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Equations for H&' and H&' are obtained from Eq. (AS)

by cyclic permutation. The third right-hand-side term

in Eq. (A5) is the effective magnetoelastic coupling

field linear in Bu;/Ba, . A similar term of the form

p, (BN, '/Bar, ) has been dropped from Eq. (A5) because

it is quite small. The fourth and 6fth right-hand-side

terms in Eq. (AS) are the dipolar (including the dilata-

tional dipolar Geld) and exchange fields. Using Eq. (2.5),
the linearized equations of motion are

with
X;=unit vector in propagation direction,

Bp; ——external fieM,

H,'= static dipolar field.

+06ijk(0'jkk ++1Hk ')
q

with h&' and HI, ' defined as the spatially varying and

spatially nonvarying portions of Hq' in Eq. (A5).
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$& e suggest an experiment which may allow the band theory of ferromagnetism to be tested in a direct way.
If a dc electric field is applied to a sample, the magnetic electrons will drift. The frequency of a spin wave
of given wave vector, when viewed in the laboratory frame, mill suffer a Doppler shift when compared with
the case when the electric field is zero. This Doppler shift, although small, is considerably larger for the band
model than the electric field dependence of the spin-wave dispersion relation for a localized spin model.
KVe discuss the possibility of detecting the Doppler shift by measuring the phase velocity of a coupled spin-
transverse-phonon wave. Similar measurements have been performed on insulators doped with paramagnetic
impurities. In these measurements, high precision has been obtained by employing an interference technique
which allows a null experiment to be performed.

I. INTRODUCTIOÃ

ARIOUS models have been proposed to describe
the magnetic properties of transition metals.

%'hile these models assume very diferent mechanisms
are responsible for the magnetically ordered state, they
nonetheless predict elementary excitation spectra and
thermodynamic properties which are qualitatively
similar. As a consequence, it is dificult to decide from
experimental measurements which of the models is most
suited to describe the magnetism of the transition
metals.

Historically, the first approach to the problem was

by Heisenberg, ' who employed a model of localized
spins, each coupled to its nearest-neighbor spins by
means of the exchange interaction which results from
the overlap of atomic orbitals. If the exchange integral
has the appropriate sign, the ground state of the system

*National Science Foundation Postdoctoral Fellow.
'%'e refer the reader to the review article by J. H. Uan Uleck,

Rev. Mod. Phys. 17, 27 (2945).

is ferromagnetic. The elementary excitations of the
system are spin waves, ' and one finds that as the tem-
perature is increased from zero, the change in mag-
netization varies as T'', in agreement with experi-
mental observations. This model has been studied
extensively. A number of other magnetic properties of
transition metals, such as the variation of the magnetic
susceptibility with temperature just above the Curie
point, ' and the magnetic critical scattering observed in
neutron diffraction experiments4 may be accounted for
with this theory. In the Heisenberg model, the inter-
action between the localized spins is short-ranged, since
the wave function of a given spin overlaps appreciably
only with its nearest neighbors. The conduction elec-
trons (s electrons) play no role, as far as the magnetic
properties of the system are concerned.

' F. Bloch, Z. Physik 61, 206 {1930).
'See for instance, M. E. Fisher, in Proceedings of the Inter-

national Conference on Magnetism, Xottingfgam, 1964 (Institute
of Physics and the Physical Society, London 1965), p. 79.

4 R. J. Elliott and %'. Marshall, Rev. Mod. Phys. 30, 75 (1958).
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It has been shown by Ruderman and Kittel, ' and
Yosida' that the presence of the conduction electrons
can lead to a long-range oscillatory exchange coupling
between localized spins. This interaction certainly plays
a dominant role in the magnetism of most rare-earth
metals, and has been invoked to discuss the magnetism
of transition metals well. 7 There is experimental
evidence which may be used to support the presence
of such a long-range exchange interaction. '

However, on the basis of these models, it is diKcult
to understand the nonintegral number of Bohr mag-
netons per atomic site observed in the transition metals
of the first series, the contribution of the d electrons to
the electronic specific heat, and the disappearance of
the local moment above the Neel point in some of these
metals "

These properties suggest that the d electrons are not
localized. As a consequence, a theory of magnetism in

these metals based on an itinerant model has been
developed by Stoner" and pursued by a number of
workers. ~ " although this theory involves diferent
assumptions and methods, nonetheless one obtains
from the theory magnetic excitations of spin-wave

character, "a T'~' demagnetization law, and a descrip-

tion of magnetic critical scattering. The band theory
is not inconsistent with the description provided by a
theory with localized moments coupled by a long-range

exchange interaction. "
Since all of the theories mentioned above provide a

description of the magnetic properties of transition
metals which is qualitatively reasonable, it is not clear
which of these theories is most applicable.

