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Acoustic Kjeldaas Edge in Potassium*
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We investigate the propagation of shear acoustic waves in both a metal whose Fermi surface is spherical
and one having a spin-density-wave ground state in a magnetic field parallel to the direction of sound propa-
gation. In particular we study the nature of the Kjeldaas absorption edge for these two models with special
emphasis on potassium at liquid-helium temperature. At sufticiently high frequency the position of the
Kjeldaas edge of the spin-density-wave is substantially lower than for the free-electron model,

I. INTRODUCTION

HE optical anomaly of potassium discovered re-
cently by Mayer and El Naby' has been dis-

cussed theoretically by several authors. '—' In this paper
we concern ourselves with Overhauser's suggestion' that
the optical anomaly in potassium can be accounted for
by assuming that the ground state of this metal has a
spin-density-wave' (SDW). However, experiments on
cyclotron resonance by Grimes and Kip' and on the
de Hass —van Alphen effect by Shoenberg and Stiles'
fail to show the anisotropy of the Fermi surface of
potassium v hich is required by Overhauser's hypothesis.
It is possible to reconcile these results if one assumes
that the wave vector of the SDW orients itself parallel
to an applied magnetic field. If this assumption is cor-
rect, de Haas —van Alphen measurements, which only
provide a measure of the extremal cross-sectional area
of the Fermi surfa, ce, would show no anisotropy in
agreement with experiment. Overhauser and Rodriguez'
and McGroddy, Stanford, and Stern' have studied the
problem of propagation of helicon waves in potassium
near the cyclotron edge. The conclusions of these works
are the following. One finds that, in general, the corn. -

parison between theory and experiment cannot be based
on the simple Doppler-shifted-frequency criterion, but
rather that a detailed calculation of the surface im-

pedance must be carried out to compare with the experi-
mental results. '0 One also finds that comparison of the
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calculated surface impedance of potassium with experi-
mental curves obtained by Taylor" give better agree-
ment with the SDW model than with the free-electron
model. The difference between the two models gives
only a 4% shift in the position of the cyclotron edge
and thus these experiments need not be regarded as
providing conclusive evidence for the existence of a
SDYV ground state in potassium. The simple criterion is

chic = (&&max/s) ~ (2)

The study of the ultrasonic attenuation of shear waves
in metals as a function of an applied magnetic field
shows that there is an absorption edge at the magnetic
field for which Eq. (2) is satisfied and a measurement
of this field gives directly m*v,„where m* is the cyclo-
tron effective mass of the resonant electrons. The ultra, -
sonic absorption edge was first discussed by Kjeldaas'4
for the free-electron model. We shall call the onset of
absorption as the magnetic field is lowered past its
resonant value the Kjeldaas edge.

"M. T. Taylor, Phys. Rev. Letters 12, 497 (1964); Phys. Rev.
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~vhere v,„is the maximum value of the component of
the electron velocity along the direction of the magnetic
field and q is the helicon wave number. Now for a SDK
in potassium appropriate to an energy gap 6=0.62 eV,
which is necessary to account quantitatively for the
optical anomaly, we have w,„=0.714X10' cm/sec
while for the free-electron model v = vp=0. 864)(10'
cm/sec. (These calculations are done taking the lattice
constant to be" a=5.225 A.) If one now assumes that
the wave vector q of a helicon is not very sensitive to the
particular electron model, then Eq. (1) shows that the
shift in the cyclotron edge is (AB/B, )~(hw /w, „)
= 17% In Refs. g and 9 it is proved that the assumption
just made is, in general, incorrect. However, the detailed
electronic model has little effect on the velocity of shear
acoustic waves" so that we can write q=co/s, co and s
being the angular frequency and the velocity of the
acoustic waves. In this case Eq. (1) becomes
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In the present paper v e discuss in some detail the
difference, briefly discussed elsewhere" between propa-
gation of shear acoustic waves in a SDW metal and in
a free-electron metal. Numerical applications are made
to the case of potassium at liquid-helium temperatures.

