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We have constructed to high order (/=30) all the linear combinations of spherical harmonics which trans-
form as the identity representation of the full cubic group Oa. These are used with Mueller’s inversion scheme
to obtain the radius vectors of the palladium s-band surface from the de Haas—van Alphen areas. The ac-
curacy of this inversion is limited by the ambiguities inherent in data restricted to the symmetry planes.
The limits to which such data define the anisotropy uniquely are calculated explicitly in an analysis which
applies to any anisotropic quantity in a cubic system. The practical importance of this point is emphasized.
We find that the electron surface in Pd contains 0.364+4-0.004 electrons/atom.

I. INTRODUCTION

N nearly all comparisons of de Haas-van Alphen
(dHvA) data with the results of band structure cal-
culations there is an unnecessary error associated with
the fact that the dHvA effect measures extremal areas
of the Fermi surface, whereas what is really needed for
a comparison is the Fermi surface radius. Lifshitz and
Pogorelov! have shown that a unique solution to this
inversion problem exists if the surface is closed, centro-
symmetric, and has a single-valued radius vector from
that center. A solution in terms of the expansion of the
data in the appropriate spherical harmonics has re-
cently been discussed by Mueller.? In this paper we
apply the expansion technique to the dHvA data3* for
the palladium s-band electron surface centered at I'.
In the special case of the full cubic symmetry, i.e.,
the identity representation of the group O;, we have
derived to arbitrary order the appropriate linear com-
binations of spherical harmonics. Using these we invert
the Pd s-band dHvA data to the highest coefficients
which can be fitted uniquely from the present data.
The question of how much information is contained
within the data is considered in detail in Sec. 3, where
it is shown that the usual method of taking data only
along symmetry lines in an anisotropic cubic system
determines only a limited number of expansion coeffi-
cients. To avoid either unnecessary ambiguity or
excessive redundancy this point must be carefully con-
sidered if data can be obtained accurately. The analysis
in this section applies to any anisotropic quantity which
is being studied experimentally in a cubic system.

II. INVERSION

The Pd dHvA data (taken from Refs. 3 and 4) are
shown in Figs. 1(a) and 1(b). Note that the data were
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taken only along the basic symmetry lines of the cubic
system, i.e., in the (100) and (110) planes. We use
atomic units (A=m=e=1) throughout the calculation.
Using a standard matrix inversion technique,® we make
least-squares fit of the area 4 (6, ¢) to the finite expansion

A(BM):ZI B iK1, )

where the cubic harmonics

Ki=2 i01mCim (2)

m

are linear combinations of spherical harmonics with
the appropriate cubic symmetry, and the a;» are the
symmetry coefficients calculated in the Appendix and
listed in Table I. Here the indices ! and m are the
usual indices for spherical harmonics and the index 7
labels independent irreducible representations for a
given I. The spherical harmonics C;. are real functions
related to the usual complex spherical harmonics by
the relations
Clm= 2_1/2(Ylm+ Yl,—m) y

3
Ciro="Y. ®)

The ¢ variation of C;, is thus cosme. The functions
Cim so defined form an orthonormal set over the
unit sphere, and so do the ;K.

The least-squares fit determines a set of coefficients
#8:- The number of these coefficients that may be fitted
uniquely depends on the number of planes in which
data is taken and is discussed in detail in Sec. 3. It is
enough at this point to remark that data taken only
in symmetry planes do not contain complete informa-
tion, in practice as well as in principle. For the data
discussed in this paper we cannot make a complete
expansion beyond /=18. In fact we can fit just the
first 11 coefficients ;8; with data in the (100) and (110)
planes, although our present computer program will
handle 27 of these coefficients without modification.
It is shown in Sec. 3 that the only further coefficients
that we can fit are those of the form 18;. It is doubtful
whether it is worthwhile to include these while omitting

® C. Lanczos, 4 pplied Analysis (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1961), p. 230.
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TaBLE I. The coefficients ;a;m of symmetrized spherical harmonics which transform as the identity representation I'; of the group 0
These are commonly referred to as cubic harmonics. These coefficients were calculated in double precision and are accurate to one

digit in the last place.