In this paper, we would like to suggest an experiment
which we feel may be possible with present day tech-
niques, and which would allow one to determine
whether the itinerant model or a localized spin model
provides the appropriate description of the magnetic
state of transition metals.

Suppose we place the metal in a uniform dc electric
field. If the band picture is valid, the d electrons will

drift in this field with some drift velocity v~, which

may be determined from the d-electron mobility. If
we observe the frequency of a spin wave of given wave
vector lr~~vz in the laboratory frame, this frequency will

' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).' K. Yosida, Phys. Rev. 106, 892 (1957).
' S. V. Vonovski and Y. A. Izyumov, Izv. Akad. Nauk SSSR,

Ser. Fiz. 28, 406 (1964).' M. Hatherly ef al. , J. Appl. Phys. 35, 802 (1964).'B. Argyle, S. Charap, and E. Pugh, Phys. Rev. 132, 2051
(1963)."A. Arrott, S. A. %erner, and H. Kendrick, Phys. Rev. Letters
14, 1202 (1965)."E.C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938}."E.P. %ohlfarth, Rev. Mod. Phys. 25, 211 (1953)."T.Izuyama, D. Kim, and R. Kubo, J. Phys. Soc. Japan 18,
1025 (1963)."J.F. Cornwell, Proc. Roy. Soc. (London) A284, 423 (1965)."P. Lederer and A. Blandin, Phil. Nag. (to be published)."C.Herring and C. Kittel, Phys. Rev. 81, 809 (1951}.

suGer a Doppler shift if compared to the frequency of
a wave with the same k when the d electrons are at rest.

On the other hand, if the magnetic electrons are
localized on the ionic sites, such a Doppler shift cannot
occur. The electric 6eld may affect the spin-wave
dispersion relation, but in the Heisenberg model with
nearest-neighbor coupling, we will see the eftect is much
smaller than in the band model. If the coupling between
the localized spins is by means of the Ruderman-Kittel-
Yosida (RKY) interaction, we will find no shift to first
order in the electric 6eld.

Even in the band model, the Doppler shift is small,
If the d electrons drift with a drift velocity of 1 cm/sec,
the fractional change in frequency of a spin wave of
wave vector 10' cm ' will be 10 ' to 10 '. It appears
difIicult to observe this small shift by a ferromagnetic-
resonance experiment, or by a neutron-di6raction
experiment.

We suggest that it may be possible to observe this
shift by measuring the electric Beld dependence of the
phase velocity of an acoustical wave with a frequency
in the vicinity of 10 kMc/sec. It was first shown by
KitteP~ that because of the coupling between the sound
wave and the spin motion, the normal modes of a ferro-
magnet have mixed spin wave and phonon character.
Consequently, the ultrasonic wave will be accompanied
by spin motion as it propagates in the crystal. If the
magnetic electrons are described by the band picture,
the change in the spin-wave dispersion law produced
by the Doppler efI'ect will alter the phase velocity of
the coupled spin-phonon wave. As we shall see, under
optimum conditions, the change in phase velocity from
this effect will be very small, perhaps one part in 10' or
10'.

Recently a series of experiments in which the mag-
netic 6eld dependence of the phase velocity of ultrasonic
waves propagating in an insulator doped with a small
concentration ( 10 ') of paramagnetic impurities have
been performed by Joffrin, Guermeur, Levelut, and
Penne. ' In these experiments, an interference technique
was employed which allowed measurements of changes
in phase velocity as small as one part in 10'.

Very high sensitivity was obtained in this work
because the interference technique employed by Joffrin
et ul. allowed a null experiment to be performed.

Unfortunately, to carry out such an experiment in a
metal will be more dificult, primaiily because the
propagating wave will be damped much more strongly
than in the experiments cited above. In the experiments
of Joffrin et al. , the waves had a mean free path the
order of a centimeter. The estimates presented below
indicate that in a metal the mean free path will be only
a fraction of a millimeter.

In Sec. II, we discuss briefly the properties of the
spin waves associated with the models mentioned above.

"C. Kittel, Phys. Rev. 110, 836 (1958).
'" R. Guermeur, J. Joffrin, A. Levelut, and J. Pennd, Cofnlit.

