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respectively. Ke shall refer to these modes as the fast
and slow shear waves, respectively.

To facilitate comparison with experiment v e define

8„the experimentally determined position of the edge,
as the position of the minimum of dy/dBO. In Figs. 2,
3, and 4 we display the attenuation coeKcient y as a
function of Bo for frequencies of 10, 50, and 150 Mc/sec
and a value of r corresponding to q/= 10 at 50 Mc/sec
for the fast shear wave. In Figs. 5, 6, and 7 we plot
dy/dBO as a function of B~ for the same cases. In each of
these figures two graphs are displayed. The dashed line
is appropriate to the free-electron model, the solid one
to the SDW model. Figure 8 shows the position of the
edge B, as a function of frequency a=a&/2~ for both
models and the same value of v as given above. It

should be noted that at low frequencies the values of
8, do not differ by much. Finally, in Fig. 9, the mag-
nitude of dy/dBs at the edge is plotted as a function
of frequency. "

The L110]direction in potassium was selected in our
discussion because the large difference in the velocities
of the fast and slow shear modes permits considerable
simplification in the interpretation of experimental re-
sults. The behavior in this case is in contrast to the
results for the elastically isotropic solid where care had
to be exercised to measure both the apparent attenu-
ation and the rotation of the plane of polarization.

"Similar calculations have been carried out for the slow shear
mode but, since the results are rather similar, we do not display
them here.
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The existing solution to this problem has not been useful in practice. 'We have found a new and much
simpler method based on an expansion of both the area and of the radius squared in appropriate spherical
harmonics. The integral equation between these objects yields the simple result

aI, ——bI,~HOPI, (0),
where Pl, (0) is the Legendre function of order I and aJ.~ and bl, are the coefBcients of expansion.

'EASUREMENT of the periodic variation of the
- ~ magnetic susceptibility of pure metals at low

temperatures gives detailed information about the
Fermi surfaces of these materials. This de Haas —van
Alphen effect has long been used as an experimental tool
for finding the Fermi surface extremal cross-sectional
areas. Recent improvements in experimental technique
now yield results accurate to a few parts in 104. %e have
developed a simple method which, while maintaining
mathematical exactness and high experimental ac-
curacy, converts the extremal-area measurements into
Fermi-surface radii. The conversion of extremal areas to
radii is a purely geometrical problem. By an elegant
piece of differential geometry, Lifshitz and Pogorelov'
(LP) found a formal solution and gave sufhcient condi-
tions for the inversion to be unique: These are that the
surface be closed, have a center of inversion symmetry,
and have a unique radius vector from that center. Their
technique depends on a complete knowledge of the
extremal area, A(8, y). This is impracticable experi-
mentally, so that the technique has never been applied
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successfully. There is also a mathematical difhculty
because one is required to evaluate a principal-value
integral of the data, a necessarily discontinuous function.

These two requirements are so stringent that, in
practice, accurate data have been fitted by trial and
error. The method of expansion in spherical harmonics
outlined below needs only a small number of inde-
pendent data points, performs the principal value
integral implicitly, and automatically provides a least-
squares Gt to the data. It also provides a prescription for
finding orientations of the external field which determine
the Fermi surface most efhciently, and avoids duplica-
tion of effort.

We shall write the equatorial area, 0 ($), as the inte-
gral of the square of the radius over the unit sphere,

1
(f)= p (~)&(~ k)dfl(&),

2

A

where g and e are unit vectors. This equation, first
considered by LP, compactly states the formal problem.
The Dirac delta function selects those directions of
p'(s), the square of the radius vector, perpendicular to $,
the magnetic field direction. Thus, the surface integral
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L,m

where the a's and b's are the coefficients of expansion of
the area and the square of the radius of the spherical
harmonics, Yl. (I), in the e and ] coordinate systems,
respectively.

The 5 function has a well-known integral representa-
tion in terms of plane waves. By using the Rayleigh
expansion of these plane waves we obtain sums of prod-
ucts of two spherical harmonics:

exp(ik(e g))dk

L.n
(3)

Jl.(k)dk.

Using the integral representation of the spherical Bessel
function in terms of I egendre polynominals, we have

Qo 2z ]

e'& "Pr, (p)de

Reversing the order of integration, we regain our b

function on the right-hand side of (3):

L, n

over dQ is reduced to a line integral on the equatorial
plane.

The mathematical problem is to invert Eq. (1).
I.ifshitz and Pogorelev do this by a Green's-function
technique, whereas we prefer to solve the related eigen-
function problem by expansion in spherical harmonics.

Thus, we have

a(e) = P ai~Ye(e),

Placing the results of (2), (3), and (6) into (1), we find

Q a),"Y),"(5)= Q br,"Yr,"(e)7rPI, (0) .

A final integration over the ~ coordinate gives

ai,"= br, "wPr. (0)

We note that (8) requires that L, be even since Pz. (0)=0
if L is odd. This was also demanded by the inversion
symmetry.

The practical advantage of the expansion method2 ' is
that one can represent the series, to a given order, as a
system of linear equations and solve for the coefFicients

by matrix techniques. No integrations need be per-
formed. This is especially useful when information is
available only on widely spaced lines of the unit sphere
rather than on a comprehensive net.

In the following paper, 4 we show the advantage of
using, not the ordinary spherical harmonics in the ex-
pansions (2), but symmetrized crystal harmonics. In
addition, we show the relationship between the availa-
bility of data, the number of allowed expansion coefh-
cients, and the accuracy desired. Finally, we note that
similar expansion techniques will be useful in the study
of other properties of the Fermi surface such as the
eR'ective mass or the Fermi velocity.
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~ Super6cially the present technique looks similar to a method
developed by Shoenberg and Stiles (Ref. 3). The difference is that
they expand the radius rather than the square of the radius in
harmonics. This means that their equation corresponding to (1)
involves products of three spherical harmonics —hence, %'igner
coefEcients. They avoid this difEculty by ignoring all cross terms
except the Grst-order ones. This restricts their method to very
nearly spherical Fermi surfaces.

3 D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (I.ondon) A281,
62 (1964).

4F. M. Mueller and M. G. Priestly, following paper, Phys.
Rev. 148, 638 (1966).