m

i 1 0 4 8 12 16 20 24 28

1 0 1.00000000 0 0 0 0 0 0 0

1 4 0.76376261 0.64549722 0 0 0 0 0 0

1 6 0.35355338 —0.93541434 0 0 0 0 0 0

1 8 0.71807033 0.38188130 0.58184332 0 0 0 0 0

1 10  0.41142537 —0.58630197 —0.69783892 0 0 0 0 0

1 12 0.69550265 0.31412555 0.34844954 0.54422797 0 0 0 0

2 12 0 0.55897937 —0.80626751 0.19358400 0 0 0 0

1 14 0.44009645 —0.45768183 —0.49113230 —0.59634848 0 0 0 0

1 16  0.68136168 0.27586801 0.29048987 0.32756975 0.51764542 0 0 0

2 16 0 0.63704821 —0.32999033 —0.64798073 0.25572816 0 0 0

1 18 0.45791513 —0.38645598 —0.40209462 —0.43746593 —0.53657149 0 0 0

2 18 0 0.14872751 —0.63774601 0.72334167 —0.21894515 0 0 0

1 20  0.67141495 0.24982619 0.25782846 0.27469333 0.31248919 0.49719956 0 0

2 20 0 0.66299538 —0.11295259 —0.42738441 —0.52810433 0.29347435 0 0

1 22 0.47032747 —0.33986007 —0.34871252 —0.36650299 —0.40183160 —0.49587665 0 0

2 22 0 0.21497472  —0.67045552 0.15126929 0.62745985 —0.29611988 0 0

1 24 0.66391779 0.23043627 0.23542093 0.24510494 0.26292776 0.30074488 0.48066030 0

2 24 0 0.67270178 —0.00361069 —0.24496919 —0.44669340 —0.43171389 0.31864943 0

3 24 0 0 0.26563038 —0.68036113 0.63424215  —0.25204068 0.02759743 0

1 26 0.47959634 —0.30642626 —0.31202488 —0.32263184 —0.34116419 —0.37590092 —0.46577346 0

2 26 0 0.26049909 —0.63956244 —0.11681329 0.36798485 0.50757374 —0.34119025 0

1 28 0.65799998 0.21519893 0.21856660 0.22482529 0.23535695 0.25360376 0.29116473 0.46682221
2 28 0 0.67603415 0.05632341 —0.12515216 —0.31376506 —0.43318803 —0.35350399 0.33626918
3 28 0 0 0.37778608 —0.63788873 —0.01342908 0.56861801 —0.35289583 0.04830504
1 30  0.48685080 —0.28097712 —0.28478765 —0.29176328 —0.30317406 —0.32189928 —0.35589278 —0.44227251
2 30 0 0.29408104 —0.59701923 —0.24375591 0.13917957 0.42377798 0.40271380 —0.36950003
3 30 0 0 0.06993604 —0.36082391 0.67571677 —0.59060740 0.24146388 —0.03464088

those of the other degenerate sets, and indeed a 14-term
fit (i.e., with the addition of 1820, 1822, 1824) yields an
only marginally better fit to the observed areas. The
11-term fit to the area is shown in Fig. 1.

For cubic symmetry the inversion relation derived
by Mueller? yields

1= Bi/7P,(0), (4)

ness of fit. The random errors in the data are almost
all less than 0.19. Figure 2 shows the calculated radius
vectors in the (100) and (110) planes for both the
11-term fit and the incomplete 14-term fit discussed
above. The difference between these gives some estimate

TABLE II. The expansion coefficients found by the least-squares fit.

where the P; are Legendre polynomials and the sy; are 11-term fit 14-term fit
the coefficients of the expansion of the square of the Area® (Radius)?® Area (Radius)?
radius vector i 1 B 1 B Ry
1 0 2.54322 0.8095 2.54994 0.81168
P2 (6,)=2_ Y1 K. () 1 4 004127 003503 003810  0.03234
il 1 6 —0.106? 0.1089 —0.11402 0.11615
1 8 0.02150 0.02502 0.0240 0.02802
These equations were then used to find the coefficients } {(2) “8%%; 80(1"%515; —0-0(1’2‘{2 0-01‘251
<Y1 and the radius vectors. The coefficients ;8; and ¥, 5 13 _(02083 _0:84209 _gjgzgsg _8:840%
are listed in Table II together with the rms error of the 1 14 0.01375 0.02089 0.01343 0.02041
ion. F - s is 0. 1 16 000889 001442 000326  0.00529
area expansion. For the 11-term ﬁt., this is 0 17%'0f 'the 2 16 —000403 —000654 —000645 —0.01049
average area or 0.75%, of the maximum area variation, 1 18  —0.00567 0.00973  —0.00739 0.01268
the latter being probably a fairer estimate of the good- 2 18 e
% %8 0.00569 0.01027
TasLE II1. The principal radii of the electron Fermi surface of Pd. ; %% 0:99118 —0:99224
As is shown in the text, the radii are accurate to 19,-2%,. 1 2 —000171  —0.00338
Radius (atomic units) rms error
Direction 11-term 14-term (@) 0.00129 0.00091
[100] I'X 0.602 0.605 « The 5 he coeffici ; .
[111] TZ 0.558 0.569 They are tndependent of the namber of cona i Tkt ol e thaliesnn:
[110] K 0.447 0.434 squares fit is made by projection integrals on the surface of the sphere.

