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The surface impedance of an isotropic electron-phonon gas in the presence of a static magnetic field and
high-frequency electromagnetic wave (w~wp, the Debye frequency) has been calculated. The calculation
is based on a recently derived quantal transport equation, by one of the authors, which is modified to
include the effects of the external magnetic field. The resultant expression for the (wave-vector- and fre-
quency-dependent) bulk conductivity o (g,w) incorporates effects due to electron-phonon interaction (EPI).
The bulk conductivity is related to the surface impedance by the standard expression for the extreme
anomalous limit. The EPI effects are manifested in the surface impedance by (a) a frequency-dependent
effective cyclotron mass, and (b) frequency-dependent damping (attenuation of the higher subharmonics) as-

sociated with frequency-dependent collision processes.

INTRODUCTION

GENERAL quantal treatment of transport phe-

nomena in a model electron-phonon system has
been developed by one of the authors.! The model de-
scription of the system is based on the Frohlich Hamil-
tonian. In particular, the transport theory developed is
valid for all frequencies of an impressed electromagnetic
field. The basic aim of the present paper is to extend
some aspects of the treatment by considering the
presence of a magnetic field and applying the results
to an investigation of the electron-phonon interaction
(EPI) effects on the transport phenomenon of cyclotron
resonance? in metals.

No attempt will be made to develop the general
quantal transport equations in the magnetic field case.
This will be shown, under the conditions of cyclotron
resonance, to be unnecessary.

Briefly, the conditions under which one usually ob-
serves cyclotron resonance (Azbel’-Kaner effect) in
metals are as follows: (1) One is in the extreme anoma-
lous skin-effect region I3>8, where I=vp7 (vp=Fermi
velocity and r=lifetime of an electron) and é is the
skin-depth penetration of the electromagnetic field.
(2) The magnetic field should be closely parallel to the
surface of the metal. (3) wr>>>1; w is the frequency of the
electromagnetic field.

Under these conditions one can have the following
picture: There are electrons which do not collide with
the surface and which return to the skin layer after each
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1T, Holstein, Ann. Phys. (N.Y.) 29, 410 (1964). This paper
will be referred to as H and any part of this paper will be prefaced
by H, i.e., H. Eq. (2.4). A more complete discussion of some
basic theoretical points concerning transport phenomena in an
electron-phonon gas is to be found in this paper. A set of transport
equations agreeing with the ones in H in the limit of low frequency
has been developed by R. E. Prange and L. P. Kadanoff, Phys.
Rev. 134, A566 (1964).

2The Azbel-Kaner effect. M. Ta. Azbel’ and E. A. Kaner,
Zh. Eksperim. i Teor. Fiz. 32, 896 (1956) [English transl.: Soviet
Phys.—JETP 5, 730 (1957)].
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revolution, the layer playing the same role as the gap in
a cyclotron. If synchronism occurs and w is equal to
or an integral multiple of the cyclotron frequency,
w.=eH/mc, the electrons are successively accelerated
I/2rR, times, producing a ‘‘cyclotron resonance”
(R;=vr/w.). The wr>>1 ensures many revolutions before
a collision.

It is the fact that one is in the extreme anomalous
skin-effect region that enables one to proceed without
the general quantal transport equations in the magnetic
field case. The results will be correct to first order in §/1.

Before discussing what kind of information one can
glean about the electron-phonon system in a high-fre-
quency cyclotron resonance experiment, a few general
facts about such a system will first be reviewed.

As is well known, electron-phonon interactions result
in both renormalization and lifetime effects on an elec-
tron. These inductive and resistive aspects of EPI are
connected by the Kronig-Kramers relations and both
are fully described by the complex electron self-energy
part.

Low-frequency (w<wp, the Debye frequency) cyclo-
tron resonance,® de Haas-van Alphen (dHvA),* and
low-temperature specific-heat’ experiments on the alkali
metals all give about the same effective mass m* for
each metal. This effective mass is about 20-30%, higher
than the band-theory calculation.® It is evident that
correlation effects due to EPI and Coulomb? interactions
modify the electron-excitation spectrum. Optical experi-
ments (w>>wp) give values of the optical mass® m,p in
agreement with the bare-band mass.

From the theoretical point of view, Nakajima and

3C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).

4 D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964).

5D. L. Martin, Phys. Rev. 124, 438 (1961); Proc. Roy. Soc.
(London) A263, 378 (1961); and Phys. Rev. 139, A150 (1965);
W. H. Lien and N. F. Phillips, in Proceedings of the Seventh Inter-
national Conference on Low-Temperature Physics (University of
Tfoié)nftoﬁPress, Toronto, 1960), p. 675. See footnote 27, p. 2535,
of Ref. 6.

8F. S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962).

7 Coulomb effects are believed to be small; see T. M. Rice,
Ann. Phys. (N.Y.) 31, 100 (1965), especially Table I, p. 107.

8 M. H. Cohen, Phil. Mag. 3, 762 (1958).
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Watabe? have calculated the electron self-energy in a
low-frequency approximation and have shown that the
cyclotron mass, as modified by EPI, is essentially the
same as the thermal mass. For very high frequencies,
w>wp, it is shown in H. Sec. V.B, that the mass in the
conductivity is m,, independent of EPI effects.

Thus, the electron mass is frequency-dependent and
one can anticipate dispersion effects in the conductivity
for frequencies in the neighborhood of the Debye fre-
quency, w~wp. The collision rate due to EPI will also
be frequency-dependent. A simple physical picture ex-
plains the frequency dependence of the collision rate.
When the system is energized by an external electro-
magnetic field, electron-hole pairs are created. The pairs
then undergo real collisions with phonons. The greater
the separation of the pairs and therefore the greater the
distance from the Fermi level the more phonon modes
they sample (up to the order of the Debye cutoff);
hence, increasing the relaxation rate, even in an ideal
metal at the absolute zero of temperature. The func-
tional form of the frequency dependence is determined
by the integral of the effective electron-phonon coupling
function times the phonon density of states.

The relative contributions of EPI and Coulomb
(Fermi liquid effects) to m* is not completely clear. The
above discussed energy dependence of the real and
imaginary parts of the electron self-energy, in the Debye
frequency region, is, however, unique to EPI. It is
therefore of considerable physical interest to determine
experimentally measurable effects of the energy depend-
ence of the electron self-energy in the transitional
region w~wp.

Cyclotron resonance at w~wp is well suited for the
study of these effects!® for three basic reasons: (1) The
magnetic field introduces a discreteness into the elec-
tron-energy spectrum. For fields such that w.Zwp, the
electromagnetic field can induce transitions between
discrete states (near the Fermi level) with energy differ-
ences of the order of the Debye energy. Such states differ
significantly in their interaction with phonons; and the
resonant absorption from the electromagnetic field is a
sensitive function of the energy shifts, due to EPI, of
these discrete states. (2) Under the cyclotron-resonance
conditions outlined above it can be seen that a select
group of electrons make the dominant contribution to
the current. It is those electrons which do not collide
with the surface and move parallel to the surface in the
skin layer. The details of boundary scattering in the
solution of the quasiclassical transport equation? are,
therefore, not important. (3) The magnetic fields to be
used in the proposed experiment are available at present.

A few numerical estimates should be made to clarify

¢ S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
29, 341 (1963); 30, 772 (1963). The two papers will be referred to
as Refs. 9(1) and 9(2), respectively.

19 Another experiment suggested by M. Fowler and R. E.
Prange, Physics 6, 315 (1965), is the field and temperature de-
pendence of the amplitude of high-field dHvA oscillations.
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the last point. In the alkali metals the energy bands are
nearly spherical (for potassium®# to within less than
1.09, and for cesium?!! to within less than 5.09,). Since
the present calculation assumes spherical bands, the
discussion will center on these metals. The Debye fre-
quencies of K and Cs are 1.18X10% sec™! and 5.5X 1012
sec™!, respectively, corresponding to fields of 6.7X10° G
and 3.12X 105 G. These are large magnetic fields; how-
ever, in cyclotron resonance one can use subharmonics
of the electromagnetic frequency (ten or more can
usually be observed?®). For Cs the second subharmonic
of w~wp can be obtained with the presently available
magnetic fields.

One can expect the EPI effects in cyclotron resonance
to be: (1) A frequency-dependent resonance-line shift.
(2) A frequency-dependent collision rate resulting in
increased attenuation of the signal at higher frequencies.
Both are due to the characteristic energy dependence of
the EPI contribution to the electron self-energy part.

Central to the theoretical analysis of EPI in normal
metals is the existence of the small parameter c,/vr
(co=the velocity of sound). This fact coupled to the
assumption of slow momentum variation of the electron
self-energy, which can be justified self-consistently (H.
Sec. II), permits a classification of EPI effects and a
solution of the problem.!? In Sec. II the electron self-
energy in the presence of a magnetic field is calculated
and the main result is to establish the slow-momentum
dependence. The oscillatory part of the self-energy is
calculated in Appendix I for a completeness of the dis-
cussion; the oscillatory part is not used in the con-
ductivity. In Sec. III the conductivity is calculated in
the lowest order skeleton diagram. In both of these
sections use is made of the “temperature” diagram
technique, as presented in Luttinger and Ward.!* The
application of this technique to the calculation of the
velocity-correlation function is established in H. Ap-
pendix IT and the relation between this function and the
conductivity, due originally to Kubo,! is reviewed in
H. Appendix I. Section IV is concerned with the calcu-
lation of the surface impedance and a presentation of
numerical results.

I. BASIC PRELIMINARIES

As stated in the Introduction, the present aim is to
extend some aspects of the theory of transport phe-
nomena in an electron-phonon gas! to include the pres-
ence of a magnetic field. Therefore, some basic pre-
liminaries, as they differ in the magnetic-field case, will
now be discussed.

11 K. Okumura and I. M. Templeton (preliminary dHvA experi-
mental result).

12 The pioneer effort in the solution of this problem is in A.
Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) [English
transl.: Soviet Phys.—JETP 7, 996 (1958)]. See footnote 23 of H.

12 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
To be referred to as LW.

1 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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The Frohlich Hamiltonian to describe the electro-
magnetic field-free electron-phonon system is

H=Z Ega;(h‘*“z ,’le(o)thbQ
¢ Q

+ ZQ V,/,(0)(Q)a¢'fa,(bo+b_q*). (1-1)

t,t’,

The first term of (1.1) is the Hamiltonian of a system
of independent Bloch electrons in a static magnetic
field. a.!, a, are the usual fermion creation and annihila-
tion operators for the single-particle states of quantum
number ¢ and of energy €. The magnetic field is chosen
to be in the z direction and described by a vector po-
tential in the Landau gauge,

Ao,,,=Hox; (12)

the subscript zero is used to distinguish this vector
potential from that of the electromagnetic field. Also,
as stated in the Introduction, the present calculation is
restricted to the consideration of spherical energy bands.
The single-particle states can therefore be taken in the
Landau representation with a set of quantum numbers

1= {nhyk.) (1.32)
and an energy

&= (n+3) w4 A%,/ 2m.

The mass m is the bare-band mass and #» is the Landau
quantum number.

The spin variables of the electrons are suppressed, as
all the interactions being considered conserve individual
spin. An account of this degree of freedom is taken, by
the insertion of a factor of 2, in the final expression for
the conductivity.

The second term of (1.1) is the Hamiltonian for a
system of noninteracting phonons; wq(® is the frequency
for the lattice vibration mode of wave vector Q% and
bq', bo are the boson creation and annihilation operators
for this mode. The remaining term in (1.1) represents
the electron-phonon interaction, typically describing
transitions of an electron from state ! to # with the
annihilation of a phonon of wave vector Q, or the crea-
tion of one of —Q. The matrix element for both transi-
tions is denoted by V.. @(Q)={|V®(Q)|{). The
matrix element of V(Q) in a plane-wave (or Bloch)
basis is often approximated by!®

Veren@=(p+Q|V®(Q)[p)
=iC[Q| (#/2NMw®)*'2,

(1.3b)

(1.4)

15Q will be understood to also incorporate the polarization
indices of the vibration mode.

16 A. H. Wilson, Theory of Metals (Cambridge University Press,
Cambridge, 1953), 2nd ed., p. 257. The electrons interacting with
the EPI of (1.4) do not couple to transverse phonons. When
umklapp processes are included the transverse modes can couple
to the electrons, as #(p—p’), the electron momentum transfer,
need not be parallel to #Q [cf. J. M. Ziman, Electrons and Phonons
(Oxford University Press, New York, 1960), Chap. V]. Some
mention of transverse modes will be included in Sec. IV.
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where M is the atomic mass, N the number of atoms in
the sample, and C is the phenomenological Sommerfeld-
Wilson interaction constant.

The right-hand side of (1.4) shall be denoted by V¢©®;
using this expression the matrix element in the Landau
representation can be written as

Ve @(Q)=Vo® X (n'k/k. | p+Q)p|nkk.), (1.5)
P
where

2m \ /2
<p' ”kukz> = Ll/z(a:;) OkypyOksps

ihpaky

Xexpl:—
Hn(p)e_lﬂ/z

(n127/ 7)t/2

J@.(Lp,), (L6)

mw.

®n(p)= (L.7)

is the harmonic-oscillator wave function, L= (#ic/eH)/?
is the magnetic length, and @ is the volume of the sys-
tem. After summing over p,, p. and converting the p,
sum into an integral, (1.5) can be written as?

Vei®(Q)=Vo®bk, ky40,0k kotas

ih hQ,?
Xexp {_(szf}'%QzQu) l ei("_"l)'pgnn'( ) , (1.8)

mw. MW

where, for n>n’,

n' 112
Hnn'(-\’)=l:—-:| €2 nmn 2L n=n () (1.9)

n!

Q:+1Q,= (1'%, and L,™(x) is the associated Laguerre
polynomial.

The superscript (0) on the phonon frequencies and
the interaction matrix element, designates the fact that
they are “unrenormalized.” A discussion of phonon re-
normalization in the magnetic field case is referred to
Appendix III; the results of this appendix will be in-
cluded in the next section.

As in H, the starting point of the treatment is the
relationship between the (wave-vector- and frequency-
dependent) conductivity tensor’® and the thermody-
namic velocity-correlation function of the system. This
relationship reads?®

02y (qw)=— (ne?/imw)d,+ (e*/imQ) Fay(w+is), (1.10)

!7 Bateman Manuscript Project, Integral Transforms edited by
A. Erdélyi (McGraw-Hill Book Company, Inc., New York, 1954),
Vol. II, p. 292, formula 30. Note: He,,,(vfx) =Hn(x)/(2m)1/2, For
an interesting application of 9., in another physical context see
g. C%rruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965),

ec. V.

18 In the case of cyclotron resonance, the conductivity tensor is
not directly accessible to experimental measurement. However,
as shown in Sec. IV [cf. Eq. (4.7)], it is related in a rather simple
way }o the experimentally observable surface impedance of the
sample.

1 For a derivation of Eq. (1.10), see H. Appendix I. or J. M.
Luttinger and P. Nozieres, Phys. Rev. 127, 1431 (1962),
Appendix A.
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where # is the density of conduction electrons, q, w are
the wave vector and frequency of an arbitrary space-
time component of the electromagnetic field, @ is the
volume of the system, and F(w4s) (with s an infinitesi-
mally small positive quantity) is the analytical continu-
ation (regular throughout the complex plane, with the
exception of a branch cut on the real axis) of the function

1 r8 B
S:,;y(w,.)E— / duzf duy e"”'<”2‘“‘)F,,,(u2,u1) , (111)
ﬁ 0 ()

where F,,(u2,41), the thermodynamic velocity-correla-

tion function, is given by

Foy(uo,ur) = (1/Zg) Tr{Te P H-sN)guty (—q)
XewHeuly (q)e~wHY  (1.12)

In (1.12) w,=2mir/B (with r integral), Z¢ is the grand

partition function, 8=1/kT, T is Dyson’s time-ordering

operator, and?®

V(@) =2 |velNalar, (1.13)

where

1 h e
<l'|Vqlt)E/\Ilu*(r)——{ei‘”[~ grad,-—A(r)]
2m 7 ¢

/]
+|:j grad,—fA(r):le"q"} ¥, (r)d%r, (1.14)
i c

1 x—hk,/mo,
o (—)
QI/SLIIZ L

Xexp{i(k,y+k.2)}.

