the coeScients of the expansion of the square of the
radius vector

11-term fit
Areaa (Radius) ~ bl,pg s~l

14-term 6t
Area (Radius) s

'Pi i~l

These equations were then used to find the coefFicients
,'Yt and the radius vectors. The coefficients, P4 and YE

are listed in Table II together with the rms error of the
area expansion. For the 11-term fit, this is 0.17% of the
average area or 0.75% of the maximum area variation,
the latter being probably a fairer estimate of the good-

ALE III. The principal radii of the electron Fermi surface of Pd.
As is shown in the text, the radii are accurate to 1%—2%.

1 0
1 4
1 6
1 8
1 10
1 12
2 12
1 14
1 16
2 16
1 18
2 18
1 20
2 20
1 22
2 22
1 24

2.54322
0.04127—0.1069
0.02150—0.00377
0.00788—0.02983
0.01375
0.00889—0.00403—0.00567

0.8095
0.03503
0.1089
0.02502
0.00487
0.01112—0.04209
0.02089
0.01442—0.00654
0.00973

2.54994
0.03810—0.11400
0.02407—0.00298
0.01015—0.02858
0.01343
0.00326—0.00645—0.00739

~ ~ ~

0.00569
~ ~ ~

0.00118
~ ~ ~

—0.00171

0.81168
0.03234
0.11615
0.02802
0.03851
0.01432—0.04033
0.02041
0.00529—0.01049
0.01268

~ ~ ~

0.01027
~ ~ ~

—0.00224
~ ~ ~

—0.00338

Direction
Radius {atomic units}

11-term 14-term

rms error
(a.u.) 0.00129 0.00091

I100j rX
Lfiij rr.
$110j rE

0.602
0.558
0.447

0.605
0.569
0.434

& The sPi are the coefBcients of the expansion for the area in Eq. (1).
They are independent of the number of terms in the fit only when the least-
squares fit is made by projection integrals on the surface of the sphere.

b The «» are the corresponding coefFicients of the expansion of the square,
of the radius vector in Eq. (5).
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FIG. 1. (a) The
solid line and the
point at $110) are
the Pd data in the
(110) plane taken
from Ref. 4. 6—the
least-squares 6t to
the data for 11 coef-
ficients. A 100 was
taken as 0.726 a.u.
(b) The correspond-
ing plot for the (100}
plane. The symbols
are the same.

degrees from [l00) Degrees &rom tIPO]

(b)

of the error due to the finite inversion. Ke conclude
that the palladium electron surface has the radii shown
in Table III. The discussion below shows that the
accuracy of an 11-term fit is of the order of 2% in
radius vector, which is to be compared with the 0.17%
rms error in the same fit to the observed areas. It is
evident that more data, taken away from lines of
symmetry, are required to obtain more accurate radius
vectors.

The total volume of the electron surface was a,iso
computed, with the result that

n, =0.364&0.004 electrons/atom,

with an error which is predominantly due to the error
in the measured dHvA area for H~~L100].

The data show that for H near L111] there are two
extremal areas on this surface, and we can use our
model to calculate the noncentral extremal for H~~ L111].
The calculation of noncentral extremal areas is a
complicated problem, but one which has widespread
importance in the accurate relation of Fermi surface
data to the band structure. It also provides a sensitive
check on the accuracy of the inversion, since there a.re
no adjustable parameters. The results of a numerical
integration of the area as a function of k„where s is
the L111] direction, are shown in Fig. 3. Calculations
were made for both the 1I- and 14-term fits. Both
shown noncentral extremal areas, but their magnitudes
are not in close agreement with the data, . The predicted
values di8er from the experirnenta. l value by 2.4 and
3.0%. Since there are no constraints on the noncentral
areas, we use this as our only independent check on the
accuracy of the radius vectors. Ke conclude that these
latter are accurate to rather better than 2%. Clearly
more terms in the expansion are needed.

The calculations were carried out on the IBM
7094-7040 computer in the University of Chicago Corn-
putation Center. It should be remarked that it was

necessary to use double-precision techniques to calcu-
late both the symrnetrized coeS.cients, u~ and the
spherical harmonics CE . If this was not done, accumu-
lated rounding errors swamped the correct answers for
la, rge va, lues of /.

III. UNIQUENESS OF THE EXPANSION

The question of how many terms in the expansion
can be determined from a restricted set of data is of
considerable interest, although it appears that the point
has not been discussed before. Its relevance is that data
on any anisotropic quantity in, for example, a cubic
system, are usually taken only along the basic symmetry
lines, which in this case are the (100) and (110) planes.
It is shown below that this places a severe limitation
on the information obtained. Paradoxically enough, in
the absence of either noise or systematic errors a given
number of data points contain the most information
if they are taken at random but accurately known
values of 8 and y. Then the maximum number of
coefficients P& that can be fitted is equal to the number
of data points.