b The {71 are the corresponding coefficients of the expansion of the square
of the radius vector in Eq. (5).
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of the error due to the finite inversion. We conclude
that the palladium electron surface has the radii shown
in Table ITI. The discussion below shows that the
accuracy of an 11-term fit is of the order of 29, in
radius vector, which is to be compared with the 0.179,
rms error in the same fit to the observed areas. It is
evident that more data, taken away from lines of
symmetry, are required to obtain more accurate radius
vectors.

The total volume of the electron surface was also
computed, with the result that

n.=0.364-0.004 electrons/atom,

with an error which is predominantly due to the error
in the measured dHvA area for H||[100].

The data show that for H near [111] there are two
extremal areas on this surface, and we can use our
model to calculate the noncentral extremal for H||[111].
The calculation of noncentral extremal areas is a
complicated problem, but one which has widespread
importance in the accurate relation of Fermi surface
data to the band structure. It also provides a sensitive
check on the accuracy of the inversion, since there are
no adjustable parameters. The results of a numerical
integration of the area as a function of k., where z is
the [111] direction, are shown in Fig. 3. Calculations
were made for both the 11- and 14-term fits. Both
shown noncentral extremal areas, but their magnitudes
are not in close agreement with the data. The predicted
values differ from the experimental value by 2.4 and
3.0%. Since there are no constraints on the noncentral
areas, we use this as our only independent check on the
accuracy of the radius vectors. We conclude that these
latter are accurate to rather better than 29}. Clearly
more terms in the expansion are needed.

The calculations were carried out on the IBM
7094-7040 computer in the University of Chicago Com-
putation Center. It should be remarked that it was

20° 40°
Degrees from [100]
(b)

necessary to use double-precision techniques to calcu-
late both the symmetrized coefficients ,aim and the
spherical harmonics Cyn. If this was not done, accumu-
lated rounding errors swamped the correct answers for
large values of I.

III. UNIQUENESS OF THE EXPANSION

The question of how many terms in the expansion
can be determined from a restricted set of data is of
considerable interest, although it appears that the point
has not been discussed before. Its relevance is that data
on any anisotropic quantity in, for example, a cubic
system, are usually taken only along the basic symmetry
lines, which in this case are the (100) and (110) planes.
It is shown below that this places a severe limitation
on the information obtained. Paradoxically enough, in
the absence of either noise or systematic errors a given
number of data points contain the most information
if they are taken at random but accurately known
values of § and ¢. Then the maximum number of
coefficients ;3; that can be fitted is equal to the number
of data points.

We wish to analyze in detail the usual case where
data for some property (which we shall call 7) are
taken only in the (100) and (110) planes. We assume
again the full cubic symmetry of the I'; representation
of the group O;, and this allows us to construct from
these data for the property 7" the functions 7°(6,0) and
T(0,m/4) for all 6. We assume that the data form a
sufficiently fine net to determine 7" completely in these
two planes. It should also be noted that these two
functions contain all our information. We wish to ex-
pand these data in the symmetrized harmonics ;K; as
defined in Eq. (2). Since for cubic harmonics m=0
mod (4), we can express these data as the sum and
difference, respectively, of functions 7', and 7', which
are symmetric and antisymmetric to a rotation by ir
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F1c. 2. (a) The calculated radius vectors of the Pd Fermi surface in the (110) plane; 0—the 11-term expansion, A—the incomplete
14-term expansion. The smooth curve is drawn through the 11-term radii. (b) The radius vectors in the (100) plane; the symbols are

the same as in (a).

about the polar axis z. Thus we have

T,= > B iim Cim,
tlm,m=0 mod (8)
To= > B1 i@im Cim.