As will be seen more explicitly in Sec. IV, the
geometry appropriate to the typical cyclotron-resonance
experiment is such that the electromagnetic field propa-
gates along, say, the x axis, perpendicular to the mag-
netic field (i.e., the z axis) whereas the electric polariza-
tion is chosen along the third perpendicular direction,

with

V(1) =Vpp,1,(r) =

(1.15)
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i.e., the y axis. It then follows that only the y component
of (1.14) is needed. Employing the same manipulations
as for the EPI matrix element, one has

G l Vq,y I ty= Okyky Ok ke

d
X exp{ihqky/mwcyi——9 nn (hq:2/ 2ma,) .
99

(1.16)

The evaluation of F.y(w+is) by thermodynamic
many-body perturbation theory is carried out in close
analogy with the nonmagnetic case. In particular, the
rules given at the end of H. Sec. I are, for the most part,
immediately applicable. The only changes which are
required are those associated with the replacement of
plane waves by the Landau states, ¥, (r) [given by
(1.15)], as the fundamental one-electron representation.
Thus, in particular, for a fermion line labeled by #,
ky, k., {1, one introduces a factor

S OR)=Snr, b, V€)= (C1—€mr,)"t,  (1.17)

where

Si=p+ Q2+ 1)7i/8, (1.18)

and where e, is given by (1.3b). Moreover, for each
EPI vertex, one introduces the matrix element V,,©(Q)
=Varky by nk,k,'”, given by (1.8) and (1.9), in place of
the usual EPI matrix element, Vi 11 @8k 1+, appro-
priate to the nonmagnetic case (where, cf. H. 1.3, k’ and
k are three-dimensional wave vectors). Finally, for each
external field (EF) vertex,?! one introduces the matrix
element (¢'|vyq,42), given explicitly by (1.16), in place
of the vector v(ziw)/20k,k+q, appearing in H. p. 418,
rules (E) and (F).

Added note: In both the EPI and EF matrix elements
[cf. (1.8) and (1.16)], the exact expression (1.9) for 9,.-
has limited use in detailed calculations. Titeica?? gener-
ated a differential equation for 9,., and solved the
equation with the WKB method. The WKB solution
for 9nn, which is valid for large quantum numbers
n, n', is

. 2cos[/ [(n4+n'+1)— (n—n')?/a'*—a'?/4 ]V %da’ — /4

a? 27Y
(3)L]

2 T
where aq is the lower root of the expression in the square
bracket. The approximate expression for 9,, in (1.19)
will be used throughout the present paper. It will be
seen in this section and Sec. III that significant values
for the first term (#»+#»'4-1) in the square bracket of
(1.20) are ~Ep/fiw>>>1. When a?=#0,%/mw, as in the
EPI matrix element: a?~#Qmn?/mw.~ Er/#w,, where Op
is the Debye maximum wave vector [Qn=(2/2,)"3kp,
z,=number of valence electrons per atom], and n—n’,

2 Equations (1.13) and (1.14) constitute the analog of H.
(1.1(8) qt)inﬁidentally the right-hand side of H. (1.8) should read
Cyk(— q Eal

(V@) (n-+1'+1)— (1= )3/t —a?/ 4]

) (1.19)

the change in # due to phonon scattering, can vary up to
9pQm/w.. When a?=%g.2/mw, as in the EF matrix

*! An nth-order diagram for § has n—2 EPT vertices (scattering
of an electron by absorption or emission of a phonon) and two
EF vertices (absorption/emission of momentum from/to the
external electromagnetic field by an electron). See H. p. 417.

22 S, Titeica, Ann. Phys. (Leipzig) 22, 128 (1935). In Titeica’s
paper an expression for |4,/ |2 can be found in Eq. (12) on p. 139.
The cosine factor in Eq. (1.19) of the present paper is chosen to
agree with the correct asymptotic formula for the Laguerre
polynomial in terms of Bessel functions [see L. Slater, Confluent
Hypergeometric Functions (Cambridge University Press, Cam-
bridge, 1960), Secs. 5.5 and 4.4.3]. In both the EPI and EF cases,
al /4az_ term has initially been dropped from the square bracket
expression in (1.19) (see text immediately below).
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element a?~(q./kr)2Er/fiw&n+n'+1, and n—n’, the
change in # due to the electromagnetic field can vary
up to vpg./w.=R,/&>1. In both cases, therefore,
(n—n")2/a? can vary up to Er/#w.. In the EPI case all
the expressions in the square bracket in (1.19) are com-
parable and all must be retained. In using (1.19) for the
EPI matrix element, integrations will be restricted to
non-negative values of the square bracket.

In the EF case, the a?/4 term can be neglected as
compared to n+n'+1. The resulting expression, after
performing the o integration, can be seen to be the
asymptotic form for J,(z), the Bessel function of order
v, when® y<z. Thus, for the EF case

gnn’ (hQIZ/ZMC)
2T nw (L (0" +1)hg.% M ]?) .

II. SELF-ENERGY PARTS

(1.20)

It is important to note that, with the changes in the
basic rules described towards the end of the previous
section, only the ¥ and z components of the single-
particle wave vector are conserved at each EPI vertex.
Under these circumstances, it is not @ priori guaranteed
that the exact electron (phonon) propagator—obtained
as described, e.g., in H. Sec. II by summing over all
possible insertions of electron (phonon) self-energy parts
into an electron (phonon) line—is diagonal in the single-
particle quantum numbers, », ky, k. (Qz,0,,0:).2 How-
ever, as shown in Appendix IV, although the Hamil-
tonian of the system is not invariant with respect to pure
translations,? it does exhibit an invariance with respect
to translation, followed by an appropriate gauge trans-
formation [cf. Eqs. (AIV.6) and (AIV.10) of Appendix
IV]. With the use of this symmetry property, it is shown
in Appendix IV that (a) the exact phonon propagator
is diagonal?® in Q (as in the nonmagnetic case), and
(b) with the added assumption of invariance of the total
Hamiltonian with respect to rotations about an axis
parallel to the magnetic field—this property holds for
the special case of the spherical model, treated in this
paper—the electron propagator is also diagonal in the

23 G. N. Watson, 4 Treatise in the Theory of Bessel Functions
(Cambridge University Press, New York, 1945), 2nd ed., Eq. (1)
on p. 234.

24 As discussed in H. Sec. II, when exact propagators are used
in the place of free propagators, the only §.,(w,) diagrams which
are to be summed are skeleton diagrams, i.e., diagrams which are
devoid of self-energy parts. An electron (phonon) self-energy part
is any component of a diagram which does not contain EF vertices
and which can be separated from the remainder of the diagram
by cutting two fermion (phonon) lines. As in H., one deals only
with proper electron (phonon) self-energy parts—diagrammatic
entities which cannot be further subdivided by the severing of a
single electron (phonon) line.

2 Such invariance, when present (as in the nonmagnetic case)
leads directly to the diagonality of electron and phonon propa-
gators in the single-particle quantum numbers, k., k,, k. and
Qz, Qy, Q., respectively.

26 Jt should be mentioned in passing that a similar property,
the diagonality of the conductivity tensor ¢, in the external
wave-vector q—which is also not a priori obvious in the absence
of pure translational invariance—is established in Appendix IV.

SCHER AND T. HOLSTEIN

148

relevant single-particle quantum numbers (», &, and &.).
From these results, it follows immediately that the
electron and phonon self-energy parts, given generally
by21
GE)=[SOE) I —-[SC) T, (2.1)

P(&n) =[DO(&n) 11— [D(Em) I (2.2)

are also diagonal in (n,k,,k.;) and (Q.,Q,,Q0.), respec-
tively. Thus,

(1Snln=

and

— (2.3)
1= e—Gi()

2o
(Q'|D(£) | Q)=bgrq ’
h2wo @2 — £,2— 2hwq @ Po(£m)

(2.4)

where G(¢1) and Pq(&n) are the diagonal components of
electron and phonon self-energy parts—i.e., diagonal in
their respective single-particle quantum numbers.

The dominant contribution to the phonon self-energy
part is evaluated in Appendix ITI. Apart from a negli-
gibly small oscillatory part, the results are identical to
those in H. Appendix III. As in that work, it is con-
venient to express these results in terms of a renormali-
zation recipe. This recipe reads: (1) Replace #%we‘®
by fiwe;

(fiwg) = (fiwg®)*—2hwq @ Po(0)+Aq?,

where?®

hwg @

AQ=lfirr3 ImPo(£+4-0)

= hwem Zk [Vire!®8(ex—p)o(er—erso) . (2.5)

(ex=Bloch energy of an electron of wave vector £ in the
absence of the magnetic field.) (2) Replace V@ by Vo;

Vo=Vo®(we®/we)!*=iC| Q| (#/2NMwq)'2.  (2.6)

[ This replacement has already been inserted into (2.5).]
(3) The exact phonon propagator associated with a
phonon line is

© 28 pq(&)dt
De(tn)= / pe
0

gr—g,2

2.7)

where the spectral density function is equal to

A 1
po(é)=—3[ — :I . (2.8
T L(Awg?—£)2+ A%  (hwo+£)2+Ag?

*" These equations constitute matrix generalizations of H. (2.2a)
and H. (2.2b). In particular, in the representation of the single-
particle quantum numbers [.S© ({;) ] and [ D (£,,) ]! symbolize
the diagonal matrices (§1—e)8v: and [A2%0o 02—, 1600/ 2700 ©,
respectively. Similarly, [ S(¢:) ] and [D(m) ]! represent matrices
whose elements are 8./Snk, i, (1) and ¢-9/De(£m), respectively.

% wq is understood to be the observed phonon frequency. An
explicit expression for Po(0) will not be needed in this paper.
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t!ﬁ, n,kg.kzycl,
1 \\\\ ‘\\\\
\‘ Fi16.2. Lowest order skele- \
. . \ ton diagram for the proper = ki-Q 1Q,é
Fic. 1. General diagram _ \ Quém electron self-energy part. n,ky - Qy, ] m
for proper electron self-energy o fm H kz-Qz, Y,
part. ! & - ém -
3 L
] n,Ky,Kz, &y
t.q multiply by the exact pg(£), (2.8), and integrate ¢ (from

zero to infinity).?
It is shown on H. p. 510 that to within a good The most general diagram for the electron proper
approximation self-energy matrix element, G¢(¢;), is shown in Fig. 1.
The shaded triangle in Fig. 1 represents the full EPI
Pe(O)=8(fiwe—1), 29 vertex part. Migdal’s theorem!? states that to within
and therefore zeroth order in ¢,/vr the full EPI vertex part can be
e 1 replacgd by th.e elerflentary EPI vertex, Vi.(Q). Thjs
Do(tn) = = ,  (2.10) resultis established in the magnetic case, modulo oscil-
(hw@)?—En?  + hwezin latory parts, in Appendix III. It will, thus, suffice to
now calculate the contribution to the electron proper
characteristic of a free boson propagator. It is a simple self-energy part, by the lowest order skeleton diagram

matter to generalize final expressions when (2.10) is shown in Fig. 2.

used. Replace %wq by a variable phonon energy ¢, The contribution of this diagram is

1 [Va(Q)?
Gar(C)== 2 .
B mQutmk [§1— En— 61— G, k0. (§1— Em) JL Hwot ]
Although Gai,(¢:) is defined at isolated points in the complex plane, the analytical continuation® { — &40

to the real { axis will be of ultimate physical interest. The notation 410 is used to take cognizance of the dis-
continuity?®! of the self-energy on the real axis; specifically,

(2.11)

Gnkz(gzi:'iO)=Mnkz(8) ?iI‘,.;,z(S), (212)

where M ,x,(€) and T'nz,(8) are real and T'n,(8)>0. The self-energy is regular everywhere in the cut complex plane.
In transforming the sum over &, in (2.11) into an integral over a suitable contour in the complex £ plane, the

£ plane must be cut along the discontinuity of G k,—q,, i-€., Im((¢—{¢;)=0. With the introduction of the function

[1—e¥#¢]1) which has simple poles at £= ¢, with residues =871, the self-energy (2.11) can be written as

. 1 [ Va(Q)|H{[1—eTP ]+ No)dg
('nk,(g‘l) =— Z + ’
2ri 5.Qut  Jry [$1— Em— 6i— G k0, (§1— &) J[ o £]

(2.13)

where No=[¢f*ve¢—17is the contribution from the poles of the phonon propagator and the contour I'y goes from
— o to + just below the line Im(¢—¢7)=0 and from 4« to — just above. To regain the original sum over
£, the contour T’ need just be transformed into a contour encircling the poles of [1— e8¢, Now t=¢;—x+10 is

substituted for the integrations above and below the line Im({—¢;)=0 and use is made of e81= —¢=bk_ to rewrite
(2.13) as
1 = dx| Va(Q)|2f P (x) 1 1
Gnk,(i'l)=~—_ > I-L- —— ], (2.14)
2miaQx ),  (Ci—xkhwg) *—ei—Gi k-0, (¥—10) x— e— G 1,0, (x+10)

where [ (x)=[1+¢*#“—»T]1 the Fermi occupancy (vacancy) function. The term Ng has been dropped from
the integrand of (2.14) in accordance with the conditions of this paper,

) K T< oo~ Fio~k® . (2.15)
2 The effect of the corrections to (2.9) on the electron self-energy is discussed on H. pp. 435-436.

% For a discussion of the uniqueness of the analytical continuation from isolated points in the complex plane, see N. D. Mermi d
G. Baym, J. Math. Phys. 2, 236 (1961). pesp ) rn an

3 J. M. Luttinger, Phys. Rev. 121, 942 (1961).
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The algebraic sum of the two expressions in the square bracket of (2.14) has the familiar form of a Lorentzian
resonance function of width ~T'; x,_o,(x), centered at x— e;— M 4,1,—,(*)=0. A considerable simplification to the
problem can be achieved by replacing this resonance function by a delta function, 8(x— ei— M 4,x,—¢,(¥)), plus
higher corrections. In order to use such an approximation in a subsequent integration, the rest of the integrand
must be slowly varying over the width of the resonance, T'; r,—q,(*). For the conditions stated in (2.15), it is readily
seen that f™®(x) varies by an order of itself in an interval |x—p|<<k®. Now T'; x,—g,(x) will be shown to be a
measure of the EPI coupling and for the case of interest here, that of strong coupling, I'(u+x®)~«®. The function
f®(x) cannot, therefore, be considered as [cf. (2.29)] slowly varying over an interval of the order of a typical
value of I'(x).

To justify the delta-function approximation, attention is now focused on the 7, Q sums. Inspection® of Eq. (1.20)
shows that when a?=#%Q,%/mw., a change AQ.~mw./(#Q1/m)~mw./vr causes a complete oscillation of the cosine
phase factor. Since #w.~I'(u+x®) [from (2.15)], the phase factor in (1.20) cannot be considered as slowly varying
over an interval of Q associated with the width of the resonance, i.e., AQ~T'(x)/%vr. The EPI matrix element in
(2.14) however, enters as an absolute square and using cos?(§—m/4)=3%+73 sin26, the oscillating part can be
separated out. The oscillating part of the EPI matrix element can be shown to contribute to order #w./Er (K1) by
calculations similar to those carried out in Appendix I. The 77 sum itself will give rise to oscillatory terms which
cannot be considered as slowly varying over an interval of the order of Ai~T/%w,. All the oscillatory terms are
due to the essentially new feature of the present problem, that of the discreteness of the electron energy levels. The
oscillatory part of the 77 sum is most conveniently treated by the use of the Poisson sum rule.?¥ With the method
of the Poisson sum rule the expression (2.14) for the self-energy can now be written

Gult)=— T 5 (= / "4 / ) dx| V| tetritnf ()
T amian 0 ! —o TL(nF3F+0) (0.2 /M) — (n45—n)2— (hQ.2/ 2me o) M3 (§1— 2+ heo.)

1 1
x[ :l , (2.16)
r—nhw,— (hz/Zm) (k— 02)2"‘ Gn~%.kz~Qz(x_ i0) x— nhw.— (hQ/Zm) (kz— QZ)Z_‘ Gn—%.kz—Qz(x"‘iO)

where 7143 has been replaced by # and the oscillatory part of the EPI matrix element is neglected for the reasons
discussed above. The oscillatory part of the self-energy, the /540 terms, will be treated in detail in Appendix I.
A treatment analogous to that of the zero-magnetic field case in H. will now be considered for the /=0 term. It
can be seen that for /=0 the terms in the integrand manifest small changes relative to their typical values (Q~Qum,
ei~Ep) for intervals corresponding to An~T/#%w, and AQ~T/#vp. In particular, for a term that is not included
in the discussion in H. Appendix IIT

Fa(n,00)=L(e+3+n)2Q:%/ mwc— (n+5—n)>— (4Q1%/ 2mew,) 12 (2.17)
one has
3 InF,(n,0.) r
An<——————>~—<<1 s (2.18)
an Ep

for An~T/%we, n+5~ Ep/#fiwe, Qu~Qm. The self-energy parts in the square bracket in (2.16) will be assumed to
have a weak dependence on 7, Q.. This weak dependence will be justified a posteriori. The delta-function approxi-
mation can now be used and one has

dx | Vel 2f ™ (2)8(x— nhw.— (42/2m)(k.— Q.)?)
[ (n4-3+0) Q.2 mee) — (n+1— 1) 2— (hQ12/ 2mew.) T ]V2(¢1— w2k heog)

The M ,4,k,—q.(x) term has been dropped from the argument of the delta-function as it will be shown that M (x)<< E
[cf. (2.31)]. Including M (x) would actually be inconsistent with the delta-function approximation. The higher
order corrections to this approximation will be discussed in more detail in the next section (cf. footnote 39).