Ke wish to analyze in detail the usual case where
data for some property (which we shall call T) are
taken only in the (100) and (110) planes. We assume
again the full cubic symmetry of the I & representation
of the group Oj„and this allows us to construct from
these data for the property T the functions T(8,0) and
T(8,w/4) for all 8. We assume that the data form a
sufIiciently fine net to determine T completely in these
two planes. It should also be noted that these two
functions contain all our information. We wish to ex-
pand these data in the symmetrized harmonics;E~ as
defined in Eq. (2). Since for cubic harmonics ni=0
mod (4), we can express these data as the sum and
difference, respectively, of functions T, and T, which
are symmetric and antisymmetric to a rotation by ~&
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Pd (l IO) plane radius vector 0.6 0

ed (F00)

0.5
C2

Q

0.5
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0.40
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(b)(a)

d Fermi surface in the (110}plane; o—the 11-term expansion, ~—the incompleteFIG. 2. (a} The calculated radius vectors of the Pd Fermi surface in t e p ane, , l e
14-term expansion. The smooth curve is drawn through the 11-term radii.
the same as in (a},

about the polar axis s. Thus we have

Tr 2 4Pl 4461m Clm q

sly, mM mod(8)

iPl 446lm Clm ~

s$trs, waM mod(8)

We can derive the extent of the uniqueness of the ex-

pansion y a pb rojection argument using the basic ortho-

gonalitv relation for the real spherical harmonics C~

The integral

T,, (8, (p)C16 sin8 d8d &p

0.70

0.65

0.60—

0.55-

0.50—

Exp.

I

O.lO

I

0.20
k from Central Plone H tll I]

Z

0.30

will project out from T, all the coefficients of the form
1Pl 1&l0P because for m=0 the unknown q variation
vanishes and so does not matter, while for i~1 we have
specifically chosen the degenerate sets such that

=0 Now we can use the relations between thei ~1+$0= ~

lal„given in Table I and can determine the 1P1, i.e.,
the first degenerate set of the cubic harmonics. I
follows that all the coefficients 681 up to i=12 can be
determined from data in only one plane, since the first
doubly degenerate set occurs for l = 12.

It remains to determine as many as possi e of the
second and further degenerate sets, and the first few
of these are 2P12, 2P16, 2P16 (i=3 does not occur until
i =24). It turns out that a knowledge of T, enables us
to determine only two more of the 2P1 coefFicients. We
demonstrate this as follows.

Let Ii, be the function obtained from T by subtract-
ing off all the terms of the first degenerate sets which
a.re determined once the lpl have been found by the
projection from T,. Thus Ii, contains only terms of the

F . 3. Noncentral areas of the I ermI surface for „111IG. . On

o—the 11-term expansion, 6—the 14-term expansion. e xp
mental noncentral extremal value is also shown, and Q denotes
the experimental value for the central extremal area. k, is meas-
ured in atomic units along the field direction.

f 4 21P2( &21 , 241C, 24+2 1122,12 4C2, 12)

+2P16 (2l216, 4C16,4+ 24116,12C16,12)
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plus higher / terms with iA1 and m=4 mod(8). There
are just two useful projection integrals that we can
perform. We keep only terms with it&18 and form

d ttl sin8d8 F,(cos4y)
0

X (C12,4+C12,12+C18,4+C18,12) &

because the Ct form an orthonormal set over the unit
sphere

Il 2t812 2t212, 4+2t818 21218,4 ~

Ke now form I2.
2'

d82 sin8d8 F,(cos1288)

X (C12,4+C12,12+Clll, 4+Cltt, ll)

and, similarly, the orthogonality relations give

f2 2t812 21212,12+2t816 21218,12 ~

Hence we can find the two coefficients 2/12 and 2t818

only if we terminate our finite expansion at P». If we

attempt to fit more coeKcients 2t81 of the second de-
generate set we cannot do so uniquely. We can, of
course, fit higher terms by taking data away from the
lines of symmetry, which is easily done once it is realized
that it is necessary.

The correctness of the above conclusion was tested
empirically by a quite different method in which
spherically symmetric data' in the same two planes
were expanded in a 6nite number of cubic harmonics
by the least-squares technique used in Sec. 2. If the
expansion was not unique, an obviously nonspherical
expansion resulted which, nevertheless, had a constant
area at all the data points. The results agreed with those
of the projection approach described above.

APPENDIX: CALCULATION OF THE CUBIC
HARMONICS

Altmann and Cracknell' have solved the general
problem of constructing symmetrized spherical har-
monics. They used a general projection approach and
dealt only with harmonics up to l = 12. We need higher
values of l, and since we are concerned with just one
particular case, the identity representation F~ of the
full cubic group Op„we can use this symmetry explicitly
to obtain the linear combinations for arbitrary / in a
simpler fashion.

The general rotation operator R can be represented as

RYi =exp[ i8(8 L)jY(„, —(A1)

which describes a rotation by an angle 8 about the
direction O'. If this rotation is expressed in terms of

' We are grateful to Dr. L. R. Windmiller for this suggestion.' S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
(1965).