4lm,m=4 mod (8)

We can derive the extent of the uniqueness of the ex-
pansion by a projection argument using the basic ortho-

0.70 T T
————————— Exp.
AAAAAA
0.65';_ T —
0.60- -1
Alk,)
0.55- -
0.50+
0.45 ! L
0.0 0.20 0.30

k, from Central Plane H [

Fic. 3. Noncentral areas of the Fermi surface for H[1117];
O—the 11-term expansion, A—the 14-term expansion. The experi-
mental noncentral extremal value is also shown, and [J denotes
the experimental value for the central extremal area. k. is meas-
ured in atomic units along the field direction.

gonality relation for the real spherical harmonics Cyp:
/ / Ctm Cz' m’ sind dad(p= 5”r6mm' . (6)
0 0

The integral

™ 27
/ / T.(6,0)C1osinf dbd ¢
0 0

will project out from T, all the coefficients of the form
181 141 because for m=0 the unknown ¢ variation
vanishes and so does not matter, while for 751 we have
specifically chosen the degenerate sets such that
i-1610=0. Now we can use the relations between the
1¢im given in Table I and can determine the 13, i.e.,
the first degenerate set of the cubic harmonics. It
follows that all the coefhicients ;8; up to /=12 can be
determined from data in only one plane, since the first
doubly degenerate set occurs for /=12.

It remains to determine as many as possible of the
second and further degenerate sets, and the first few
of these are 812, 2816, 2818 (¢=3 does not occur until
1=24). It turns out that a knowledge of T, enables us
to determine only two more of the 53; coefficients. We
demonstrate this as follows.

Let F, be the function obtained from 7', by subtract-
ing off all the terms of the first degenerate sets which
are determined once the i8; have been found by the
projection from 7',. Thus F, contains only terms of the
following kind :

Fa=9B12 (2(112,4C12,4+ 2012,12C12,12)
+2B16 (2015,4C16,4+ 2015,12C16,12)
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plus higher ! terms with i1 and m=4 mod(8). There
are just two useful projection integrals that we can
perform. We keep only terms with /<18 and form

2T T
Il=/ d(p/ sinfdf F,(cosd o)
0 0
X (Ci2,4+C12,12+Ci6,4+Cis,12)

because the Cin, form an orthonormal set over the unit
sphere
I1=2B12 2012,4+ 216 2816, 4-

We now form 7,:

2T L3
12=/ dqa/ sinfd@ F,(cos12p)
0 0
X (C12,4+Ci2,10+Ci6,4+Ci6,12)

and, similarly, the orthogonality relations give

Iy=9B12 2412 12F 2816 2@16,12-

Hence we can find the two coefficients 2612 and 2816
only if we terminate our finite expansion at 1815. If we
attempt to fit more coefficients o8, of the second de-
generate set we cannot do so uniquely. We can, of
course, fit higher terms by taking data away from the
lines of symmetry, which is easily done once it is realized
that it is necessary.

The correctness of the above conclusion was tested
empirically by a quite different method in which
spherically symmetric data® in the same two planes
were expanded in a finite number of cubic harmonics
by the least-squares technique used in Sec. 2. If the
expansion was not unique, an obviously nonspherical
expansion resulted which, nevertheless, had a constant
area at all the data points. The results agreed with those
of the projection approach described above.

APPENDIX: CALCULATION OF THE CUBIC
HARMONICS

Altmann and Cracknell’” have solved the general
problem of constructing symmetrized spherical har-
monics. They used a general projection approach and
dealt only with harmonics up to /=12. We need higher
values of /, and since we are concerned with just one
particular case, the identity representation I' of the
full cubic group O, we can use this symmetry explicitly
to obtain the linear combinations for arbitrary / in a
simpler fashion.

The general rotation operator R can be represented as

RYim=exp[—i0(# L) ]V im, (A1)

which describes a rotation by an angle # about the
direction 7. If this rotation is expressed in terms of

¢ We are grateful to Dr. L. R. Windmiller for this suggestion.
( 785 L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
1965).
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Euler angles it follows that R is factorized into three
successive Euler rotations,

R=exp(—ialL,) exp(—iBL,) exp(—iyL,). (A2)

Let ®=3";m a1nY1m be a linear combination of spherical
harmonics with the required symmetry. This must be
invariant to the rotation operators of the group O,
and since the general rotation operator commutes with
L-L it does not mix different values of /. Therefore

'I)ZZm a;,,.Y;m. (A3)

We now note that the group O can be generated by
three basic operations—the generators of the group.
For a one-dimensional representation such as the
identity representation these commute, so the full
symmetry is satisfied by making ® invariant to each
of the three operations separately. Our choice of these
three is a sufficient but not a necessary one. We take
one of the fourfold axes as the polar axis z. The other
fourfold axes are then x and y. With this choice of axes
the operations are:

(1) Inversion, hence ! is even. [1(a) The mirror plane
y=0, which follows from (1) and (3) restricts the ¢
variation to cosm¢ only. ]

(2) A fourfold rotation about the z axis. This re-
quires m=0 mod (4).