The x integration is now carried out, and after making the continuation {;— §—1i0, the imaginary part of
(2.19), T'1,(8), is considered,

Gont)=3 [ dn / (2.19)
Q.x /o —o0

dn | V|28 hwe)d(8= hwq—nhwe— (% 2m)(k.—(Q.)?)
T (8)=m 2 . (2.20)
Q.+ [ (n+3+n) (A0 /mw.) — (n+1— ) 2— (hQ.2/ 2me ) ]V/?

32 The integral in the cosine factor of (1.20) contributes a term

4w +1)a2— (n—n') —at /412,

3;61;. M. Morse and H. Feshbach, Methods of Theoretical Plhysics (McGraw-Hill Book Company, Inc., New York, 1953), Part I,
p. 466.
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The % integration is performed and the Q sum is converted into an integral with the result

Qm B
4Q Q*| V| 218 husg) / du [~ ap+but-c]12, (2.21)

a

Q
I‘nkz(g) = Z
472 &

0

where u is the cosine of the polar angle of Q. In the integral over p in (2.21), the limits @, 8 are such as to keep the
radicand nonnegative, and

2O\ 2 2me,
a= (——) , (2.22)
m h?
hQk.[ h*(Q)?
b=————[ +e— 8‘J , (2.23)
m L m

h2Q2 h2kz2 hQ2 (h2Q2

C=(éz+8) > _(éz‘-(g)z. (2.24)

m m m 2m
As before, ¢,= (n+%)Aw,~+#%k.2/2m. The conditions of primary interest in the present calculation are: e,~ Ep.
If ¢>0, then p=0is included in the range a<u<B and the u integration is simply performed yielding

. B2ON? 2me 12
:,r[<_> h?] , (2.25)
\a m

For sufficiently large k. and/or Q, then ¢<0 and the  integral is separated into two integrals, one integrated over
positive values of p and the other over negative values of u. One or the other integral separately contributes the
value in (2.25) according to the algebraic sign of k.. The geometric picture of the limitations on the Q integrals will
be included in Appendix I. Finally, one has

@ | Vol 2mQ dQ fF)(Ehwq)
Pu(8)="— 27 : (2.26)
dnrx Joo 2L2m/ W) (n+3)hetk 2]

which is the zero-magnetic-field result, except & has been replaced by [2m/#*(n+3)#%w.+k.2]'/2 The assumption
of slow variation in %, k, can now be justified a posteriori, i.e.,

OInl,(8) hw,

An ~—An<1 (2.27)
an €

for An~T'/#w, and e~ Ep.

Similar results obtain for M.,(8), i.e., M, (8) is the zero-magnetic-field result with & replaced by
L@2m/7*) (n+3)hw.+ k2] In particular the slow variation of M (8) with #, . as is the case for T'(§). With the
use of (2.6) for V4 and the Debye spectrum we=c,|Q|, the final results for the real and imaginary parts of the
self-energy are [cf. H. Egs. (2.31), (2.33), and (2.41)]:

kp TP C [ 8—u[\?
Cor,(8)= —(—~) u®< > (2.28)
C2m/h2)(n+1) ho+k212 8\ 2/ Mc2Ep Pe)

for |6—u| <kO,

T (8) b T(”% T Y e
e T L 2 W) (D) ot 2T 8 2> MeiEy (2.29)

for [6—u|>«®, and

1 kr [\
Mo (8)=- -) o)
8 [(2m/ 1) (n4+-Dho k212N 2/ Mc2Er

e R L

K
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k-q
Le-ha, k,be

+ + + k,'-q KL’ I'16. 5. Typical ladder dia-
Lot ’ gram. Shaded box represents an
arbitrary number of phonon

lines.

I16. 3. Ladder diagram contributions to the
velocity-correlation function.
q,hw,

In Sec. IV the values of the EPI coupling constant
C?/Mc,2Er will be discussed, but it suffices to say now
that for the alkali metals it is of order unity. For
C2?/Mc,2Ep~1, it can be seen from (2.27) and (2.28)
that M (u+xO)~T (u+«®)~«kO and therefore

M (u+«8)/Ep~T(u+«0)/EprKL1,

a condition that has already been anticipated in (2.19).

The energy & variation of M (8) and T'(8) is not of the
slowly varying type. In fact, the variation in & of M(§)
and T'(8) is such that these quantities change by an
order of themselves in the range | §—pu| Sk® (cf. Fig. 7).
This rapid energy variation over the range |§—p| <x©
is unique to the EPI contribution to the electron self-
energy. The main concern of this paper is to exhibit
effects of this energy variation on typical transport co-
efficients, in particular, the bulk conductivity and the
surface resistance.

(2.31)

III. BULK CONDUCTIVITY

In this section, the contributions of the principal
skeleton diagrams of F,,(w-+70)—and hence, by virtue
of (1.10), to the conductivity tensor oy,(g,w)—will be
evaluated.

In the zero magnetic field case this analysis is given
in H. Secs. ITI, IV, and H. Appendices IV, V. The so-
called “ladder” diagrams (illustrated in Fig. 3) were
shown to be the diagrams contributing to zeroth order in
the small parameter %#/7Er~c,/vr (where 7 is the life-
time of an electron with an energy measured from the
Fermi level of the Debye energy and ¢, is the velocity
of sound).

The complete summation of the ladder diagrams de-
picted in Fig. 3 is equivalent to solving a quantal
transport equation for a suitably defined “electron-
distribution function” (H. Sec. III, p. 451, 452). To
account for deviations from equilibrium of the phonon

Fi1G. 4. Phonon-drag contributions to
the velocity correlation function.

system the above ladder diagrams must be appended
by a class of “multiladder” diagrams, in which the
external wave vector ¢ and frequency w are “carried” by
phonon lines as well as electron lines. A generic type of
the new class of diagrams is shown in Fig. 4.

The summation of both types of ladder diagramsis
equivalent to solving two coupled transport equations
for both the electron and phonon ““distribution function”
(H. Sec. IV, p. 465, 466). For the conditions of interest
in this paper, namely, T=0, and w~wp~T(u+%w)/4#,
these extra ‘“phonon-drag” contributions are small in
the ratio ¢,/vr to the straightforward ladder diagrams
of Fig. 3 (H. Sec. IV, pp. 467, 468). No further discussion
of phonon-drag effects (i.e., the multiladder diagrams)
will be necessary.

Before getting into detailed calculations, it is desirable
to discuss qualitatively the contribution of the nth
“rung” ladder diagrams relative to the basic ‘“zero-
rung” contribution (first diagram of Fig. 3).

In the zero-magnetic-field case the structure of the
ladder diagrams and the facts of momentum (single-
particle variables) and “energy” conservation at every
vertex® necessitates their inclusion to all orders of EPI
vertices. With each addition of a phonon “rung,” two
EPI vertices (a factor of | Vi |?) and a propagator pair
appear (see the typical ladder diagram in Fig. 5).

The propagator pairs between rungs are such that
the difference between their momentum (k) variables
and the “energy” ({;) variables are maintained to be
g, fiw,, respectively. After the analytical continuations
¢1— 8410, w, — w410, and under the conditions

q<<kr,
<l Ep,

G.1)
(3.2)

it is readily seen that the denominators of two such
propagators become simultaneously small in the neigh-
borhood of e,=&. Because of the “overlapping reso-
nances” of the propagator pair their contribution is
1/hw, 1/#vi-q or 1/Tx(8), whichever is the smallest
(H. Sec. III, p. 445). Assuming the smallest is of the
order 1/T4(8), then the total factor due to the extra
rung is of the order | Vi |2%/T«(8); this is independent
of the EPI coupling constant [from an inspection of

# It may be recalled that the conservation of single-particle
variables at every vertex is no longer completely true in the mag-
netic field case; i.e., #, the Landau quantum number, is not con-
served. This has as its consequence the neglect of higher order

ladder diagrams in the cyclotron resonance calculation; see the
following text.
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Eq. (2.26)]. The sum over all ladder diagrams is thus,
imperative, for a proper evaluation of F(w,).

However, even in the zero-magnetic-field case
under the conditions of the anomalous skin effect,
#vpg>Trp(u+k0) or [using Tirp(u+xB®)~%/r and
g~1/8] I>>8, the contribution of the propagator pair is
now 1/%vpq and the additional factor due to a phonon
rung is ~T.(u+k0®)/%vrgK1. Moreover, even in the
lowest order diagram (no rungs) the self-energy parts in
the propagators can be neglected as compared to #vy-q.
1t is, therefore, concluded that EPI effects are of negli-
gible significance in the extreme anomalous skin-effect
regime [see H. p. 454, footnote 68 and Ref. 9(1)].

In the present case® (n—n)hw. (n—n'=integer and
is the difference of the Landau quantum numbers of the
propagator pair) takes the place of #v,-q. As will be
shown in this section the effective range of (n—n’)
is vpq/w,.

In the lowest order skeleton diagram, w (or w,) can
be so adjusted that w— (n—n")w,0. The self-energy
parts in the propagator denominators are not negligible
for such values of w,w, In other words, one has the
possibility for resonance, i.e., the domination of a single
term in the discrete summation over the range of n—n'.
If, now, the resonant condition, w— (n—n")w 20 were
capable of being maintained at one and the same w,w.
for all the propagator pairs of #th-rung ladder diagrams,

1
Syuu(‘—"r) =—
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F1G. 6. The lowest order skele- nlk,,k, n,ky K,
ton diagram for the velocity-cor-
relation function in the magnetic Ly Lovha
field case. r
a, haoy

it would be necessary to consider such diagrams.
Actually, however, it turns out that the quantity, n—#»’,
of any propagator pair may differ from its “predecessor”
by as much as vrg/w.. Thus, the above-postulated reso-
nance condition will not be maintained in higher order
ladder diagrams.

The quantitative justification for the neglect of higher
order ladder diagrams is carried out in Appendix II. An
argument, to this end, based on the quasiclassical trans-
port equation® can be found on p. 734 of Ref. 2.

Consider now the contribution to the velocity correla-
tion function represented by the lowest order skeleton
diagram of Fig. 5 (shown in detail in Fig. 6). It is re-
called, that the magnetic field is chosen to lie along the
z axis and the electromagnetic field is chosen to propa-
gate along the x axis. As stated earlier, the polarization
of the electromagnetic field is chosen so that the electric
vector E is along the y axis, so that it suffices to calcu-
late o,,(q,w) (also cf. Sec. IV). Using the rules outlined
in Sec. IT and H. p. 418, one has

[(Clvaul)]?

where

> ,
B n.n’;_liz.kv Cor—en,™ — G, (C) 01+ Aor— €x,* — Gk, ($ 1+ Fi0,) ]

(3.3)

ex,"= (n+3) w42k, 2m.

The sum over {; is converted into an integral over a suitable contour in the { plane. The procedure is similar to
that used with the self-energy part in Sec. II. The ¢ plane is cut along the lines of discontinuity of the self-energy
parts in (3.3), the lines Im{=0 and Im({4#w,)=0. The substitutions { = §+10 and {= §—#w,+10 are used for

the parts of the contour above and below the lines Im{=0 and Im({+#w,)=0, respectively. The resultant ex-
pression is

o / 48 fO(8) (¢ |vaal1)|? { ! :
5 ()= ——
" 2mi oy J s [84 b= 2,7 = G (8+ o) ]| 8= 1, — G, (6~ i0) 8—ek."’—Gn'k=<5+f0>}

iy

1 = A8 fOUE) (v D)]? { 1 1
2mi ot J o [8/—heo,—€1," = G (8' = o)

. . ] (3.4)
8'— e, Goiy(8'—i0) &'~ €1,"— G, (8'+i0)

The continuation w, — w+40 can now be made, as the integrands in (3.4) are regular®” functions of a complex
frequency @ (Res=w) in the & plane cut along Im&=0. With a change in the variable of integration & = §+ 7w

51t will be assumed that the central significance of ladder diagrams and the neglect of certain higher order terms in the
conductivity (see following text) is retained in the magnetic field case. This is based on the experience gained in treating the electron and
phonon self-energy and the full EPI vertex part. Thus, except for oscillatory terms, the calculations in H. Appendix IV, V is expected
to apply to the magnetic field case. ’

% It should be noted that the higher order diagrams collectively correspond to a scattering-in term (the “B” term of Ref. 2). This can
be simply seen from an inspection of Fig. 5. An electron in a state %’ contributes to the occupation of state & via collisions with phonons.

% The regularity of the integrand in the entire cut @ plane is not obtained if the w, dependence in f() (&’ — ) is retained. The

w, dependence was eliminated with the use of ef+r=1. Ambiguities, such as these, in the analytical continuation from a set of isolated
points in the complex plane are discussed in Ref. 30.
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and a rearrangement of terms, one has the following:

. 1 * d8[fO(E)— [ (E—hw)][{V' |vg.]8)]*
EFuu(‘-"'{‘io)z —-—
2wt kn.?)t; — [é’+ hw—ek,"—Gnk,(g-f- hw-l-z()):l[g—- ek,"'—-Gn'k,(E—-iO)]
1 » f(8)
+— d8[(V [va.| )] :
2 o) o [+ hw— ex,"— Gur,(8+ hwo+10) [ E— €, — Gurr,(84+10) ]
fO(E+hw)

(3.5)

(&4 Fw— er,"— G (8- ho— i0) T E— ex,” — Gorn (6—i0)])

Before any simplifications of the propagators in (3.5) can be attempted, some basic preliminaries must be
considered. The eventual simplifications are analogous to those which lead to the delta-function approximation
in the treatment of the self-energy parts, i.e., the replacement of the propagators by suitable delta and principal-
value functions.

As discussed earlier in this section, the denominators of the propagator pairs can become simultaneously small
in the neighborhood of ;=8 and (n—n')%w.~#w. The “overlapping” of the resonances of the propagator pairs
must be considered explicitly. Also, as discussed in the preceding section the approximate treatment of the propa-
gators depend on the slow “%” (n,n’,k.) variation of quantities in the integrand. Therefore, as in Sec. II, the oscil-
latory parts of the n, n’ sums must be considered separately in order to affect the essential simplifications.

The rapidity of the oscillations depends upon the values of #, #” which contribute most significantly to the sums.
It will be shown, shortly, that the significant values are, (n4#'4+1)<Er/#w. and (n—n') Svrg,/w.. Therefore,
it is convenient to introduce a change in summation variables N= (r+n")/2 and r=n—n'. The sums over n,n’

are replaced by

> - X X, (3.6)
n' ,n=0 r=—00 N=0

to a very good approximation. [The terms added to the #,n" sums by the replacement (3.6) are those for which
|7|/N>1; by virtue of the above remarked limitation on |7|=|n—n’| these terms are quite negligible.] Because
of the established weak dependence of G, on #'k. one has to order (n—n')hw./[(N+%)tw.+#%k.2/2m]
~(n—n")/(Er/#w;) (which is at worst of the order ¢./kr<1, i.e., for a skin depth 6=10-% cm, ¢,/kr~1/100),

G, (8)=GCnor2.1,(E)=GN1,(8),  Gui,(6+70)=GCnyr21,(8)>Cri,(6+Hw). (3.7

It is only essential to separate out the oscillatory part of the IV sum as these constitute the more rapid variation.
The Poisson sum rule is used, as in (2.16), and the oscillatory part, the />0 terms, is calculated in Appendix II.
With the use of the Poisson sum rule, N+3 is changed to a continuous variable » and the sum over N into an
integral over % (from zero to infinity). Further, the variable 7 is changed to #%,2/2mw. and the definitions
E2=Fk,2+k,2 and e=#%k?%/2mw, are introduced.