P) 04-

H. THEORY FOR AN ELASTICALLY
ISOTROPIC METAL

In this section we present an analysis of the propa-
gation of shear acoustic waves in a metal and discuss
the differences between two possible electronic struc-
tures. One model is that of free electrons already in-
vestigated by Kjeldaas and the other is the one in which
the ground state of the metal possesses a SDW. We
consider a metal in the presence of a magnetic Geld Sp
which we choose parallel to the 2' axis of a Cartesian
coordinate system. Now, the equation of motion of the
lattice can be described by a displacement field g(r, t)
whenever the wavelength of the acoustic waves is much
longer than the lattice parameter. We shall consider
here frequencies vp of the order of 10' sec ' so that
the wavelength X=s/vp=10 'crn. Thusourassumption
that X)&a is well satisfied. The equation of motion of
the lattice is obtained by considering the forces acting
on the positive ions of the crystal arising from the other
ions and the conduction electrons. This equation is

MB'g/BP=C~V(V g) C~VX(V—Xg)
+seE+(s%)uXSp+F. (3)

Here C~ and C~=Mso' are elastic constants describing
the interaction of the ion cores but excluding the long-
range Coulomb repulsion. The quantity u= 8$/Bt is the
velocity of the ions and F is an average collision force
on the ions arising from their interaction with the con-

02-

0
0 10 20 30

duction electrons. Simple considerations show that

F= —(sm/n per) (j,+n peu),

where j, is the electron current density and no the elec-
tron concentration, I is the self-consistent electric Geld
associated with the propagation of the wave and 2; the
number of conduction electrons per atom. Equation (3)
is applicable only if the system is elastically isotropic.
In general, this is not the case but the results that we
obtain are rigorously valid for propagation along sym-
metry directions for which the two polarizations for
the shear waves have equal velocities. The case of
an anisotropic metal is treated in Sec. III. Setting
g(r, t) pp exp(icot —iq r) in Eq. (3) we 6nd

(co' —spPq'&&uQ, )$~ = —(se/M)E+ F+/M, (4)—
where 4,= &.~i&„, E+=E.apE„, and D, =seBp/Mc is
the cyclotron resonance frequency of the positive ions
in the presence of the magnetic field 80. The relation
between E and g is obtained by solving Maxwell's equa-
tions together with the equation of motion of the elec-
trons. The necessary relations are developed in some

FIG. 2. The attenuation coefficient y of the fast shear wave as a
function of f30 for an acoustic frequency of 10 Mc/sec and a value
for ql of 2.
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FIG. 1. Rotation of the plane of polarization per unit sample
length as a function of applied magnetic field. The dashed curve
corresponds to the free-electron model, the solid curve to the
SD%' model. These curves are appropriate to an acoustic fre-
quency of 100 Mc/sec and a value of qt of about 50.

"R. C. Alig, J. J. Quinn, and S. Rodriguez, Phys. Rev. Letters
14, 981 {1965).
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FIG. 3. The attenuation coeKcient y of the fast shear wave as a
function of 80 for an acoustic frequency of 50 Mc/sec and a value
for ql of 10.
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Fzo. 4. The attenuation coefBcient y of the fast shear wave as a
function of Bp for an acoustic frequency of 150 Mc/sec and a
value for q/ of 30.

detail in Ref. 13.The result is

E+= (mi~/er) I (G~ 1)/(G—+ iP)]4—,
where

Go s+ = ho= »o~tn, , v

0
0

10 40
I
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p= c q /4lReos.

In Eqs. (5)—(7) os is the dc electrical conductivity and
o „and o „are components of the magneto-conductivity
tensor. "%e have made the assumption that the Fermi
surface possesses rotational symmetry about the 2 axis
so that o., =o.», o „=—o. „, while r,=cr„,=0. Equa-
tion (4) can now be rewritten in the form

(cps —sssqsacef), ) ((aG~ —icesps)
= (smi(a/3Ir) (ur iPpa) p) (1 —G~) . (8—)

For convenience we have used res= ssq and Ps

= (c'q /4trre&ps) ='(csq/4ws~s). Solutions of Eq. (8) give
us the dispersion formulas a&=co(q, Bs). Now we could
solve Eq. (8) for q=q& —iqs as a function of a& but we

prefer to consider q as real and solve for or=cog+ico2 as
functions of q and 80. Both procedures can be used
since the velocity of sound changes very little from its
value so in the absence of the electron interactions and
because q2«q~. Since we are only interested in the attenu-
ation as a function of 80 we have calculated changes
in ~j.+ico2 as a function of 80 for fixed q. The coeKcient
of attenuation & is given by

'r = 2rds/sp. (9)