(3) A rotation by 3w about the y axis. From Eq.
(A2) above, this is described by R=¢~G"Lv/» and our
linear combination ®=3_,, @;nYi» must be invariant to

this rotation:
R®=R Zm almylm Zm’ Qim’ Ylm’ (A4)

Multiply through by ¥, and integrate over the sphere.
We find

Zm alm<Yln [ e—irL:,/?l Ylm>= Zm' alm’anm' ) (‘1\5)
i.e., a set of linear equations of the form
Zm almdm’ml(ﬂ'/z) =aim (A6)

with the matrix elements dm.!(8) [essentially the
Wigner coefficients® for integral /] defined by?

G=m)! ) z]w
(j+m) (= m)!

(cos}B)2s+m—r (—sin}g)=—

dm’mj(ﬁ) = [

(m'—m)!

XoF1(m'—j, —m—j;m'—m—+1; —tan238), (A7)
where oF1(a,b;c;d) is the hypergeometric function,
which for our case has a series expansion which
terminates.

8 E. P. Wigner, Group Theory (Academic Press Inc., New York,
1959), Chap. 15.

® M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc New York, 1963), p. 33.
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We now must solve the linear equations (A6) for the
coefficients a;n. Before doing this however we note that
the equations can be simplified somewhat. We note
that symmetry operation 1(a) has limited us to a real
¢ variation, i.e., to the real spherical harmonics defined
in Sec. 2. Thus by restricting the sum in Eq. (A3) to
m>0 and using the real harmonics Ci» defined in
Eq. (3) we can immediately contract the order of the
equations by roughly a factor of 2.

Our new matrix elements are thus defined as Dj,
where j=%im'+1 and k=im+1.

Du=do'(r/2),

Dy=2"12(dont (m/2)+do_mt(7/2)),

Diy=2"12(d o' (/) 2)+d_mr ot (7/2)),

Djir=3(@mmt(1/2)+d_mmt(w/2)
Fdmmt(7/2)Fd ' (7/2)).

The matrix equation is now

>k Djran=ay;

(A3)

(A9)
or

>k Djx—di1)an=0 (A10)

with rank 7= (Mmax/4+1) instead of (27 .x/4+1).
The matrix equations (A10) cannot be solved
directly because the matrix (D—1) is singular. This is
most easily seen from the eigenvalue spectrum of D.
The total number p of independent degenerate repre-
sentations for a given value of / is given in the standard
texts on group theory,® and the result is quoted in

10 M. Hammermesh, Group Theory (Addison- Wesley Pubhshmg
Company, Inc., Readmg, Massachusetts, 1962), p.
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Table I. It follows that D has p eigenvalues of unity
and the remaining (r—p) are necessarily zero. Hence
(D—1) has p eigenvalues of zero and the rest are —1.

We can invert equations (A10), in spite of the zero
eigenvalues, by using the following construction. The
largest nomsingular submatrix of (D—1) has rank
(r—p). We cut out from (D—1) a codiagonal matrix
Q of rank (r— p+1) such that Q1= (D—1);, where the
subscript ¢ labels the p-independent sets for given /.
From the singular matrix Q we construct the non-
singular codiagonal matrix P contained within Q ac-
cording to the prescription Pp=(Qs,, etc. Now form
P! and then we have

Aikzz,' ij_lQij. (All)

The ith row of A now contains the unnormalized coeffi-
cients of the ith representation, except that their posi-
tion must be adjusted by defining the rectangular
matrix B with the columns displaced according to
Ay and the definitions Bi;=1, B;=0 if j<¢
or j>i+k. Note that B has p rows and (muax/4+1)
columns. It now remains to construct an orthonormal
set from these vectors (the rows of B). We choose that
row with 7= as a basis vector for the degenerate set
and normalize it. A row-by-row Schmidt orthogonaliza-
tion followed by a normalization now results in the
desired orthonormal set of row vectors b;. These
are the coefficients shown in Table I as ,a;», where
@im= g, m=4(k— 1.

The choice of basis vector is of course arbitrary but
ours corresponds to that used by Altmann and is also

very convenient for the discussion of uniqueness in
Sec. 3.

B ipr=