Now the propagator pairs in (3.5) are expanded in partial fractions and use is made of the above change in
variables on the right-hand side of the equations to give?®

([5+hw—- Ek;"_GNk,(g-'I-ﬁw'*‘iO)][g— ék,”,—GNk‘(g—iO)])"l
= (hw—rhwe+ M1 (8) — M 1 (8+hw)+i[ Ti(8)+ 'k (E+ fiw) ]!

X{[E— ex+3rhw.—Gi(E—10) ' — [+ fw— e t+3rhw,—Gr(8+#w+i0) 1), (3.8)

([8+ 71— ex,"— G, (8+Aw=i0) J[E— ex," — G, (E£10) P
= (hw—rhiwet+ M(8)— M i (8+ hw) £ i[ Tk (8+ #iw) — Tr(8) ]!

X{[6— ext+irtw.— Gr(E£10) ! — [E+hw— ex—brAw.— Gr(8+Fiwki0) T},  (3.9)
where T, x,(8) =T(8) from (2.26) and H. 2.26. The main purpose of the partial fraction expansion in (3.8) and
(3.9)is to exhi]ait the effect of the “overlap.” in resonance. Since the terms 7w, M(8), and T'x(8) are of comparable
order of magnitude and the values of 7 which will contribute most significantly to the sum are of order w/w,, the

term in front of the curly bracket in (3.8) and (3.9) has a slow-variation with respect to . The terms within the
curly bracket in (3.8) and (3.9) each contain a singly resonant denominator as did the terms in the self-energy,

38 One has e "= e+ rhw./2; e " = ex—rhw/2.
'z 2
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(2.16). Now for the /=0 term these singly resonant denominators can be expanded in a Taylor series
[6— ext+3rfiw.—Gr(8£i0) 1= (8— ex=£10)'— [3riw.— M 1(8) £iT'x(8)1(8/ dex) (6— ex£10)~! (3.10)

[8+7iw— ex— SrAw.— Gr(E+ Aw=10) 11
= (8— ex10)"'— [fw— 3rfiw.— M 1 (E+ #iw) LT 1 (E+Aw) J(8/ Fer) (E— ex=10)~1.  (3.11)

The small expansion parameters of the series in (3.10) and (3.11) are r#w./Er, M(8)/Er, and T'+(8)/Er. This
can be seen by considering the role played by the operator d/de: in a subsequent % integration. The rest of the
integrand in a k integration contains functions, designated by f, which have a weak % dependence. The weak
%k dependence means that df/dex~ f/Er. In a spherical system of coordinates in % space, e can be regarded as one
of the variables of integration; then integrating by parts the operator d/de: can be seen to be equivalent to multi-
plication by 1/Ep. It is now clear why the /20 terms must be exlcuded before using the expansions of the propa-
gators in (3.10) and (3.11). The ¢ integration by parts on the term f=exp{2wil#k,%/2mw.} will produce a factor
of the order of magnitude 9 Inf/dex~2wil/%w., the expansion parameter in (2.10) and (3.11) then would be of
order unity or greater.
With the introduction of (3.10) and (3.11)% into the expressions (3.8) and (3.9), one has

i} 1
([8+ o €4, — Goye, (8- Fromki0) T 6— €6, — Gy (Ei0) [y = —— = —P’(

= Lind (6—er), (3.12
Jer 65— ex+10 ) i ( fk) ( )

— €k

{[(‘:H- fw— Ek,"'-GNkz(g-‘I— hw+10)][é’— Ek,"'—GNk,(g—iO)]}"l

2wid(E—ex) 1
- : P'( ) . (3.13)
hw—rhwc-}-Mk(é?)-—Mk(é’—i—hw)-f—z[I‘k(é)-l— I‘k(g-f—hw)] é’-—ek

The term proportional to §’(6—ex) has been omitted from the right-hand side of (3.13) as it represents a higher
order correction to the first term.

Employing the approximation embodied in (3.12) and (3.13) one has for the nonoscillatory part of the velocity
correlation function

Fy(wti0)=1i >

r.kz.ky J g mMw,

“ hkydk, /w d8 [f1(8)— [+ hw) Jw 2 (H2k2/mPw.2) | T, (hkiga/ma.) | 25(E— ex)
— — il o—rhwotMi(8)— M(8+hw) ]+ T'k(8)+Ti(8+ hw)

Jf’< hquz)
mw,
The P'(1/(6— ) terms in (3.12) and (3.13) cancel when inserted into (3.5). The approximation, (1.20), for the
velocity matrix element has been used in (3.14) and J,'(z) is the derivative of a Bessel function with respect to its
argument. Strictly speaking, the approximation (1.20) for the velocity matrix element is valid for n+n'+1
=hki/ mo>h(qs/2)?/ mese, i.e., (¢z/2k1)?*K1. In the first term of (3.14) the f)(8)— f)(§4#w) factor limits the
& integration to p—w<E<p so that, to within an error of #w/u, the delta function can be replaced by 8(u— ex).
The condition imposed on ku,k, is #%.%/2m~+#%.%/2m=y and the presence of the k,? factor in the integrand
weighs the contributions of &k, towards?® ky~kp. In the second term in (3.14), 8 ranges from the bottom of the
conduction band to the Fermi surface [ f<(8)+ /(84 #w)=22f(8), to within an error of #w/u]. The derivative
of the delta function in the integrand, if used in a & integration yields, f<"(ex)=~8(u— ex), so that the arguments
for the validity of the approximation is also maintained for the second term in (3.14).

Inserting the expression for &,,(w+140) in (3.14) into the expression for oy,(q,w) in (1.10) one has for the con-
tribution of the second term of (3.14):

e? et hkl 3dk1 * hkLQz 2
— ¥ / <—~) - [ 8 f(")(é)\J,’( )' 5 (8—er). (3.15)
1w rkzky J m We J o mw.

# The higher order corrections to the delta-function approximation, used in (2.19), can now be stated. Employing (3
in the square bracket of (2.16) one has mploying (3.10) and (3.11)
2mwid(x— exr) — 2miM 1 ()8’ (x— ) — 2T (%) P (x— ),

wl}gr((; k'=k—Q, »= hkfl”/bﬁmc and a vector k; (is ?eﬁned such that #2k,2/2m= (n+3})fw..
ne can now see that the above restriction (¢./2k,)?<1 is very mild. For 6=1/¢.=10"6 ¢ d ky=kr/10 2= .
ki =2kr/10 corresponds to k,=0.995kF. ' /e m and ki=kr/10, (qe/280"=1/400;

2

+ 5 (6—e). (3.14)

[N

® hkidky [* hky®
> f / dé [f‘—)(é})—{—f")(g—l—}w)]wcz—z—
r.kz.ky J g —»

mwe mio 2
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Using
1@ =3 a@) =), S Jea(e)= ; Ja®)=1, 3 Jra(a)J:(5)=0

ro—0o0 r=—00

(pp- 17 and 31 of Ref. 23) and*!

L.Lywem
ky— 27r h ’
the contribution of (3.15) becomes
-[4:[41; e2 <@ hk]_ 2 )
2/ (—) kldklf d8 [T(8)d' (E—ex). (3.16)
2w 2i0Q ky Jo m o

The sum over %, is converted into an integral and using #2%,/mé’ (§— ex)= — (8/0k1)6(6— ) and integrating
k. by parts one has

Q 62 /x /x d /2n d f( )( ) 82 Z ( )( ) ne?
kidk k. ¢ [ er)= O (er)=—. 3.17
(27)3 imwQ J o o e 0 imoQ & imw (.47

The final result in (3.17) is seen to cancel the first term in the conductivity in (1.10). One now obtains for the
conductivity

2¢ Q wom * hkdky, ¢ dE hik,?
aw(q,w)=—— / - 5(,“_€k)
Q 272 h ok Sy mwe Jute, o mie?
© [T/ (hlrqz/mew ;) 1A,
X 2 . (3.18)

r—x —i[ hw—rhw~+M(8)— M (84 hw) 1+ Ti(8)+ T'i(8+ fw)

A factor of 2 has been inserted in the front of (3.18) to account for electron spin. The sum over &, is converted to
an integral and spherical coordinates in % space are introduced. The result is

3 }162 L dg et hwcSr(q:z)
ou(qw)=—— — 2 — . (3.19)
4 vp Jyreo hw r=—x —i[ ho—rhw A+ Mgp(8)— M1, (8+ hw) J4+Tip(8)+ T p( 8+ hw)
where the function S, is defined
2vp [T VFqe 2
S:gz)=— [ sm“Oli],’(—— sinO)] de. (3.20)
We Jo We

The functions S.(¢-) is approximately evaluated for r<vrg./w. by using the asymptotic form for J,(z)~ (2/xz)"/?
X cos(z—rmw/2—m/4). To lowest order in w./vrq. one has

S(g)>=1/¢. (3.21)

for r>vpq./w., the function S,(g5) is small due to the smallness of the Bessel function J,(z) for > z. The sum over
7 in (3.19) is hence restricted to the range |r| S2rg./w. with S,(¢.) given by (3.21). To within an error? of w,/vrq,
the sum over  can be extended to its original range in (3.19). The r sum can now be evaluated directly [cf. Eq.
(4.5.14) of Ref. 33] and the final expression for the bulk conductivity is

3 me? v dé (ho+M(8)—M(8+hw)) T(8)+T(E+ o)
0y (qw)=— —r COth[‘lr{ —1 b J:I
4 mvpqs J ot hw hw, o, ,

(3.22)
where M;,(8)=M (8) and T« (8)=T(8).

11 ¥, Seitz, The Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1900), 1st ed., p. 585.
42 M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. 117, 937 (1960). ’
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IV. SURFACE IMPEDANCE

The pertinent function to compute is the surface
impedance, as the power absorbed by the metal from
the electromagnetic field is proportional to its real part.
In this section, the relationship between the expression
for the bulk conductivity, (3.22), and the surface im-
pedance of the metal will be exhibited, and the results
of a numerical computation of the surface impedance
will be shown for a range of the physical parameters of
interest.

As is well known, a proper account of the scattering
of the electrons from the surface of the metal must be
taken,? in order to calculate the surface impedance.

For the geometry outlined in Sec. III with the surface
of metal taken as the plane x=0, the x axis being con-
sidered positive into the metal, and the z axis in the
surface of the metal, one has for the surface impedance,

4miw E(+0)
¢ E(40)
In (4.1), E(+0)= E,(%) | 200, E'(+0) = 0E,(%)/ 9% 20
and the time variation of the electromagnetic field is

exp(—iwt). The E field is a solution of Maxwell’s equa-
tion, which in the present case can be written

Z= (4.1)

I?E,(x) driw
= Jv(x) .
Jdx? c?

4.2)

It might be added at this point that in the transverse
geometry being considered in this paper (i.e., the E field
perpendicular to H), a Hall field E.(x) exists. However
(cf. footnote 43), the Hall field E.(x) does almost no
work on the electrons which contribute most to reso-
nance (those electrons with 7;,~0 in the skin depth);
in particular, if the condition wr<<(R,./8)? holds, as will
be assumed here, E,(x) can be neglected.

The yy component of the conductivity tensor o(x,x")
is, thus, sufficient to calculate the electron current
density, j7,(x) in (4.2). Thus, one has, in general,

Ju(x)= /w &yy(x,0" ) Ey(x)do’ (4.3)

with E,(x) defined to be zero for x<0. However, the
Fourier transform of &,,(x,x") is not, in general, equal
to the Fourier transform* of the bulk conductivity,
o4,(q,w), calculated in Sec. ITI, when the presence of the
boundary of the sample is considered. In lieu of a proper
quantal treatment of boundary effects, the following

4 M. Ya. Azbel, and I. M. Lifshitz, Progress of Low Tem perature
Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1960), Vol. III, Chap. VII, Sec. 1.2.

44 g,,(g,w) is here referred to as the Fourier transform of the
bulk conductivity to distinguish it from the conductivity in
real space.

HIGH-FREQUENCY CYCLOTRON RESONANCE

611

recipe will be followed. One introduces a quasiclassical
transport equation [cf. Eq. (4.4) below] which

(a) reduces to the conventional Boltzmann equation
in the absence of EPI, and

(b) which gives the same results for the bulk con-
ductivity as obtained in Sec. III.

Such an equation may be obtained from the quantal
transport Eq. H. (3.32) with the addition of the mag-
netic-force term (vi/c)XH-gradxf of the standard
Boltzmann equation.® The scattering-in term of H.
(3.32) is neglected as it yields a relative contribution of
the order §/R, (cf. Appendix II). The transport equation
in question then takes the form

[_i<w+Mk(8)—ﬂzk(8+iu»))

T'x(8)+ T8+ hw)
+ :l x,¢;5 &)
b2
9

af
+oe—(,; 8)+wc5—(x,so; &) =viyEy(x),

(4.4)
ax )

where ¢ is the azimuthal angle in % space and where?
f(x,0; 8) is the Fourier transform of the “distribution
function” x(q,¢; &) of H. (3.32), i.e.,

1 ®

x(q,¢; 8)=— f dx f(x,¢; E)etier, (4.5)
271' 0

The Fourier transform (F.T.) of 7,(x) is, from H. (3.31),

2e?

T =" vy f 5(6—e)
Q o

JOE)= O+ ha)
{

]x(q,¢; 8)ds. (4.6)
o

The transport Eq. (4.4) is solved, using the method of
Jones and Sondheimer,*” with the assumption of diffuse
electron scattering at the metal surface. The F.T. of the
electron current density J,(¢) obtained from (4.6) is
inserted into the F.T. of (4.2) and the result is an inte-
gral equation for the F.T. of E,(x). The integral equa-

# J. M. Ziman, Theory of Solids (Cambridge University Press,
New York, 1964), p. 253.

4 The relation between f(x,¢; 8) and the full Boltzmann dis-
tribution function f, is

Je=fi+ef (x,05 8)e (=0 [ /dex).

The function x(g,¢; &) differs from the function Xx(zw) of H. by
the inclusion of E, on the right-hand side of (4.4) in contrast
to H. (3.32).

47 M. C. Jones and E. H. Sondheimer, Proc. Roy. Soc. (London)
A278, 256 (1964).
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tion is treated approximately by a numerical iteration
scheme*® similar to that used on p. 740 of Ref. 2.

In the final result, the functional dependence of the
surface impedance on the bulk conductivity is the same
as one finds in the literature.*® Moreover, the expression
for the bulk conductivity is the same as that calculated
quantum mechanically in Sec. III. The surface im-
pedance is

Z=R+iX=2Roe~ %o’ (@)1,
where Ro=8/9(w?rmuvpV3/ne?c*)!'® and
s d8 (ho+M (8)— M (8+ )
— coth[vr{ —1

4.7)

o' (w)=

p—hw how hwc

P(8)+I(6+ o)
————1]. as

The expressions for M (&) and I'(8) are given in (2.28)
and (2.30) with [2m(n+3)w./#+k.>J/2=Fkp. It can be
readily seen that in the limit of low frequency, w/wp<1,
one obtains for (4.8),

K 20 () ]
o'(w)=c0th{r[—t—(l—M’(u))—}- - J (4.9)

)
w. e dl

which is similar to the result contained in Eq. (4.19) of
Ref. 9(2). The virtual effects of EPI at low frequency
are to modify the cyclotron mass, i.e., w. is replaced by

w*=eH/m*c, (4.10)

where m*=m(1—M'(u)). The value for M'(u) computed
from (2.30) is
M’ (u)=—3F/8(2)1/3, (4.11)

where F=C?/Mc,2Ep. The value of —M'(u) can be
taken as the EPI coupling constant.

The attenuation effects of EPI due to real colli-
sions with phonons are negligible at low frequency. The
energy separation of the electron-hole pair, created by
the electromagnetic field at low frequency, is insufficient
to allow the pair a significant sampling of phonon modes
with which to interact (dissipatively). For the sake of
comparison to Ref. 9(2), let us note that the term
#/(T(8)4T'(8+#w)) in (4.8) corresponds to an effective
relaxation time rgpr, which is infinite at low frequency,
as T'(u)=0. One can phenomenologically add a term
1/w.r1 to 2T (u)/%w. in (4.9), where 77 is the relaxation
time due to electron scattering with impurities. It is
only when the effective 7gp; is much less than 7 that
one can assume ideal resistance conditions. It will be
shown that for sufficiently pure metals, such a situation
prevails at higher frequencies.

8 The iteration does not seem to involve an expansion in a
physical parameter, e.g., §/R.. However, a recent completely
rigorous solution of the integral equation by J. M. Luttinger and
L. Hartmann (private communication) has substantiated the

iterative approximation in Ref. 2.
4 S, Rodriguez, Phys. Rev. 112, 1616 (1958).
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F1c. 7. The real and imaginary part of the dimensionless
self-energy, M (n) and I'(5).