Rend. 260, 108 (1965).
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In Sec. III, we present a short summary of the proper-
ties of coupled spin-phonon waves following the phe-
nomenological treatment of Kittel, '~ and in Sec. IV
we estimate the mean free path of the waves. Section V
contains some comments concerning the experimental
arrangement.

Au, /u, = (k vd)/v„, (2)

"J.Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
'0 K. Kawasaki, Phys. Rev. 135, A1371 {1964).
"This argument is not strictly rigorous, even in a one-band

model. In the moving frame, one will see a current density due
to the positive background and this current density will give rise
to a magnetic field, which will affect ~,(k). In a transition metal,
the magnetic field which arises from the motion of the s electrons
will be larger than this last mentioned field. In Sec. V, we suggest
a geometry which will reduce the effect of these fields so that the
Doppler shift will dominate the electric field dependence of ~,(k).

II. PROPERTIES OF THE SPIN-WAVE
EXCITATIONS —ELECTMC

FIELD DEPENDENCE

Let us 6rst consider the band model, in which the
d electrons are assumed to move through the lattice.
In most treatments, one avoids the complications
introduced by the presence of orbital degeneracy, and
assumes the existence of only a single nondegenerate
d band. One often uses a tight-binding approximation,
in which two electmns interact only if they find them-
selves on the same atomic site, although this is not a
necessary restriction. "

In a single-band, tight-binding approximation, the
paramagnetic state is unstable with respect to a ferro-
magnetic state if Un(~&) )1, where n(ep) is the density
of states at the Fermi level, and U is the Coulomb
repulsion between two electrons on the same atomic
site. If the Coulomb repulsion U is suKciently strong,
the ground state will be completely polarized, with the
spins of all d electrons aligned.

In the magnetic state, the system has elementary
excitations of spin-wave character 2' The dispersion
relation may be shown to have the form (for small

values of k)

co, (k) =cvo+Dk',

where ~0 is the I.armor precession frequency of the
electron spin in the external magnetic field, and k the
wave vector of the spin wave. For nickel, one 6nds
D—10-' rad cm'/sec.

Now suppose we apply a uniform electric field to the
system, so that the d electrons drift with some drift
velocity v&. If we make a Gallilean transformation into
the frame moving with the drifting electrons, the
system viewed from this frame will have spin-wave
excitations described by the dispersion relation of Eq.
(]) 21

The frequency of a spin wave of wave vector k when
viewed from the laboratory frame will be Doppler
shifted by an amount

where v„=&a,(k)/k is the phase velocity of the spin
wave.

Suppose the angular frequency of the spin wave is
6X10' rad/sec. , and its wave vector 2X10' cm '. Then
s„=3X10' cm/sec. If we assume sq is 1 cm/sec and is
parallel to k, then we find hem, /s&. = 1/3X10 '.

The drift velocity v& is related to the electric field

by the equation v~ ——pqK, where p, ~ is the mobility of the
d electrons. If m~ is the effective mass of the d electrons,
and rq the relaxation time, then pq=erq/mq Ty. pically
m~—5 free-electron masses. The relaxation time v~ is
diRicult to estimate reliably or determine experi-
mentally, since the transport properties of transition
metals are dominated by the s electrons.

%e shall assume" that the d-electron relaxation time
is comparable to that of the s electrons. Then we take
Tg—10 " sec, which is the order of magnitude of the
room-temperature s-electron relaxation time. %e shall
see later that it will be advantageous to carry out the
experiment at room temperature. If we use the numbers
mentioned above, a drift velocity of 1 cm/sec can be
produced by an electric held of the order of —,'V/cm.
Sample heating may be avoided by employing pulsed
electric 6elds. %e shall estimate in Sec. V that a 6eld
of this magnitude may be imposed on the sample for as
long as a tenth of a millisecond.

%e consider next the Heisenberg model, in which a
given localized spin interacts with its nearest neighbors
through the exchange interaction produced by the
overlap of the atomic wave functions. For this model,
the dispersion relation for the spin waves is

cv, (k) =cop+(J(k) —J(0)}, (3)

'2 See the discussion by N. I'. Mott and H. Jones, iVetals and.alloys (Oxford University Press, New York, 1936), p. 267.

where J(k)=gq Jq exp(ik. S), with Jq being the ex-
change integral between an ion and its nearest neighbor
at the site 5 relative to the ion.