C=+ al Yl (A3)

We now note that the group 0& can be generated by
three basic operations —the generators of the group.
For a one-dimensional representation such as the
identity representation these commute, so the full
symmetry is satis6ed by making C invariant to each
of the three operations separately. Our choice of these
three is a sufhcient but not a necessary one. We take
one of the fourfold axes as the polar axis z. The other
fourfold axes are then x and y. With this choice of axes
the operations are:

(1) Inversion, hence / is even. [1(tr) The mirror plane
y=0, which follows from (1) and (3) restricts the 82

variation to cosm82 only. )
(2) A fourfold rotation about the s axis. This re-

quires m=0 mod(4).
(3) A rOtatiOn by 214r abOut the y aziS. FrOm Eq.

(A2) above, this is described by R=e &'~~~t2', and our
linear combination C =g~ at~ Yt~ must be invariant to
this rotation:

R4=R Q ut Yi =Q ~ at Yl ~ . (A4)

Multiply through by V& and integrate over the sphere.
We 6nd

P„at„(Yl.~e
' ~"

~
Yt„)=P ~ al .8. ~, (A5)

i.e., a set of linear equations of the form

P„a,„d „'(~/2)=at„. (A6)

with the matrix elements d t(P) [essentially the
Wagner coefFicients8 for integral lj defined by'

-(q —m)!(j+m')!- t t2

d- -'(!3)=
(j+m)!(j—m')!

(cos-', t8)'~" "'(—sin-', P)"™
X

(m' —m) t

X2F1 (m' —j, m j;m' ——m—+1; —tan"-2P), (A7)

where 2F1(a,b;c;d) is the hypergeometric function,
which for our case has a, series expansion which
terminates.

E. P. Wigner, Group Theory (Academic Press Inc. , New York,
1959), Chap. 15.

9 M. E. Rose, Elementary Theory of Angular momentum (John
Wiley R Sons, Enc. , New York, 1963), p. 53.

Euler angles it follows that R is factorized into three
successive Euler rotations,

R= exp( —i42L, ) exp( i—PL„) exp( —iyL,). (A2)

Let O'= Pt„at Yt~ be a linear combination of spherical
harmonics with the required symmetry. This must be
invariant to the rotation operators of the group O~,
and since the general rotation operator commutes with
L L it does not mix different values of l. Therefore
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We now must solve the linear equations (A6) for the
coefFicients a~~. Before doing this however we note that
the equations can be simplified somewhat. We note
that symmetry operation 1(a) has limited us to a real

q variation, i.e., to the real spherical harmonics defined
in Sec. 2. Thus by restricting the sum in Eq. (A3) to
m&0 and using the real harmonics C~ defined in
Eq. (3) we can immediately contract the order of the
equations by roughly a factor of 2.

Our new matrix elements are thus defined as D;I„
~here j=-',~'+& and X=-,'~+&.

Du ——d Op'(m /2),
Dgg ——2 '"(dp '(n./2)+dp '(~/2)),
Dl, g 2'"(d——p'(m/2)+d „.0'(z./2)),
&~~= 2 (d- -'(~/2)+d-- -'(~/2)

+d '(~/ )2+ d '(n/2)).

The matrix equation is now

Ea Drlara= ai~

or

Z~ (D,~—&,~)an=0,

(A8)

(A9)

(A10)

with rank r= (m, /4+1) instead of (2m, /4+1).
The matrix equations (A10) cannot be solved

directly because the matrix (D—I) is singular. This is
most easily seen from the eigenvalue spectrum of D.
The total number p of independent degenerate repre-
sentations for a given value of l is given in the standard
texts on group theory, " and the result is quoted in

"M. Hammermesh, Group Theory (Addison-%esley Publishing
Company, Inc. , Reading, Massachusetts, 1962), p. 341.

Table I. It follows that D has p eigenvalues of unity
and the remaining (r—p) are necessarily zero. Hence
(D—I) has p eigenvalues of zero and the rest are —1.

We can invert equations (A10), in spite of the zero
eigenvalues, by using the following construction. The
largest nonsiszgular submatrix of ( D—1) has rank
(r—p). We cut out from (D—I) a codiagonal matrix
Q of rank (r—p+1) such that Qu ——(D 1);;,—where the
subscript i labels the p-independent sets for given I.
From the singular matrix Q we construct the non-
singular codia, gonal matrix P contained within Q ac-
cording to the prescription Pn ——Q22, etc. Now form
P ' and then we have

&;a=2, &,k 'Q;y. (A11)

Thei th row of A now contains the unnormalized coefFi-
cients of the ith representation, except that their posi-
tion must be adjusted by defining the rectangular
matrix B with the columns displaced according to
B;,;+I,=A, I, and the definitions 8;;=1, 8;,=0 if j(i
or j )i+k Note .that B has p rows and (m, /4+1)
columns. It now remains to construct an orthonorrnal
set from these vectors (the rows of B).We choose that
row with i= p a,s a basis vector for the degenerate set
and normalize it. A row-by-row Schmidt orthogonaliza-
tion followed by a normalization now results in the
desired orthonormal set of row vectors b, l, . These
are the coefBcients shown in Table I as;a~, where
,u(„=b,fk, m=4(k —1).

The choice of basis vector is of course arbitrary but
ours corresponds to that used by Altmann and is also
very convenient for the discussion of uniqueness in
Sec. 3.