The 7 in Eq. (4.19) of Ref. 9(2) is essentially 7y and
thus the only effects of EPI at low frequency is to
modify the cyclotron mass.

As the frequency is increased, the function

[M(8)—M (6+hw) ]/ B

deviates from M’ (u). The condition for resonance is now
approximately shifted from

w/wr=mn, (4.12)
where # is an integer, to
M(8)—M(8+ hw)
w+ . =nw,. (4.13)

The exact resonance condition at higher frequencies can
only be determined after the & integration in (4.8) is
performed. The & integration is computed numerically
and curves of the derivative of the reduced surface
resistance, R'=R/R,, with respect to a reduced field
H*=e¢H/m*cwp, plotted against 1/H' (H'=eH/m*cw)
will be shown below for a range of w/wp. First, however,
some insight into the final results may be gained by a
discussion of the energy dependence of the self-energy
parts. In Fig. 7 the dimensionless function (n)
=M(8)/F/8(2)'%® and the line® (—)3x are plotted,
where n=(e—pu)/x®. The term (M (8)— M (§-+7#w))/hw
is the slope of a chord between the two points on the
M(n) curve, evaluated at 7 and 9+w/wp (<0, since
p—#hw<e<lu). The deviation of this slope from the
value (—)3 as a function of w is a measure of the modifi-
cation of the resonance condition, (4.12). The maximum
deviation of M(n) from (—)3n, 14.49, occurs at
n==V2/2. The maximum of |3 (n)| is 2.802 and occurs
at the points n=10.886. Also significant is the point
of inflection which occurs at n==0.473. Thus, at about

( 60 (’%;his line has the same slope as M (y) at the Fermi surface
n=0).
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half of the Debye frequency range, the rate of the
deviation of the slope of M (n) from (— )37 changes sign
from positive to negative.

Also shown in Fig. 7 is the function T'(g)=n|n|3
for |7| <1 and T'(y)=m for || > 1. The relaxation rate
due to real collisions with phonons increases as the
separation between the electron-hole pair, created by
the electromagnetic field, increases.

To estimate the effect of (I'(8)+TI'(8+#w))/#w, on
the magnitude of ¢’(w) one can assume that the con-
dition (4.13) is maintained, at resonance, through the
range of the & integration. One has, at resonance,

4 w./wp\2/8(2)1/3
5.0 Gr)
Viw\w 3F
assuming that the right-hand side of (4.14) is much
greater than unity. The maximum value of the con-
ductivity at resonance decreases with the inverse cube
of increasing frequency.

In Fig. 8 the dR'/dH* versus 1/H’ curves [H*, H’
defined above in text after (4.13)] for four different
values of w/wp are superimposed. The value of the EPI
coupling constant, Eq. (4.11), needed to compute the
field derivative-absorption curves is appropriate for the
case of cesium and will be discussed below (F=1.5,
m*/m=1.45). The frequency dependence of T'(8)
+TI'(8+7%w) manifests itself in the scale change of the
four curves [due to the decrease in the conductivity,
at resonance, with increasing frequency, cf. (4.14)] and
also in the increasing attenuation of the subharmonics
at higher frequency. This latter behavior is completely
analogous to the analysis of the expression for dR/dH

(4.14)

dr
dH’|
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|
I
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F1c. 8. Plots of the
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F16. 9. A plot of the value of the reciprocal applied magnetic
field (dimensionless) at resonance, 1/H,., versus subharmonic
number # for w=wp (solid line). The dashed lines correspond to
an effective cyclotron mass, at w=wp, equal to the mass at low
frequency, and at optical frequency, respectively.

given by Azbel’ and Kaner.?! The height of the maxima
of dR/dH (in Ref. 51) increases with subharmonic
number, i.e., dR/dH~n*3 until 2r/w,r>1; then since
dR/dH varies as exp(—2w/w.r), the maxima decrease
exponentially with decreasing magnetic field. In the
present case since the effective 7 decreases with in-
creasing frequency, 2r/w,r becomes greater than unity,
for higher frequencies, at a higher value of the magnetic
field. Thus, the onset of the attenuation of subharmonics
moves to lower subharmonics as the frequency increases.

The lowest value of w/wp equal to 0.4 corresponds to
an effective 7gp1~1.4X1071! sec for cesium. For ultra
pure materials one can expect a 7;~10"%—10"10 sec.
Thus, at lower w/wp, the condition 7gp1<<7s cannot be
fulfilled.

The frequency-dependent shift of the resonance is
illustrated by the dashed line in Fig. 8, drawn perpen-
dicular to the 1/H’ axis through the position of the
tenth maximum of the upper curve (the maxima of the
dR/dH curves are the positions of resonance’!). The
frequency dependence of the effective cyclotron mass is
more cogently illustrated in Fig. 9. The effective cyclo-
tron mass is usually obtained from experimental data
by plotting the reciprocal of the value of H at resonance,
H,, versus subharmonic number #. The slope of the
1/H line A(1/H) determines the cyclotron mass m. by
the relation

me=e/cwA(1/H). (4.15)

In Fig. 9, the values of 1/H’ at the maxima of the
w=wp curve (Fig. 8) are plotted versus subharmonic
number #. A straight line is drawn between these points
and is labeled “Debye frequency.” For the sake of com-

51 M. Ya. Azbel’ and E. A. Kaner, Zh. Eksperim. i Teor. Fiz.
39, 80 (1960) [English transl.: Soviet Phys.—JETP 12, 58 (1961)].
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parison two dashed lines are drawn whose slope yields
me.=m*, the low-frequency mass and m.=m, the bare
band or optical mass, at the same frequency (w=wp),
respectively. The low-frequency line has slope unity
since H e is measured in units of m*cwp/e.

The cyclotron mass determined by the slope of the
“Debye frequency” line is 6%, larger than m*. It would
be expected that at high frequencies (w~wp) the effec-
tive mass would be less than m* and approach m as the
frequency increased. The fact that the mass increases
with frequency up to the Debye frequency (and then
subsequently decreases for w>wp) depends on the
details of the functional form of M () (cf. Fig. 7). In
Fig. 7, it can be seen that the slope of 3 (n) first in-
creases with & (to a maximum of —3.85) and then de-
creases at higher 8. The point of inflection is at
n=(8—p)/k®==0.473. The latter fact explains the
results (obtained with plots similar to Fig. 9) that the
greatest rate of change of the cyclotron mass, from a
39, to a 59, increase over m*, occurs between w/wp=0.6
and w/wp=0.8.

An estimate for the EPI coupling constant is obtained
from the high-temperature resistivity. The relation be-
tween F and the relaxation time (in units of 107 sec),
derived from Eq. (9.5.1) in Ref. 16, is

0.265F=1/7.

The value obtained, F=1.5 is equivalent to C/Er=1
if one assumes the relation®? ¢,2=3(m/M)vp? derived
for jellium (neglecting Coulomb interactions).

It should be stated that the high-temperature re-
sistivity incorporates contributions from EPI umklapp
processes. Since the form of the EPI assumed in the
present paper!® only includes normal processes with
longitudinal phonons, the value for the coupling con-
stant could be overestimated by the resistivity data.
However, a study of Ziman®® showed a good fit to the
resistivity of Na over a large temperature range could
be obtained by a constant EPI coupling function ad-
justed to the high-temperature limit of the resistivity.
The EPI coupling function is cut off at a value of the
phonon wave vector corresponding to a lower Debye
temperature.

If similar considerations hold for Cs, then the EPI
coupling constant considered in the present paper is
underestimated as compared to Ziman’s result for Na.
In any case, the main result of the present paper is to
present a model calculation of the effects, to be expected,
on high-frequency cyclotron resonance by EPI. To
compare the present calculations with eventual experi-
mental data a detailed calculation of the self-energy
parts, including a more realistic EPI and phonon spec-
trum, would be needed.

2 C. Kittel, Quantum Theory of Solids, John Wiley & Sons,
Inc., New York, 1963), p. 147.

% J. M. Ziman, Proc. Roy. Soc. (London A226, 436 (1954).
In particular, attention is drawn to Fig. S on p. 451,
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In this connection, it is of interest to note that, in the
case of superconductors, the necessary information con-
cerning EPI and phonon spectrum may be inferred from
tunneling data. Specifically, starting from H. (2.19) and
H. (2.20) one obtains, after some manipulations:

| u—"]
(L(&)=r f COFDE,  (G16)
for §~p, and
(M 4(8))— (M(84 o)) = / dg (OF (D)
0
E—pu—t¢ E+ho—p—¢
X{]n —n’ } (4.17)
§—uttl  |6+ho—utt

with

CEF(E = | Vier | 20(hwre— £)d(u—er)), (4.18)
o

where the sum over £’ also includes a sum over phonon
modes. The angular brackets denote an average over
the Fermi surface, ¢,=u. All the essential information
concerning the EPI and the phonon spectrum are con-
tained in a2(¢§)F(¢). For the simple spherical model used
in the present paper one has

&2

oA(BF(E)= y E<hwp

F
8(2)13 (hwp)?

=0, > hwp.  (4.19)

The notation a2(¢)F(£) has been chosen to conform
to that used in the paper by McMillan and Rowell.>*
The function «2(¢§)F(£) is obtained (in Ref. 54) for Pb
by a numerical inversion technique using the data of
tunneling (between superconductors) experiments. The
a?(£)F(£), obtained by this technique can be used in
Egs. (4.16) and (4.17) to compute a more exact ex-
pression for the self-energy parts. Qualitatively, the
a?(§)F (&) for Pb as shown in Fig. 1 of Ref. 54 may be
considered as the sum of two contributions of the form
(4.19). The parameters for the transverse and longi-
tudinal contributions are F=3.2, fiwp=4.4 meV and
F=4, iwp=28.3 meV, respectively (#wp for Cs is 3.6
meV). Thus, aside from the complications due to the
fact that the Fermi surface of Pb extends beyond the
first Brillouin zone (B.Z.), one could expect measurable
resonance line shifts at lower frequencies in Pb due to
the stronger EPI coupling constant.

It would, indeed, be interesting to use the a2(£)F(¢)
obtained from a metal in the superconducting state to
explain the results of an experiment performed on the
metal in the normal state.

» W, L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1965).
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APPENDIX I: THE OSCILLATORY PARTS OF THE ELECTRON SELF-ENERGY
AND THE CONDUCTIVITY

In Secs. IT and III the nonoscillatory part of the self-energy and conductivity, respectively, was calculated.
The essential feature characterizing the calculations was the slow “&” variation of the integrand. With the slow
variation it was argued that the expansion parameters in the Taylor series in (3.10) and (3.11) are r#w./Er,
#w/Ep, Mi(8)/Er, and Tx(8)/Er. These parameters are all of order ¢,/vr for the conditions stated in (2.15)
and for 2 w/w..

The expansions (3.10) and (3.11) are invalid for the oscillatory part, i.e., the />0 terms in (2.16). The discussson
in the text preceding (3.12) points out that if the series (3.10) and (3.11) are used with the oscillatory terms, the
expansion parameters are of order unity for the conditions assumed in the present paper, (2.15).

In this Appendix the oscillatory part of the self-energy and conductivity is calculated. The essential feature of
the calculation is the largeness of the parameter Ep/#iw.(=10*—10? for w.=1012—10" sec™).

(A) The 1520 terms of the self-energy from (2.16) are

e !

1 1
G,zkz(g‘l)osc:d'__ Z/ (—)l Z _dkl,
Q.+

we l=—x 0 MW,

/” dx| Vo|2(1+sin26) /) (x) exp{2wli(hky'?/ 2mw.)}
—o T{L(n+5)+ (hls'?/ 2mes ) J(hQu%/ mese) — [n+5 — (hki'%/ 2mwe) J— (RQ.2/ 2mesc) P} 2
X (£ 1— x4 o) Y [x— (A2E'%/2m) — Gr (—10) 1 — [x— (h2k'%/2m) — Gy (x+10) 171}, (AL1)

with the prime on the / sum designating the deletion of /=0; and the following definitions are used:

k2 2mew.=n, (AL2a)
k'2=ky24(k.—Q.)?, (AL2b)
a 1 #k/* (n+5—h%% 2mwy)? o'2) V2
0=/ {n+— — —t dd, (AL2¢)
@ 2 2mw. a'? 4

where a=#Q,%/mw. and oy is the lower root of the radicand. It is convenient to also introduce the definitions

fik2/ 2mw.=n+3%, (AL3a)
k2=k 24k (AL3b)

Although &, is discrete in (AL.3a), it becomes a continuous variable, via the Poisson sum rule, when the self-
energy is used in the expression for the conductivity.

The Q sum is converted to an integral and cylindrical coordinates in Q space are introduced. The limits on the
Q. integration are the upper and lower roots of the radicand in the curly bracket in (AL1),

[ki—F)| <Qu< btk . (AL4)

To this must be added the restriction MaxQ=Qn, the Debye wave vector. In Fig. 10 the shaded region represents
the equatorial cross section of the admissible volume in the Debye sphere for the Q integration. From Fig. 10 one
can see that the upper limit of the Q, integration is, more specifically, min{[Qm2—Q.?]"2, k1+k.'}. The maximum
value for Q, is: Q™= [Qn?— (k1—k.")?]V/2

o Q!MGI

Qm Q,
Fic. 10. The admissible volume in the LY I
Debye sphere for the Q integration. — Q,
[y
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To simplify the expressions in (AI.1), the angle ¢ is introduced,
COSp= (k12+ k;lz—Q12)/2kllk1 . (AIS)

d mw.
Q.40 ——do, (AL6)

l < hk12 hkl'Z\ hQJ.Z ( hkLZ hk1’2>2 (hQJ? )2} 1/2——- h
2 4 —_

2mwcj 2mwc/2mwc 2mw, 2mw, 2mw,

In terms of ¢, one has

1/ hk2 hk)? hky'ky hk)/* hky? (ki +ky) @
=-( + ) + singp— tan"‘{ tan—} R (AL7)
2\2maw. 2mo. 2mw. 2mw. 2mw, |ki—Fk.| 2
and the limits of the ¢ integration are: 0< ¢ < go=
kP 4k 2= Qni+ (ka—k,')?
min [cos"l[ ],w} where k./=k.—Q..
2kik)
The self-energy in (AIL1) is rewritten as (the sin26 term will be considered below)
1 © Q e L krtQ2Mex
Gk(g-l)osc=——— Z’ (_)l'_ / f(":)(x)dx/ kl,dk‘l,/ dkz/
27rg l=—2 41!'2 —% 0 kz—Q,M"
Yo d@l V |281ril(hkl'2/mwc) 1 1
X / ¢ [ _ } (ALY
0 Si—xfuwg Lx— e —Gr (x—10)  x— epr—Gp (x+10)
where now
Q*=k2+ky2—2k.k, cosp+ (k.—E.')2. (AL8a)

Spherical coordinates #’, 8’ are now introduced. The two limits on the ¢’ integration are the two solutions of
k'2—2¢k’ cos(0'—v)+c2=Q,? (AL9)

as a function of &/, where c?=k.2+%,?, v=tan~!(k./k.). The calculation is now restricted to the pertinent value of
¢~kp. The solutions for the limits of the ¢’ integration are illustrated in Fig. 11. The ¢’ integration is performed
by the method of saddle-point integration (anticipating that the significant value for %’ is ¥'~ky). The 6’ integral is

8 2
/ F(Q(8")) exp [ —wil— cos?’ } d(cosb’), (AI.10)

mw,

where F(Q(8'))= | V| 2[{i— Ao " and is regarded as slowly varying with ¢’ as compared to the exponential
factor. The integral in (AI.10) is rewritten, using u= cosé’

cosf hk'?
/ FQ(w) eXp[ —m'l—-uz}dy. (AL11)

mw,

The saddle point in the y-complex plane is u=0 and the contour is illustrated in Fig. 12. The contribution from the

aon
B Mk, k ) F1G. 11. The limits («,8) on the F1c. 12. The paths of
ke 12 Q 6’ integration are obtained by the steepest descent in the
ok== -~ “ Te-2m intersection of a circle with radius s H=0 cosA u-complex plane (for >0).

k’ centered at the origin with the cos @ The paths through cose,
/l circle (solid line) of radius Qm, cos@ are rectangular hy-
K centered at (ky,k.). perbolas.
4
7




148 HIGH-FREQUENCY CYCLOTRON RESONANCE 617

saddle point to the integral in (AI.11) is

.
[ . .__]e;m4, (AL12)
211] (hk'*/ 2m)

the — (+) sign corresponds to positive (negative) values of J. The contributions to (AL.11) from the end points
are of the order #w.(A2k'2/2m)~! and are neglected (the integrand has no singularities at p=cosa, cosp).