Let
l
0) be the ground-state wave function of the ion

in the crystalline electric 6eld. We assume l0) non-
degenerate, and that the crystalline field has an in-
version center. Then in the presence of the E 6eld, the
perturbed ground-state wave function will be given by

l~)(~lrl»
l0')= l0)+eP E.

jvo

%'e can expect the fractional change in the exchange
integral to be hJ/J eEro lh, where b, is the energy
difference between the ground state and the 6rst
excited state of opposite parity. Then if d, =1 eV, and
rp = 1 Bohr radius, we 6nd 4J/J=10 ' for E= x~ V/cm.

Thus the Doppler shift discussed above for the band
model is several orders of magnitude larger than the
corresponding shift for the Heisenberg model. The
shift in frequency upon application of the electric field
appears too small in the latter model to be detected by
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the method discussed in this paper, with presently
available techniques.

Finally, we mention the properties of a system of

localized spins exchange coupled by the RKY inter-

action mentioned in the introductory section. The
spin-wave dispersion relation for this model has the
form of Eq. (3), with

n t(k') —ni (k'+k)
J(k) =—

X ~' ei(k'+k) —et(k)

where s, q is the s-d exchange interaction, and n (tk)

and ni(k) are the up and down spin s-electron distri-

bution functions. The number of unit cells in the crystal
is X, and ei(k) describes the s-electron energy bands.

Let us assume the s electrons are unpolarized

[nt(k)=n (ik)]. If we apply an electric field, the s

electron Fermi sphere v ill be displaced from the origin

in k space by an amount k„so that n (k) = no(k —k.),
where mo(k) is the distribution function for K=O.
Then, to first order in K, one may write the change in

J(k) in the form

2

aJ(k) =k.,
iV ~' e(k'+k) —e(k')

+— —— vk. no(k').
e (k' —k) —~ (k')

To derive this result, we have used e(k) = e(—k),
which is a consequence of time-reversal invariance.
The integrand is the product of an even function of k'

multiplied by an odd function of k', so the sum vanishes.
Thus the correction to J(k) linear in E vanishes. The
first correction term will be quadratic in the electric
field.

%e see that of the three models mentioned in the
Introduction, the band model exhibits a shift in the
frequency of a spin wave of given wave vector upon
application of an electric field which is linear in E, and
larger than the shift found for the Heisenberg model

by several orders of magnitude. A model based on
localized spins exchange coupled by the RKY inter-
action exhibits no shift linear in K, if the s-band is
unpolarized.

III. THE COUPLED SPIN-PHONON EXCITATIONS

In this section, we discuss briefly the properties of
the coupled spin-phonon modes, following the phe-
nomenological treatment of Kittel. "%e then estimate
the electric field dependence of the phase velocity of
the coupled mode.

The Hamiltonian of the system may be written as a
sum of three terms,

&=&~+&P+&~~,
where H~ describes the magnetic degrees of freedom,

H~ the lattice motion, and the term EX,~p the coupling
between the lattice and spin motion.

The term H~ consists of a Zeeman term and the
exchange energy, which may be represented in the form

(with k=1)

Hyg =H, +H - =~0 M.-G7

Let us consider the propagation of an ultrasonic
shear wave, with displacement parallel to the z axis
(we assume the magnetization is also directed parallel
to the z axis), and with wave vector parallel to the x
axis. Then if p is the density of the crystal,

I1p= (-',p(BR ic7t)'+-,'pi-"(BR/Bx)') dr,

where R is the displacement associated with the wave
and v the velocity. Also,

b.
Ii &rp = M, (B—R/Bx)dr,

M,

where the magnetoelastic coupling constant b =10'
erg/cm' for Xi.

Following Kittel, we may derive the secular equation
from which the dispersion relations for the coupled
modes may be found. Ke linearize the equation bz.

replacing M, by the saturation magnetization M, V,'e
then find the secular equation

[0'—v'k'1[Q' —id '(k)]+ybjcu (k)k'/pM =0 (6)

where y is the magnetogyric ratio defined by Kittel.
The phase velocity v„of the wave is vv=0(k)/k,

where Q(k) is the solution of Eq. (6) for the wave
vector k. The change in phase velocity which results
from a change in &u, (k) is given by

pb i (do

~~'v/vv=
4 pv'M, [0—~, (k))' co,

provided that junco, ~((~Q —co. (k) ~. We have assumed
we will be interested only in waves with a frequency
not far from the Larmor frequency.