The experimental conditions are such that co is kept
constant so that we should solve Eq. (8) for qt —iqs.
It is, however, more convenient to do what we have
done. The results are, of course, the same because of
the fact that q2«q~. In Fig. 1 of Ref. 15 we have dis-

played the attenuation coeKcient y as a function of the
magnetic induction Bs for acoustic waves of 100Mc/sec
for both the free-electron and SD% models. Ke have
taken ~, the electron collision time, such that +,v at
18 kG is 50 and the velocity of sound so ——1.74&10'
cm/sec. Figure 2 of that work shows dy/dBs as a func-
tion of 80 under the same conditions. The diGerence in
the velocities of the right- and left-circulary polarized
components of a linearly polarized shear wave gives
rise to a rotation of the plane of polarization of the
sound wave given by

he/L= Ates/2sp, (10)

where A~~ is the diGerence in the real parts of the fre-
quencies of the two circular polarizations and I. is the
length of the sample. The order of magnitude for a
magnetic field of about 15ko turns out to be of a few
radians per cm of path. Figure 1 in the present paper
shows a graph of 66/L versus Bs. The values of y and
dp/dBp for shorter mean free paths are similar but the
peak in dp/dBe and the absorption edge are less pro-
nounced in the latter case."Ke have also investigated
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FIG. 5. Plot of dy/dBp versus Bp for the conditions given in Fig. 2.

"The components of the magnetoconductivity tensors appro-
priate to the propagation of circulary polarized waves are given by

8 1sT'
d~

sg
kr%' '1+i(corlay, ~—qe, v)

'

where ez and s, are the components of the velocity of an electron
on the Fermi surface perpendicular and parallel to Bp, respectively.

%e have used E(h) =A~A/2m for the free-electron-model calcu-
lations. For the calculations using the SDW model we have used

&(Ir) =&'&'/2~+&(kQ —
I
f'. I) —5 '(kQ —141)'+-'0j'",

where pa = ItsQ/2m, Q is the wave vector of the SDW, fk, 1
denotes

the magnitude of k„and G is the energy gap due to the SDN.

Fro. 6. Plot of dy/dBp versus Bp for the conditions given in Fig. 3.
"Values of cu.r of 5, 10, 25, 100, and 250 have been used in the

numerical calculations. The results show that the minimum of
dp/dBp is shifted slightly to lower magnetic fields as the mean
free path l is decreased but the width of the line decreases rapidly
with increasing g.
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Fro. 7. Plot of dy/dB0 versus Bo for the conditions given in Fig. 4.
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propagation at frequencies lower than 100 Mc/sec and
obtained again similar results.

III. THEORY FOR AN ELASTICALLY
ANISOTROPIC SOLID

In this section we consider the situation in which
the metal possesses a Fermi surface which has rotational
symmetry about the z axis as before, but now we as-
sume that the solid is elastically anisotropic. Ke make
the further assumption that when a wave propagates
parallel to the z axis, the acoustic waves can be classified
into purely longitudinal and purely transverse modes.
In the case of shear waves the elastic force on each ion
arising from the short-range ion core interactions is of
the form

Sg,

0
0 50 l 00

P ( Mc/SEC j
l50

Fio. 8. Position of the experimental edge B, for the fast shear
wave (i.e., position of the minimum of dy/fdB0) as a function of
frequency for a potassium sample having qI =10 at 50 Mc/sec.

termined from the measurements of the low-tempera-
ture elastic constants given by Marquardt and Trivi-
sonno" are 1.78X10' cm/sec and 0.646X10' cm/sec,

where S is a 2X 2 tensor operating on vectors g= ((,g„)
in a plane perpendicular to the z axis. %e choose the
x and y axes in such a way that 8 is diagonal. Then
we can write, instead of Eq. (3) the following relation
for (~, the displacements appropriate to circular
polarization,

~~'4= k~s.V (f—++5 )~s~s.V-(5+ & )—-
+seE~& (seco80/c) 4+8+. (11)

Because s and s„have different values, the two circular
polarizations are coupled by a term proportional to
(s,'—s„'). This results in normal modes, which in the
presence of the dc magnetic 6eld are elliptically polar-
ized. By proceeding in a manner analogous to the treat-
ment in Sec. EI, Eq. (11) can be put in the form

M 4 2g (s+ $++$F 5-)&iL Qe4
—(smico/Mr)P(1--G+) (1—iP)/(G+ —iP) $4=0. (12)
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In this equation, the symbol s+' stands for s '&s~'. Ke
have carried out a numerical calculation of the velocity
and attenuation of the acoustic normal modes of the
system represented by Eq. (12). More specifically we
have studied shear waves propagating along the L110j
direction in potassium. The values of s and s„, de-

-4.0-

FIG. 9. The magnitude of dy/dB0 at the edge as a function of
frequency for a sample having ql = 10 at 50 Mcisec,

"W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965).
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respectively. Ke shall refer to these modes as the fast
and slow shear waves, respectively.