In order for the saddle point, 8’=1/2, to lie within the angular range of the 6 integration for #'~ &, the values
of £, must be restricted. From Fig. 11 it is seen that for ¥~ kp, one must have

| .| /kr<sin(2 sin—}(2-2/%))=0.978.

The physical significance of this fact is apparent. Due to the upper limit on the phonon wave vector, the states on
the Fermi surface which can scatter, via phonons, to the saddle point (the equatorial plane, k.'=kr) are restricted.
For %'>kr+Qm, the angular range of the 6’ integration diminishes to zero. The self-energy is now equal to

G( _ 1 i/ )l - (G2 )d wd [zmek' 1/2[ hw ]1/2
k g-l)osc_'z—“ (""‘ / f (x x/ €k’ ]

Y l=—o0 — 0 n? 2¢er Ill
lekf l ™ 1 1
Xexp’Zm' i H: - Jx,,(ek,) , (AL13)
o, |1 4)Lx— e —Gr(x—i0) 22— e —Gr(x4-10)
where 9 " 00
m
Xi(ew)=—o — (AL14)

4r2 NMc, B J g, [(Qor?—Q2)(Q*— Qe 21— x usg)

and Qcy= (F'=£k1)2+k.2 Q°=Min{Qm,Q.+} [the ¢ integration was transformed to a Q integration using (AL.8a)].
The e integration is now evaluated by the method of residues.!® The function Xx(ex) will be assumed to have no
branch cuts in the finite complex e plane, as the limits of the Q integration in (AI.14) are defined so that the
radicand is always nonzero.

For >0 the contour of integration in the e plane is shown in Fig. 13. Also shown are the simple poles
at ep=2—M(x)£iTw(x). As it will be seen that x~ Ep, the %’ dependence of M and T are ignored in a first
iterative solution for the poles. The upper limit on the e integration in (AI.13) should really be #%2/2m(kr+Qm)*
However, such a restriction on the magnitude of e results in oscillatory terms depending on the sharp cutoff Qm
in the Debye model. These oscillatory terms depending on Q.. are regarded as physically spurious and are neglected.
The ¢ integration for />0 is now evaluated to yield

1 > 2m hw 2 1 1
I dék'[_ ___:I e21rile),’/hwc—-'i1r/4[ :I
2ri Jo h? 21 *— e —Gr(x—10) x— ex—Gr (x+10)

amho (2
5] |
7221 o

wil T
1 (x—M(x)-l—iI‘(x))—iZ] Xp(x— M (x)+iT(x))
+e—"“[2mhwc]‘”. " _2,”[ 1 1 ‘ )

il ] 9, #— M@+l —iy x—M<x)—ir<x)—iy]x"(”)' (AL13)

The second term on the right-hand side of (AIL15) is the contribution from the part of the contour along the

le - plane

Fi1G. 13. The contour of integration in the - plane for I>0. &,

® x- M)+ iT(x)

Qb x-Mwx) =il
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imaginary axis, ex=1y. This contribution is readily seen to be

—ir /4 1/ ‘~. E 1/2
S /[h”:l " e 20 2" F] X4(0) (AL16)
2mi L2AEr) 2l =M () +T(@)L 22

which is completely negligible, as it is a factor #w,/Er X «®/Ep smaller than the contribution from the pole. For the
last factor in (AI.16)

2mEp\'? (0)=lim £ Q C om [ Q*dQ
Xx(0)=1li
() xo-m “4nt XM, Jor [(Qer*=0)(Q =00 36122k hso)

where now Q.. = (k1d=€)2+%.% The result is

16 Mc2Ep ¢1— 3= by

2mEp\''? 3 hoip
( ) Xx(0

which can be seen to be of order unity when {; — 24-10 and z~ Ep.
For 1< 0 the contour is closed in the lower e plane with similar results. The self-energy is now expressed

[

» » 1/2 2wl T
Gi(§1ose=— 2 ("‘)l/ FE(x)dx [ ] e‘””"””""cZ(cos{—[.v—M(x}]—;} )kp'x;;(.\') ,  (AL17)
=1 J
+

2lER hes.

where Xp(x— M (x) 1T (x)) = Xi(x). .
One now takes the analytical continuation {;— 2470 and the imaginary part of (AI.17) is considered,

hw, V2 Q2 C2 2m
A
20Er 42 NMc, h

Ms

Fk(z)osc =T

=1

ey

Ccos

- LQe?=0(Q* = Q-2 12 e

where Qcy=((2mz/%#%)' >4 k1)*+k.? and the approximation, as in (AI.17), of neglecting a typical value of %wq in
Q.4+ has been used. The X#wq is only retained in the functions which vary rapidly with their arguments, i.e.,
I'(z), M (), f®(2), and cos(2wlz/#w,).

An order of magnitude calculation for the integral in (AI.18) for

@mz/0?) P=kp,  ki~ke, (Qe-~0), [(Qer*—Q)(Q*—Qc-)]/2~V2krQnm

Qn 020 fF) (3 hwg) exp(— (271, hw)T (32 hwg)) 2l ™
x/ QMQfF( @) exp Q (Zith_M(zith))—; , (AL18)

yields
“ hoo U2 Q C? 2medH@ihe (0n] - on
Ty(e)omt— 3 <~>l[ } = cos[—(z—wz»——]z . / 0 (et hsg)
= "Lure] ant NMe, WVZESQ., o 4% oo
- hw, 2 2wl T
2 T(5)nonose 3 (_)z[ :| =270 (2) [hwe cog {—-(z——M(z))——] . (AL.19)
1=1 21Er hw. 4

Thus,

Tk(2)ose [ ho. ]‘/2 ( 21rlI‘(z)>
= exp| — .
Fk(z)nonow 2lEp hw.

Equation (AI18) is actually a rather complicated integral equation for T'y(z)es. In fact, one must include the
equation for M(z)ose and obtain coupled integral equations! However, in light of the estimate made in (AI.19),
the I'u(z) and M(z) can be replaced, on the right-hand side of (AI.18), by the leading nonoscillatory part. Even so,
further progress with (AI.18) would necessitate computer calculation as in the case for the conductivity.

An interesting feature of (AL.18) is the limit Q,— on the Q integration. The upper limit is determined by
[F (z3%wg) for (z—u) <k®. For u<z< pu+«0, the condition

> h6, Qe e [ (kp— k)4 B,2]12 (AL.20)
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must hold or T'x(2)ec=0, to within the order of [#w./Er]'/%. In (AL20), the approximation [2msz/#*]'/*~kp in
Q.- was made.

Because of the saddle-point condition the electron is scattered from a state characterized by £i, k. to the equa-
torial plane of the Fermi surface. The energy of the phonon, with the necessary wave vector for the transition,
must be supplied; hence, condition (AI.20). One can also see that the slow & variation holds for T'x(2)osc.

An order of magnitude estimate of the sin26 term, omitted in the above calculations, will now be considered.
It will be assumed that %k,’~kp. For k.~0 one has to order k,/k//,

hk,? hk,'k,
ot

2mw, 2mw.

0=

sine. (AL.21)

The sin26 term is thus small and can be disregarded. For ki~kw, one has to within an error of |k —ku|/|ks/+ku|
for the ¢-dependent part of 6 and for ¢#=0

|

2

1/ bk hRSE\ kbR
< . ) n sing (AL22)

2mw . I 2mw. 2mw,

with comparable results for ¢=20.

The ¢ dependence of Q in (AL.8) can be considered as slowly varying as compared to sin26. The Debye cutof
Qw is disregarded for this order of magnitude calculation. The upper limit on ¢ is, thus, equal to =. The ¢ integral
is proportional to a Weber function (cf. p. 308 of Ref. 22), —E,(z), where

hkl hkl’z
—v=( ) and s=hk/k/mw..
2mw, 2mw,
For large », z and z=v,

—E_(@)=T#)[cos(pmr)—1]/3n(§2)"/3. (AL.23)
Thus, the ¢ integration gives an additional factor of (Er/#w;)~!/ and the phase factor in (AI.23) does not alter
the saddle point of the 6 integration. For v>z(ki<ki./~kr) the additional factor due to the sin26 term is

~[Ep/fw.] 12 The sin20 term will therefore be neglected.
(B) The oscillatory part of the conductivity is

¢ / FOE)— 1O (6+h)

£ ([ as
2w ri=—w o hw
2

k2
,Zkl 3 ko_ W'ilhk12 hqu:
i e e
m/ w? mw, mw,

.
o —i[ho—rhwAMi(8)—Mi(E+ how) ]+ Ti(8)+Ti(E4fw)
X{[E— ex—3rtw.— Gi(8—10) I ' — [ 64 hw— ex+3rhw.— Gr(E+ hw+10) 71}

e? w © d& [ shki\%dk, wilhk,?
2 ) G) e
2riQri=—w J_chwJo \m/ w? mow.
kyk:
x[ FE(8)hw.
—i[ho—rhw~+ M i(8)— M (84 w) ]+ Ti(E+ hw)— T'w(8)
X{[6— ext+3rhw.—Gi(8+10) 11— [ 84 hw— ex— 3rhw.— Gi( 8+ hw—+10) T}

[ (E+ heo) o
—i[ hw—rhwet Mu(8)— Mi(§+ hw) ]— Ti(8+ fw) +Tx(8)

Uyu(‘];"’)t)scz

c

X{[é’—ek—f—érhw(.—Gk(é—-iO)]"—[8+hw—ek—%riuoc—Gk(é’—{-hw—iO)]“l}], (AL.24)

where the prime on the summation sign pertains only to the / sum and signifies the deletion of the /=0 term.
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After a change to spherical coordinates in & space, one has for the integration over the polar angle 6,

milhk®™\ 1 ™ wilhk?
exp< )- / sin% exp(— cosZ&)dﬂ
0

2mw. /2w 2mwg

wilhk? wll| hk? l w|l| hk? 1r hwe 742 2ilex I
=1 exp( )|:JU< )—I—i—]1< >]=—l: :I exp[ —i— —] , (AL23)
2mo. 2mo. (7] 2me, 27l 2|1 e o, 1] 4

i

where the phase factor in the asymptotic expression for J,/(%kiq./mw.) has been dropped as compared to
exp(inlhik,2/mw,).

The k integration is changed to an e integration. The integration is performed by the method of residues with
the same contour as used for the e integration in part A of this Appendix. In this case, however, the € plane is
cut along the negative real axis due to the presence of the function !/2 in the integrand.

The contribution to the conductivity by the first integral on the right-hand side of (AI.24), denoted by

T4y P (g,0)ose, is

3ne? « hw, Y2 v d8 wil wl
710D ()= — z<—>f[ ] f _exp[g(hw—Merhw>+M<8))—;—(r<é+hw>+r(s»]

MU FQ s =1 2nUEp e hw, We
wl ™
XZ(COS{;——[(?.g‘f‘ ho—M(E)— M (8+ hw))+i(T'(E+ hw)— I‘(é))]-—;] )
We
hsd (_')rlhwc

X 2 — . (AL26)
re—x —i[ hw—rhw.+M(8)— M (E+ hw) ]+ T(8)+I'(E+ hw)

It can be seen that the ratio of 0(g,w)ese t0 7(g,0)noncsc i at least as small as (fiw./Er)!2. The approximation
[E—3rhw.— M (8)—iT(8) ]2~ [E+ I+ rhw,— M (E+tiw) +iT (8+tiw) /2~ Epl/?, (AL.27)

has been used in (AI.26). The contribution to the conductivity of the second integral in (AL24), denoted by
Tyy . (q )"-’)osc is

3ne? « hw, Y2
Ty (g0 one= z<—>l[ ]

dmop 1=1 27(‘21Ep

Ld&r & 12 il wl T
X/O —h;[—E—;:I exp[—h;(ZG—-M(g)—M(é’-I-hw)-FM)—E(F(g—}—fuv)-i-l‘(é’))—i;]

wl
XZi(Sin{Zo—[hw—M(é;-I— fuw)+M (8)+i(T (84 hw)— I‘(&)]})

0 ('— ) ’lhwc
X
Z, —i[ho—rhe M (8)— M (§+ hw) T+ T(8+ heo)— T(8)

b—ho JO~ £ —1/2 il wl T
- / —[—] exp[~——(28—M(8)—~M(é’-}—hw)—*—hw)——~(I‘(8+hw)—f—I‘(g))-i-i—:'
0 hol Ep ha. hw. 4

><2i(sin‘;Zé[hw+M(8)—M(8+hw)—i(I‘(é’-f-hw)—*I‘(@)]D

% i ('_ )rl}w’c
r—eo — i[w—rhwet+ M (8)— M(8+ o) ]— (T (8+ o) — T(8))

In contrast to the & integration in (AI.26), the range of & in (AI.28) is not limited to p—hw<8Lu. In (AL.28)
the bottom of the conduction band is taken at §=0. For §<u— 2%,

M (E)— M (84 #w) =~ T'1(8) — Th(E+#iw) =0,

(AL28)
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so that the k dependence of M (8), I'(8), etc., will be evaluated at k~kp. The square-root factors [as in (AL27)
are approximated by 8'/2 in (AI.28), which is valid for most of the & range.
When [ is an even integer one has, as in Sec. III,

0 MO
r=z—°o —i[ hw—rhw+M(8)— M (E+ hw) ] (T'(8+ w)—T'(8))

in cos[i—[%-}—M(é)—M(é—i— o) £ (D (E+ o)+ r(g))]]

sin[h—Z—[hw—i—M(é)—M(é’-}- o) (T (8+ m)-r(g))]]
For the case when ! is an odd integer the sum over r is
$ (=)o
r=—x — i hw—rhw.+M(8)— M (8+ hw) ] (T (84 hw)—T'(8))

=iw[sin[h1[hw+M<s)~M(s+ hw):bi(l‘(g-l—hw)—r‘(é))]]:l—l.

We

One can see that in either case the terms in (AI.28) are nonresonant, i.e., the ratio of the sine functions in the
numerator and denominator are of order /, for small /, at resonance.

The difference between the terms o ® (g,w),s. can be traced to the fact that the terms in the curly bracket in the
second integral in (AL.24) have poles in the same half of the € plane in contrast to the terms in the curly bracket
in the first integral. The terms in the first integral have poles on opposite sides of the real axis in the € plane and
therefore the contributions from the poles to the integral can be seen to add.

APPENDIX II: HIGHER CORRECTIONS TO THE CONDUCTIVITY

In this Appendix, the contribution to F,,(w,), (1.11) of the higher order ladder diagrams will be considered. In
particular, the Jadder diagram, shown in Fig. 14, will be calculated. As the calculation is quite lengthy, the main
details will be discussed.

Using the rules for evaluating skeleton diagrams, outlined in Sec. II and H. p. 418, the correction to Fy,(wr)
from the diagram in Fig. 14, denoted by F,,"(«w,), is

1
FoPw)=——" X [ElogulE)' |00 DVa(Q)Vre*(Q)]
62 #n, 4\ n,n’
wEE

X [ (61— ) [0 — ex0,™— Gk, (1) 1T S v+ hor— €k, 0, — G ki, (§ v+ Fi0,) ]!
X[1— er," = Gar,(C)I[E o4 Pror— €1, — Grriey (G F0,)] T, (AILYL)

i= {7, ky—Qy, k.:—Q.}, = {7, ky—Qy, k.—Q.},
1= {nykilykZ} ’ V= {nl,ky,kz} .

The sums over i, {v are converted into integrals over suitable contours in the {,¢’ planes as in (3.4), (3.5).
The change in summation variables, N=n+n'/2, f=n—n', N=n+n'/2, r=n—n' are introduced as in (3.6). The
partial fraction expansions (3.8), (3.9) are used with the approximation (3.7). The Poisson sum rule is employed
in conjunction with the sums over N, NV and only the nonoscillatory parts are retained, i.e., N, N are changed to
#ki?/ 2me., #iki?/2mw, and the N, N sums are replaced by integrations over i, 1. Only the resonance type terms

where

nzky:k!

Letha

ﬁ’, ky‘Qy, kg'ol
Lo+ hoy
Qx:hwr

nvkyrk!