Kittel has pointed out" that the strongly mixed
modes which have frequencies in the vicinity of the
crossover of the unperturbed spin wave and phonon
branches are heavily damped as a consequence of the
damping of the transverse motion of the spins. This
leads to a mean free path of the order of one wavelength.

In order to obtain a mean free path sufhciently long
to permit study of the coupled modes, it will be neces-
sary to perform the measurement at a frequency some



«]is&ance off the crossover frequency. 9'e shall see in

the next section that as a consequence of the damping
of the lattice motion by the electron-phonon interaction,
waves with a frequency in the range of 10"rad/sec will

be damped in a distance the order of a few tenths of a
millimeter. If we shoose [Q—~, (k))=3X10' rad/sec,
u e will see that the mean free path from the damping
of the spin motion will be comparable to that from the
« lectron-phonon interaction.

We now estimate Aa~/a„ from Eq. (7), assuming

[0—co, (k))=3X10' rad/sec and Ace./a~, = 1/3X10 ', as
in Sec. II for the itinerant model.

With a=3X10' cm/sec, Ã„=500 Oe, y=2X10r
(Oe sec) ', p= 6 g/cm3, and bii 10a erg/—c—ma, we find

2 &~/&~=0.6X10 '.
If the accuracy of the experiments performed by

ioffrin et al. can be maintained for the system under
consideration in the present paper, this shift would be
observable.

IV. ESTIMATE OF THE MEAÃ FREE PATH

Until now, we have neglected all processes which
damp the motion of the lattice or the spins. Conse-
«quently the coupled spin-phonon modes discussed in
the last section are eigenmodes of the Hamiltonian and
h ~ve an infinite mean free path.

In metals, the presence of the conduction electrons
will damp the lattice motion, while the transverse
motion of the spins will also decay in time.

I.et us first examine the attenuation of an acoustical
wave by the conduction electrons. As mentioned
earlier, we shall be interested in temperatures near
room temperature. The wave vill be damped princi-
pally by the s electrons, which at this temperature have
a mean free path short compared to the wavelength of
the acoustical wave. As the lattice moves with the
electron gas, it will be damped by the viscosity of the
electrons. In this limit, we have the attenuation co-
eScient o,„given by"

a„= (8/15)(nelr. Q'/pa') (cm ').

lf n 1'0cam =', e& ——10 U, a=3XIO' cm/sec, p=6
g/cm' and, as above, Q=6X10" rad/sec and r, = 10 '4

sec, we find the mean free path to be about 0.1 mm.
In the present discussion, we are concerned with the
mean free path of a coupled spin-phonon mode rather
than a pure acoustical wave. But, as mentioned above,
we will be interested in frequencies sufficiently far from
the crossover frequency of the unperturbed spin-wave
and phonon branches that the mode will consist pre-
dominantly of lattice motion. Then the above esti-
mate should not be seriously in error.

The transverse motion of the spins will also be

2' C. Kittel, Quantlm Theory of Solids (John Qhley R Sons, Inc. ,
New York, 1963), p. 310.

damped. One may compute the niean free path which

results from the spin damping by replacing t
Q' —id, a (k))

in Eq. (6) by [(Q+tI')' —co,'(k)), where I' is the rate
of decay of the transverse spin amplitude. If

I'((~ Q —co, (k) ~, a,nd Q—coo,

(with k=cuo/a) one finds the contribution to the
attenuation rate of the coupled wave is

1 pro GOp F
o!s= cm

4 pa'M. tQ —~.(k))'

If I'=10 sec ', and (Q—a&,)=3X10' rad/sec, with
other quantities given above, one finds the mean free
path to be approximately 0.1 mm from this source.

One can make the attenuation coefFicient smaller b&

working farther from the crossover, so I Q—co, (k)] will

be larger in magnitude. As a consequence, the fractional
change in phase velocity for a given electric field will be
smaller. Even if o., is decreased in this manner, the mean
free path would still be limited by the interaction of
the lattice motion with the electrons.

We are driving the spins with a wave of frequency &2

and wave vector k=Q/a. Kittel" has shown that for
this situation, the transverse motion of the spins is
attenuated at the rate I'=(10"/Q) sec ' from eddy
currents induced in the metal by the motion of the
magnetization. To obtain this result, the conductivity
of the metal was assumed to be 0.=10"esu, typical of
iron at room temperature. If Q=6X10io rad/sec, as
assumed above, then from this mechanism, F—10'
sec-'.