To facilitate comparison with experiment v e define

8„the experimentally determined position of the edge,
as the position of the minimum of dy/dBO. In Figs. 2,
3, and 4 we display the attenuation coeKcient y as a
function of Bo for frequencies of 10, 50, and 150 Mc/sec
and a value of r corresponding to q/= 10 at 50 Mc/sec
for the fast shear wave. In Figs. 5, 6, and 7 we plot
dy/dBO as a function of B~ for the same cases. In each of
these figures two graphs are displayed. The dashed line
is appropriate to the free-electron model, the solid one
to the SDW model. Figure 8 shows the position of the
edge B, as a function of frequency a=a&/2~ for both
models and the same value of v as given above. It

should be noted that at low frequencies the values of
8, do not differ by much. Finally, in Fig. 9, the mag-
nitude of dy/dBs at the edge is plotted as a function
of frequency. "

The L110]direction in potassium was selected in our
discussion because the large difference in the velocities
of the fast and slow shear modes permits considerable
simplification in the interpretation of experimental re-
sults. The behavior in this case is in contrast to the
results for the elastically isotropic solid where care had
to be exercised to measure both the apparent attenu-
ation and the rotation of the plane of polarization.

"Similar calculations have been carried out for the slow shear
mode but, since the results are rather similar, we do not display
them here.
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The existing solution to this problem has not been useful in practice. 'We have found a new and much
simpler method based on an expansion of both the area and of the radius squared in appropriate spherical
harmonics. The integral equation between these objects yields the simple result

aI, ——bI,~HOPI, (0),
where Pl, (0) is the Legendre function of order I and aJ.~ and bl, are the coefBcients of expansion.

'EASUREMENT of the periodic variation of the
- ~ magnetic susceptibility of pure metals at low

temperatures gives detailed information about the
Fermi surfaces of these materials. This de Haas —van
Alphen effect has long been used as an experimental tool
for finding the Fermi surface extremal cross-sectional
areas. Recent improvements in experimental technique
now yield results accurate to a few parts in 104. %e have
developed a simple method which, while maintaining
mathematical exactness and high experimental ac-
curacy, converts the extremal-area measurements into
Fermi-surface radii. The conversion of extremal areas to
radii is a purely geometrical problem. By an elegant
piece of differential geometry, Lifshitz and Pogorelov'
(LP) found a formal solution and gave sufhcient condi-
tions for the inversion to be unique: These are that the
surface be closed, have a center of inversion symmetry,
and have a unique radius vector from that center. Their
technique depends on a complete knowledge of the
extremal area, A(8, y). This is impracticable experi-
mentally, so that the technique has never been applied

*Advanced Research Projects Agency Research Assistant.
' I. M. Lifshitz and A. V. Pogorelov; Dokl. Akad. Nauk SSSR

96, 1143 (1954).

successfully. There is also a mathematical difhculty
because one is required to evaluate a principal-value
integral of the data, a necessarily discontinuous function.

These two requirements are so stringent that, in
practice, accurate data have been fitted by trial and
error. The method of expansion in spherical harmonics
outlined below needs only a small number of inde-
pendent data points, performs the principal value
integral implicitly, and automatically provides a least-
squares Gt to the data. It also provides a prescription for
finding orientations of the external field which determine
the Fermi surface most efhciently, and avoids duplica-
tion of effort.

We shall write the equatorial area, 0 ($), as the inte-
gral of the square of the radius over the unit sphere,

1
(f)= p (~)&(~ k)dfl(&),

2

A

where g and e are unit vectors. This equation, first
considered by LP, compactly states the formal problem.
The Dirac delta function selects those directions of
p'(s), the square of the radius vector, perpendicular to $,
the magnetic field direction. Thus, the surface integral