F16. 14. The “one-rung” ladder diagram Le
for the velocity-correlation function. ,ky=Qy ki Q;

Lr
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as in (3.8) are to be discussed and the Taylor series expansions of (3.10) and (3.11) are used to yielc{ expressions
as in (3.13). The result of all these steps and the use of (1.8), (1.16), (1.19), and (1.20) for the velocity and EPI
matrix elements in (AIL1) is

hkydk, hkidk,

[fO(x)— fO (a4 ) 10(x— €x) 6(x"— ex)

MWe mMw.

FoyD(ti0)=— 3 dxdy’ .
(rt10) r,g—woz,i: - ‘ \/:, [how—rhow+ M i (x)— M (x+ ho) 1+ i[ Ti(x)+ Tr(x+ o) ]

hkuk hkig. hkiq:
1, Qulma) J( . )J( lq)lVQ'.2ef<F-f>¢x+<<u>x_<oi>

m? mow. mw.

hw—Fhw A4 M (2" — M (2’ + o)+ i T (x)+Tr (2 + b)) ]
SO+ I+ )
2 T

1
X (fP () — [P (' + m))p<m NQ:” , (AIL2)

>+ 2mid(x—x'=+ hwq)[
x— 1"+ hwe

where Q,+10Q,=Q.e%, k?=k2+k.2 k2=k+ (k.—Q.)? and
2712 arr bk kb2 F+tr Wk? bk F—r\? o/2\V2dd 7
wer [ [l [ [t 7 b G ) -G 531
T a0 LL2Mw,  2mw, 2 2mw. 2mw. 2 2 o 4

W2 hR2 Fr hk2 hRE F—r\?  fa®\2H¢
(e ey (R IR (g
2mw, 2mw. 2 2mw, 2mw. 2 2
where a?=#Q,%/mw. and ag=#(k.— k1)?/mw,.. The radical in (AIL.3) is now expanded in powers of 7+, #—r and
to order ¢,/kr only the first term in the expansion is kept for the denominator. Introducing the angle ,5°

Q2=ky>+k2—2k,k: cosp, (AIL4)

one has for the phase factor of X.(Qv),
cos(6—m/4+4[r,F o), (AILS)

where 6 is defined in (AL7) (with &, replaced by £.) and [7,7]=7 for k.> k., [r,7]=7 for k.>k,. The simple addi-
tional factor #=[7,7]®/2 has been obtained with use of the approximation

[ ki tky 7 @ )
tan™! — lan— {~— (ATL.6)
One now has for the term in (AIL.2),
2mew. cos([7,7]@)-+sin26 /
X4 (QX-(Q1) = (AILT)

fr (02— (ka—E) D ((kst-E)?— QD) V2

The additional phase factor in (AIL.2) from the EPI matrix elements is e!™ ¢, The factor e~i#wQz/mwc grises
from the velocity matrix elements.

The Q sum in (AIL2) is converted into an integral and cylindrical coordinates Q., Q., ¢ are utilized. The integral
over the azimuthal angle ¢ is simply performed, to yield

1 por hqQ hq:Q
5— [ de exp[——i : sing+1(7—7) <p:l‘—‘];_,-< L) . (AIL8)
m™J0

mw, mw,

The effective range of the difference for the #’s associated with the propagator pairs can now be seen, from (AIL8),
to be of the order (fig./mwo)Qm~q.vr/w.. It will suffice, to use the asymptotic form for (AIIL8), assuming

F—r<%q.Q,/mw.,
hq-Q. 2mw, \ 12 hqQ. T
J f—r( >~< ) COS< -3 (f—r)w—-) . (AIL9)
mw, th:Ql M, 4

°6 The angle ¢ can be understood to be the angle between the vectors ky, k;. It is in this sense that the approximation, e-=Ze;_g,
following (AII.14) is made.
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The Q. integration will now be considered,

Qm

@d@f(@)( s )1m[eos(”qx@—%(f—r)w—g)]moox_@o, (AIL10)

whqQ. mw,

where Q.= |ki—Fk.| and f(Q)=|Vq|2P(1/a—x'xHwq) or f(Q)=|Vq|2(x—x'+7iwq) depending on the term in
(AIL2) being considered. Now the terms in the sums over 7, # which contribute significantly are such thatr,
7< ¢,vp/w.. The phase factor cos([7,7]@) in (AIL.7) can, therefore, be neglected in comparison to cos(%g.Q1/mwe).
The sin26 term in (AIL7) need not be considered, as this factor dominates cos(%g.Q./mw.) and leads to smaller
corrections of the order ~ (fw./Er)!/? as discussed in Appendix I. The Q. integration is performed by the method
of stationary phase® and changing the integration variable in (AIL.10) to S=Q./Qm, the result is

Q.

g hqOm i T
R e e ).

mw.

2mwe/ 2mw, \V?% rl
( ) / (v/S)dS i
hr \1hq.Qm Se CS+S V2 (kit-F1)?/ Qn?—SZ]H?

Zmecs mwe \U2 me”>m 240,2]1/2) 0= e 7T(' ))+0( e )3’2} (AIL11)
i <1rhq,Qm> thme JLew+0- /z[kJEJWCOS( e 2 (hq,Qm ) S

where S¢=Q1,/Qm. It is tacitly assumed that the relevant values of k.+k, are greater than Q.
The asymptotic form for the Bessel functions, J#, J,/, in (AIL2) is introduced with the same justifications
discussed in Sec. III. The product of the asymptotic forms for J+, J,’ and the final result of (AIL.11) is

1<2me)2 1 moe\ f(LQ1+0:"]')

; h7|' 2k_|_’6_|_\ hqz / 2

hq. F—r hq. — hqQ1, ™
X {cos(—q—(kl—kL)~i2—1r)—Sin<—q—(7€1+kl)—%i7r)} cos( i c—;(f—r)). (AIL12)

mw. mw. mw,

Let Q.,=k.—k, for definiteness. The product of the phase factors in (AIL.12) becomes

1 24g.0., 2hq.ks 2hq.k,
E(H—(—)F—’cos( 2.0 )—(—)’sin( i )—(——);sin< ! )) (AIL.13)

mw. mwe mw.

Only the first term in (AI1.13) will be retained; the other terms lead to additional corrections of order ~ (wo/gzvr)"/2.
The correction to the conductivity, denoted by a,,'(¢,w), provided by (AIL.2) can now be written

oy (gw)=— e ¢ 2 /‘” dk,/w —}ffdklfm E;dﬁL/m dx dx’[f(_)(x)—f(_)(x+ hw)]S(x— €r)0(x'— exr)
2w2hq.?1(2m)% (2m)% ) o m 0 — hew
o hw
,E_m to— 1 hewoA M () — M (x4 fo) i Ta(x) + Ti(a 4 fw) ]
X {hoo—Fhw+M i (2')— Mo (4" + heo)+i[ Tio (&) Tio (o + heo) Ty

X

Qm
></ dQ:|Vel? §[(f‘*’(x’)—f‘*)(x’+iw))P< +7ri5(x—x':|:hwo)(f‘*)(x’)+f‘*)(-r’+hw))} )
_Qm
(AIL.14)

where Q%= (k.— k.)*+Q.2 The N term has been dropped [cf. (2.15)]. The integration over ki, ki, is transformed
to one over ki, Qu, where Qu=ki—k;. Now® e~e,_q and Q?= Q>+ Q.2 Inspection of the two terms in the curly
bracket in (AII.14) leads to the conclusion that the range of «’ in (AIL.14) is the same as x, i.e., p—#w<x'<p. In
order to obtain an order of magnitude estimate of (AII.14) and in order to emphasize the simultaneous resonance
of the 7, 7 sums, the &’ variable is replaced by x in the self-energy terms, M/, T'x. Due to the delta functions
8(x—ex), 8(x'—ew) the k, & of the self-energy terms are understood to be equal to kp.

% A. Erdelyi, Asymptotic Expansions (Dover Publications, New York, 1956), p. 48 (with A=1).

x—x'+ hwq)
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The integrations over Q., Q, are converted into a sum over Q and in conjunction with the %' integration one
has [cf. H. (2.18)]

® 1
> / x| Vo| LfF(a/)— [P (o' hw)]P(—-—————)é(x’— €i_q)=Mi(x)—Mi(x+hw), (AIL15)
Q) _o x—x'+

hwg

0

Z T d.V/[ VQI 2[f($)(‘r’)+f(¥>(x’+hw)]é(x—-x’:!:lwg)&(x’—e;,_q)=i[1‘k(x)+1‘k(x+hw)]. (AII.16)
Q.+

—

Using (AIL.15), (AIL16), and transforming to spherical coordinates in & space, one has for (AII.14)

g ) =——— —dk §(u— —¥-
7w/ (g ) 2w2hgt 20 )y m (b=e) “_h,.,hw;—i[fuu—rhwc—l—M(x)—M(x+hw)]+P(x)+F(x+hw)

N M (x)— M (x+ hw)+i[T'(x)+ T (2+w) ]
7 eo— oot M (x)— M (x4 hoo)+i[ T(2)+ T (x4 )]

mw > 1/"‘ hk? b dx heo.

(AIL17)

The % integration in (AIL.17) yields a factor kr/#. After multiplying and dividing by kr?, one has finally

, 3ne? W ko dx hw.
7o (40 =4mquz(7r2qm>/mil ¥ — iDhwo—rheo-M (x)— M (x4 h) ]+ T () + T (4 o)
M (x)— M (x+ he)+i[T(x)+T'(x+ hw) ]
7 fio—Fha+ M (x)— M (x4 hw) +i[ () 4+ T(x+ hw) ]

The 7 sum in (AII.18) is seen to be of order unity and thus

(AIL18)

Uyy,(‘bw) We 5
= = <1.
ou(gw) Tgar mR.

The calculation in this Appendix constitutes a quantum-mechanical justification for the neglect of scattering-in
terms under cyclotron resonance conditions.

A factor §/R, can be expected with each additional phonon rung of the higher order ladder diagrams.

APPENDIX III: PHONON RENORMALIZATION AND THE EPI VERTEX PART

In this Appendix the principal contributions to the phonon self-energy and the EPI vertex part will be evaluated
in the magnetic field case. In particular, it is shown: (1) (in part A) that the phonon self-energy is identical to the
value obtained in the zero-magnetic-field case, except for small oscillatory terms (like those calculated in Appendix
I); and (2) (in part B) that the ratio of the lowest order correction to the EPI vertex part to the elementary vertex
is of order ¢,/vp.

(A) The diagram that will be evaluated for the phonon self-energy part is shown in Fig. 15. The diagonality of
the phonon self-energy (in the Q variables) is demonstrated in Appendix IV. The contribution of the diagram in
Fig. 15, using the rules outlined in Sec. IT and H. p. 418, is

1 70,2 RO, 2\ 2712
Polt)=—- ¥ E1V0121+[1r[(n+n'+1> © ~<n..n'>=—< © )]
B nn' kil mw, 2mes.

XLEi—er,"—Gar,($) JLE1FHEm— ek,+o,"'—Gnkr4—Q.(§'z+$m)]] . (AIIL1)

The {; sum is transformed into an integral in the { plane by the same procedure as used for the conductivity in
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]
4048,
:
. . - nky K, nky*Qy, ket Q,
Fic. 15. Skeleton diagram representing the principal t L £
contribution to the phonon self-energy. 2 27%m
i
20,6,

Sec. ITI and the continuation &, — {410 is made. The result is

1 [Vel? *
0)=—— ) (x)dw
Po(¢+i0) 2 n,n'z.’cyk: [ (n+n"4+1)(hQ.%/ mw.)— (n—n')2— (AQ,%/ 2mw )2 ]2 ,[m 1o

1 1 1
|l 5l - 5!
X+ E— €40, — G ket @u(x+E410) (2 — €x,"— Grr,(x—10)  x— €x,”— G, (x+10)

+ ! { : : H . (AIIL2)

x— E— €x,"— Griey(x— £—10) Lo — €4,1.0," — G kpi 0. (¥—10)  X— €10, — G ksrs(x+10)

The nonoscillatory part of Pq(£410) is considered and to this end the sum over n,n’ is changed to integrals
over ki,ki’ and n+3, n'+3 is replaced by #k:?/2mew., fik,'*/2mw,. Further, the delta-function approximation for
the square brackets in (AIII.2) is introduced as for the electron self-energy part calculated in Sec. IT and the Taylor
series (3.10) is used for the remaining propagators. The problem of “overlapping” resonances of the propagator
denominators does not occur if the value of Q is selected to be that of a typical phonon, i.e., 0~Qn. In this case
#vpQ>>Tk(x) and the self-energy effects are negligible (cf. Sec. III and H. Appendix III).

Performing the x integration, and converting the £, sum into an integral, one has

R R °° 2kidk)| Vol fOer) f)
Poterity=—— [ at.[ han.| . ,
(2m)? J 0 o 20k 2RO~ (ki 2=k — Q1 ]2 et E— € +i0) € —t—ea—i0
(AIIL3)

where ¢ =%%,"?/2m~+#%(k.+Q.)*/2m. The k. integration in (AII1.3) is restricted to yield non-negative values of
the radicand; this is most conveniently accomplished by introducing the angle variable ¢

k1’2E k12+Q12+ 2k1Q.|. Coseyp, (AIII4)

where the limits on ¢ are: 0< ¢<w. Introducing the vectors ki, k./, (AIIL.4) is equivalent to k,’=k,+Q, and the
angle ¢ is now simply seen to be the azimuthal angle of the vector k=k,;+k, measured from the fixed direction
Q.. In terms of ¢, one has

2k dky[2(k2 4 B2 Q2 — (k2— E2)2— Q2= —d . (AIILS)

The minus sign in (AIILS) is interpreted simply from a vector diagram of k,, k./, Q,, i.e., o== when %’ takes on
its lowest value, |ki—(Q.|. The integration over k.’ sweeps out half the range of the azimuthal angle ¢ of k. One
now has for (AIIL.3),

Q £ £ 27 (G — f(=) ) — f(=)
- / dk, / kldkl/ _‘f|VQ|z<f () =/ (ek‘“")):_zgveiz(f () =/ ("”Q)), (AIIL6)
2(2m)2 ) _, 0 o ™ et E— €ryo+1i0 k et E—erro+10

where the substitution €' =7#(ki+Q.)*/2m~+#%(k.4-Q.)*/2m=1%*(k+Q)%/2m has been used. The final expression
in (AIIL6) is equivalent to the one in H. (AIIL.13) for | Viiqk|2— | V|2 Thus, the results for the nonoscillatory
part of the phonon self-energy are identical to those calculated in H. Appendix III and these results are reviewed
in Sec. II.

(B) TheEPIvertex part will now be considered. To this end one can calculate the lowest order correction, denoted
by Vw P (1+&m, {1), to the elementary EPI vertex, Vy,(Q), shown in Fig. 16.
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n,ky,kz, & n', ky+Qy, kz+Qz
§1+fm

fi,ky-Qy,kz-Q'z,
fL" ime

fi',ky-Qly+Qy, kz-Qz+Qz,

F16. 16. The lowest order correction to the EPI vertex part.
H+ ém~ fme

Q, {m

|
|
|
f

According to the rules outlined in Sec. IT and H. p. 418, one has for the skeleton diagram in Fig. 16

Ve P(Crtbm == X [Ve,r(Q)Vei*(Q)We,e(Q)]

1
8o

+[[hwe=x(Ci— ) fr— ee—Gi(Cr)][Cv+ Em— e —Ge(So+En)]], (AIIL7)
where {v={;— £ and from (1.8) and (1.20),

h :c’ h 19 h 12,
2exp(l Q Qu)(gi('_‘""'_('_'_"))'P’gﬁ,ﬂ,( on )5,—.,.( Q1 )
mw, 2mw. 2mw.

102

ih , , Qs
X Vo exp[a(Qz(ky—Qu )+————) :Ie’("‘" Yed <2m ) . (AIILS)
mw, w

In (AIIL8), the angles ¢/, ¢ are the azimuthal angles of Q’, Q, respectively. The Q' sum is converted into an
integral over the cylindrical coordinates Q.’, Q.’, ¢’. The integration over ¢’ is readily performed; using the fact that

Q:'0y—0Q:Q0,'=Q.'Qu sin(o— ¢'), (AIIL.9)

Vew(Q)W.,*Q)Wii(Q)=|Ve

one has

7QLQ.

mw,

ez(n~n e ih
/ do' exp( 0,0, sin(o— ¢’)+i(ﬁ’—n’—(ﬁ—n))<p’>= ei(ﬂ—"'WJ,-.,_,.,_(,-,_n)( > . (AIIL10)
27!' 0 mw.

The same procedure is used now as for the phonon self-energy in part A of this Appendix. The ¢ sum is con-
verted into a integral in the {’ plane and the 7i, 7’ sums are changed to an integral over k., k.’ with the use of the
Poisson sum rule; further, the oscillatory terms are dropped. The problem of “overlapping” resonances of the
propagator denominators [as in Sect. AIII.A] does not occur if the value of Q is selected to be that of a typical
phonon i.e., Q~Qn. After factoring out some phase factors and using (AII1.8) and (AIIIL.10), one has for (AIIL.7),

VO£, §) TR B e (hQL,QL)
Q' v

=—z 40040y
47? + 0 MW, M, mw,

ih
Ve eXP[—-—(Qzky+%QzQy)}“"—"’)‘°

mw,
X(kl 15 Q) x(beukers Q1 Yx (k) ’Q*)l_ IARC) FEP@E)
], (AIIL.11)
e+ £—¢ I_g'—-e:l:hwq HE— & hwg
where v= (k.2 — ky2— (k,*— £.1?))/ 2me.,
Wk 2 K2 Wk/?  h?
€= +_(kz_Qz,)2, E,E +——(kz_Qzl+Qz)2;
2m 2m  2m
with
hky?/ 2mw.=n"+1, fikyY 2mo.=n+1}.

The x’s are the ¢’s, in obvious notation, with the above substitutions for the #’s.
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Because of the complicated phase factors in the x’s [cf. (1.19)], an order of magnitude calculation for the
right-hand side of (AIIL.11) will be attempted. From (AIII.10) it can be seen that the significant values of k) ks
are restricted to |v| S#Q./Q./mew.. It will suffice to assume |v| <#Q.'Q./mw. and, therefore, the Bessel function
in (AIIL.11) is represented by the asymptotic expression

J,(thlQ‘)~(Wth’Q‘)_”2 cos(hQ*lQ‘—%m—Z); (ATIL.12)

mew, 2mw, mw.

also in line with the assumption |»| <#Q.'Q1/mw.,
x(ky k5 Qi )x(ouyks; Qi) ~x2 (ki o' Q') (AIIL13)

is introduced. The right-hand side of (AIII.13) corresponds to two terms representing the difference and sum of
the phase factors of x(k.',k.’; Q.'). The two terms give equal order of magnitude contributions when multiplied
by the phase factor on the right-hand side of (AIIL.12). For brevity, the difference in phase-factor term is con-
sidered. The terms depending only on Q' in (AIIL.11), i.e., | Vo |2 and %wq, are evaluated at the typical value
of ¢/, namely Q'~Qm.

The Q,’ integration is now performed using the method of stationary phase® [as in (AIL.11)]; one has

h 71 1’ ™ h Lo
[0./12dQ/ c°s( = “)EQL'—@J]—‘” “’S(ﬁ(’“*"k"))
1/2mw \V2 rom mw. 4 1/mw, 2\ mw,
_< ) / =_( )(_ ’ . (AIIL14)
Ari0) Jay b A A Y O
Lk +k) 2= Q022 [Q/ 400/ M2 EE—
2mw, mw,

where Q.,/=k./—k,’ and it is assumed that k.'+#£,"> Qm.
To proceed further, the simplification

2]”2 cos(AQ.k) /mw,— L)

kukl; Qo)~| — ATIIL.
e —_—

.

is introduced; this simplification amounts to replacing the radicand in (1.19) by the first term [see the text
following (1.19) for a discussion of the order of magnitude of each term in the radicand in the EPI case] with
kl’\/kl’ and kj.'\"kl,.
Two changes of variable are now introduced:
k.=k.—Q., (AIIL.16)
for the Q.’ integration and

2 =F\"2+ Q.2+ 2Quk1 cos, (AIIL17)

for the k.’ integration. As in part A of this Appendix [cf. the discussion following (AIIL.4)], the angle @ can be
taken as the azimuthal angle of k(£?=Fk.2+£.?), measured with respect to Q,. The result of the substitutions
(AIIL.16) and (AIIL17) and with the use of (AIII.15), one has finally

eot,.t(l)(g-_*_ Ea g‘)
Ve eXp[(ih/mwc)(szy-}-%QZQ,)]ei("_"')“’x(k,.,kl'; Q.

N IVQ.,.|2 I- f(x)(e,;) FF (exro)
Bt et E— eml-(— eithwg, (+E—errottuwg,

] . (AIIL18)

The right-hand side of (AIII.18) is equivalent to (H.AIV.7) and in particular it is shown in H. Appendix IV to
be of the order c,/vr for Q~kr and {~Ep [cf. (H.AIV.13)].

APPENDIX IV: GENERAL DIAGONALITY PROOFS
In this Appendix, the diagonality of the phonon propagator in the momentum representation, i.e.,

D q(ém)=0¢:Dq(m) (AIV.1)
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will be established.5? For this purpose, it is expedient to write the Hamiltonian in the form

A 2
H=f 'Nr)[ 1(” = (r)) ]'P(r)daﬂr% hag@bolbat2, f P VeWeny(r)d botbel], (AIV.2)
c

2m

where, as usual, p=%/i grad,, where 4(r)=(0,Hx,0) (as in the text), and where ¢'(r) and y(r) are the. electron
creation and annihilation operators in the position representation; they obey the standard anticommutation rules:

YW () +¢ ()W (r)=0, (AIV.3a)
YW )+ (W () =8(r—1), (AIV.3b)

and are related to the previously introduced a,' and a; by the equation
vO=2(lha= 2 (r|nkyk.)a, (AIV.4)

and its adjoint.%®
The procedure to be used is based on subjecting expressions of the type®®

{bo(r)be'(0))=(1/Zc) Tr{e #H=+N)eH boe=H b} (AIV.5)

to two successive canonical transformations; the first of these coiresponds to a uniform displacement of all the
electronic coordinates, whereas the second is a gauge transformation chosen so as to bring the Hamiltonian back
to its original form.

The “displacement” transformation is carried out by introducing into (AIV.5) the replacements

Y(r) = ¢ ()=y¢(r+o), (AIV.6a)
Yi(r) = ¢l ()=y/(t+0), (AIV.6b)
bo— bo'=bgei? 7, (AIV.6c)
bo' — bo'T=bqle™i2¢, (AIV.6d)

(where g is an arbitrary vector).
Since these replacements (obviously) preserve the basic commutation and anticommutation relationships for
the boson and fermion field operators, it follows from general quantum-mechanical principles that the primed

quantities are related to their unprimed counterparts via a unitary transformation®; i.e., there exists a unitary
operator U such that

Y ()=Uy@mU! (AIV.7)

(and similarly for the other primed field operators). Since (AIV.5) is a trace, it then follows that it is invariant
with respect to the replacements (AIV.6). Thus,

(be(1)be 1 (0))=(1/Zs) Tr{e PH'—uN)eH 1ho!e—H 1hq, "1} =¢i(@=Q")0(1/Z¢) Tr{e #H —sNeH 1hoe—H'1ho,t} = (AIV.8)
where H' is the Hamiltonian which is obtained from H by introducing the replacements (AIV.6) into (AIV.2).

57 Once (AIV.1) is established, the corresponding diagonality of the phonon self-energy part follows immediately from the matrix
generalization of [H. (2.2b)], which is text Eq. (2.2).

% The single-particle states, (r|t)=(r|nk,k.) are the usual Landau eigenstates in the position representation. They are the space-
Fourier transforms of the objects given in the text Eq. (1.6). It may incidentally be noted that, if (AIV.4) and its adjoint be sub-
stituted in the third member of (AIV.2), one obtains V(0= VQ(”(n’k,,’k,'le"Q"flnkyk,), which is completely equivalent to (1.5).

% The phonon propagator Dg-q(¢-) may be defined as

Doq(tm)= ﬁ ’ € 4in(T'(bo " (1) +b-q (#))(bo(0) +b-0'(0)))du.

The equivalence of this definition and that provided by a diagrammatic prescription [in particular, the matrix generalization of
H.(2.2b)] may be established by an approach similar to that used in H. Appendix II for the velocity-correlation function.
% Specifically, the unitary transformation is given by

U=exp(—;;9’/¢'(')W(’)d“'>-
where p=#/i grad,.
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It is easily verified that, when H’ is written in terms of the unprimed field operators, it has the same form as
(AIV.2), except that the vector potential A is replaced by
A'=(0,H(x—£),0) (AIV.9)

(where £ is the x component of g). _
Let us now introduce the second canonical transformation; it is given by the prescription

Y(r) > ¢ (=eRbiry(r) (AIV.10a)
¥i(r) — ¢ (r)=eBeuiryi(r) (AIV.10b)

with the bo”’s going into themselves.®! Introducing (AIV.10) into (AIV.8) yields
(bo(m)ba/'(0))=€@Q" 2(1/Zg) Tr{e FH—uNeH" 1hoe~H" Tbo, '} , (AIV.11)

where H'' is the Hamiltonian obtained from H’ by replacing y(r) and ¢!(r) by their double-primed counterparts.
Using (AIV.10a) and (AIV.10b), one then expresses H” in terms of ¥(r) and ¢/(r).
It is easily seen that the effect of the transformation is solely a change of gauge of the vector potential: specifically,

A'(r) — A”(r)=A’(r)+grad,Hty= (0,Hx,0) = A(r) (AIV.12)
so that
H'=H. (AIV.13)
Inserting (AIV.13) into (AIV.11), one has
(ba(r)be"(0)) =€~ #(bo(r)be'(0)) . (AIV.14)
In view of the arbitrariness of p, it necessarily follows that
(ba(7)be'"(0))=dq.e(ba(7)be(0)) . (AIV.15)

Introducing this result®? into the equation for Dg q(£) given in footnote 59 yields (AIV.1) QED.

It should here be pointed out that, strictly speaking, an analysis equivalent to the above should also be applied
to the velocity-correlation function to establish its diagonality in the wave-vector variable, q; just as in the case
of the phonon propagator, such diagonality is not @ priori obvious, in view of the lack of translational symmetry
in the presence of the dc magnetic field. Such an analysis is readily carried out, essentially in the same way as for
the phonon propagator. In particular, from the expression

1 h eA(r) h eA(r)
v(q)= /W(r);—{eiq"(j grad,— )-i-(—_ grad,— )e"“}xﬁ(r)d% (AIV.16)
m i

4 1 c

[which is fully equivalent to the text relationship (1.13) and (1.14) ], one sees that the first canonical transformation
[given by (AIV.6)] results in the multiplication of (AIV.16) by the phase factor e-*¢'#, and in the replacement
of A(r) by A’(r), as given by (AIV.9); the second (gauge) transformation, as in the above treatment of the phonon
propagator, restores the vector potential to its original form. It is then readily seen that the sole effect of applying
the two transformations to the velocity-correlation function is to multiply it by a factor *(@'~% ¢, The requirement
of reconciling this result with the invariance of the correlation function towards unitary transformations leads
necessarily to the conclusion that the velocity-correlation function is diagonal in gq.

It is finally of interest to study the effect of the two transformations on the electron propagator. In the position
representation, this quantity is®?

8

1SCo )= = [ eIy o) (ALV.17)
so that it suffices to study the object '
W(r,u)¥ (12,0)) = (1/Zg) Tr{e P H-+MeH ) (ry)e~H 4t (1)} . (AIV.18)
The first (displacement) transformation, given by (AIV.6), yields
(W (e, w0 (12,0)) = (1/Zg) Tr{e#E—+MeH vy (r1+ )e "Y1 (r2+9)} , (AIV.19)

8 As before, the canonicity of the transformation follows from the fact that the anticommutation relationships of the fermion
operators are preserved.

%2 The proof that expressions of the type (b_q'(1)bg(0)) vanish unless Q=(Q’ essentially duplicates the proof of (AIV.15).

8 J. M. Luttinger, Phys. Rev. 121, 942 (1961).
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which, upon being subjected to the second (gauge) transformation (AIV.10), becomes

Wl (0,0))= (1/ Za)eie e e T (=8 U= (11t g)e~ g (rrt- 0)}
= gieHEwru he(y (1,40, u)Y! (1249, 0)).

Hence, with the utilization of (AIV.17), one has

(1] S(1) | 12)= efeH wrwtire(r+ | S(¢1) [ rat-g) - (AIV.20)
Now, let us choose o= — (r1+12)/2; (AIV.20) then takes the form
(01l S0 | 2y = it v o s 1, 1) (AIV.21)
where ,
S(tur)={(—1/2|S(¢)|r/2)= —/ e t{TY(—r/2, ulyt(r/2,0))du (AIV.22)
0

is a function only of the ‘“‘difference coordinate,” r=rs—r;.
It is now desirable to utilize the essential cylindrical symmetry with respect to rotations about the z axis (mag-

netic-field direction) to prove that 8(¢;,r) is independent of the azimuthal angle of r. For this purpose it is expedient
to transform to the so-called ‘‘symmetric gauge,”

A=3H xr. (AIV.23)

The required transformation reads
W) = ¥ ) =eemmnmoy(n), Y (e) g ()= eyt (r). (ATV.24)
Introducing this transformation into (AIV.22), one notes that r-dependent phase factors cancel, and one has simply
8(ur)=8®(¢,r), (AIV.25)

where the superscript “(s)”” denotes that in the right-hand side of (AIV.22), one uses the symmetric-gauge Hamil-
tonian (for which A=A,).

Noting, now, that the quantity (p—eA,/c)? is independent of the azimuth angle ¢ of r (its dependence on ¢
being limited to the occurrence of the differential operators, 8/d¢ and 8%/d¢?), one straightforwardly establishes
that the Hamiltonian is left unchanged by ‘“‘rotational” transformations of the type

YO -y )=y(@), YO o9"m=YI), bo—bd'=by,  bo' —bel'=be !,
where 1’ and Q' are obtained from r and Q by an arbitrary rotation about the z axis.®* This operation yields
8@ ({1 =8 (,r). (AIV.26)

Inserting (AIV.26) into (AIV.25), one arrives at the conclusion that the dependence of $({;,r) on the cylindrical
coordinates of r—namely, 7., ¢, z—is of the form

S(¢1,t)=8(f1;71,2). (AIV.27)

With the aid of (AIV.21) and (AIV.27), it will now be shown that the electron propagator is diagonal in the
Landau representation, i.e., that

(' ky ks | S(5) | myky o) = / / (W' Byl | 1101 | S(C1) | x2) (X2 | nkyk.)d%1dPrs (AIV.28)

vanishes unless®® n=#'. Introducing the transformations

r=rs—Ip, R= %(n-i—rg), (AIV29)

and making use of (AIV.21) and the explicit form of the coordinate representation of the single-particle wave
functions, namely,

(r1| nkyk.)=

etlkyyrtkaz1] ¢n(

x1— (hc/eH )k,
QU312 )

(AIV.30)
L

o Strictly speaking, in order to utilize the intrinsic rotational symmetry of the Hamiltonian, it would be necessary to replace the
usual rectangular box periodicity conditions on the wave vector Q, by some cylindrically symmetrical prescription. However, in the
opinion of the present authors, this difficulty is purely formal, and will hence be ignored.

¢ Diagonality in ky,k, follows automatically from the invariance of the Hamiltonian with respect to displacements in the yz plane.
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[where the &, is given by (1.7)] one has®

(n' feyke:| S(2) | moyskee) = / / (1 leyskz| R—Fr)e e Xuihe§ (1) (R+-3x |,k k) d* Ry

0 —1x X+ix\dX
=/d“r S(g'l,r)e“"’/ e“'"”“'”/’”@,.r( L2 )‘I>,,( L2 )—z— (AIV.31)

Now, an integral similar to the X integral in (AIV.31) occurs in the calculation of the EPI matrix element (1.5)
and it is given explicitly'’ by

o X—1ix\  /X+dr\dX .
/ e—ieHXy/hcd;ﬂ,( )@n( )_= ew(n—n')g'm,(————-) , (AIV.SZ)
—w L L L 212

where ¢ is the azimuthal angle of r, r,= (x>+%?)"/2 and 9, is given by (1.9). An integration with respect to ¢
with account being taken of (AIV.27)] immediately yields the factor 6, so that

(n',k,,k, I S({l) ] n,k,,,k,)= 5,.,.:(n,k,,,k, | S(g-l) In’kmk=> ) (AIV33)

i.e., the electron propagator is diagonal in the Landau representation, QED.

66 In obtaining the last equality of (AIV.31), the transformation X =X'+-%ck,/eH (followed by suppression of the prime superscript
attached to X) was employed. A principal result is the cancellation of the factor, e¢¥*», from the integrand.