The eddy-current attenuation rate is proportional to
the conductivity. If we choose to carry out the experi-
ment at low temperatures (say a,t helium temperatures),
then the eddy-current damping would become very
severe for a wave of the frequency and wave vector
considered here. This is the primary reason why we have
suggested the experiment be carried out at room tem-
perature. From the above estimates, it appears neces-
sary to work with a mean free path the order of a
fraction of a millimeter.

V. GENERAL COMMENTS

In this section, we consider a number of points which
we feel will be relevant to the experiment.

In order to obtain an eGect large enough to be ob-
served with an experiment of the accuracy of that of
Jo6'rin et al. , we assumed an electric field of approxi-
mately ai U/cm was applied to the sample. If the con-
ductivity of the sample is 10'~ esu, then the power
dissipated is approximately 4X10" erg/cm' sec. If the
field is applied for 10 4 sec, then the rise in temperature
of the sample may be estimated to be about 1'K, if
none of the energy is conducted away from the sample.
We have assumed the specific heat to be the order of
3nki erg/cma K, where kq is Boltzmann's constant.
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Thus it appears as if the electric field of the required
magnitude may be applied to the sample for about a
tenth of a millisecond, without sample heating of any
significant kind. If a sample with a thickness the order
of a millimeter is employed, then a wave train of roughly
10" wavelengths will traverse the sample in this period.

The preceding discussion indicates that an electric
field of the order of magnitude assumed in the first
sections of the paper may be applied to the sample for
a time long enough for many wave trains to traverse the
crystal. There is however, one difficulty associated with
the high (principally s-electron) current density which
will result from the application of the electric field. The
current density will produce a magnetic field h, . The
magnetic electrons will see the field h, in «,ddition to
the external field and the demagnetization field. The
presence of A', , will alter the spin-wave dispersion relation
in a complicated w«y, since h, will vary with position.
Since h, is proportional to the current density, and
consequently to K, we will find a second contribution
to the electric field dependence of w, in addition to the
Doppler effect.

The effect of an h, of a given magnitude may be
minimized by driving the current density parallel to
M, . (We assume any external magnetic held is applied
parallel to M„and that the sample shape is such that
the demagnetization field is parallel to the external
field. ) If the current density is parallel to M„ then fi,
will be perpendicular to the external field.

Let us assume the sample has a rectangular cross
section of width a and thickness d, with d(&a. Then
the field h, will be a maximum at the surface, assuming
M, and the current density perpendicular to the cross
section. At the surface, h. =2m. jd/c, with all quantities
expressed in cgs units. By making the thickness d small,
one may make h. su%ciently small that its effect may
be neglected. If we choose d equal to one micron, and
the current density j=10' A/cm2 (consistent with the
numbers given above), then we find h, =5 Oe at the
surface. Since we assume the Larmor frequency of the
spins to be 6X10io rad/sec, and a Lande g factor of 2,
the fractional change in the magnitude of the magnetic
field at the surface will be one part in Io'. This is at
the surface of the sample, where h, is largest. It appears
from the above estimates that the sample geometry
may be chosen so that the effect of h, will be dominated
by the Doppler shift.

En contrast to the discussion of Sec. IlI, applicatioii
of the electric field p«, rallel to M, will require the coupled
wave to be prop«, gated parallel to 3f„ in order to
obtain the maximum Doppler shift for a given field.
This will not alter the numerical estimates of Sec. III
in any significant way. As Kittel has shown, the normal
niodes of the system then involve lattice motion which
is circularly polarized, rather than plane polarized as
we discussed above. If we send a plane polarized wave
parallel to M„ its plane of polarization will be rotated
as it proceeds down the crystal, but each circularly
polarized component will suffer the same Doppler shift
to a very good approximation.

In this paper, we have considered the propagation
of transverse ultrasonic waves in the crystal.

Let us suppose for the moment that we treat the
conduction electrons as a gas of free electrons. There is
no change in the charge density of the positive back-
ground associated with a transverse wave, to first order
in the amplitude. The electron gas will then feel the
lattice motion only through the current associated with
the motion of the positive ions. The electric-field de-
pendence of the response functions of the electron g«.s,
in this approximation, will produce a negligible change
in the phase velocity.

Recent work24 has shown that an important, and
perhaps the dominant, contribution to the elastic
constants of the simple metals comes from the indirect
interaction of the positive ions through the conduction
electrons. In a manner similar to the discussion in Sec.
II of the electric field dependence of the RKY exchange
integral, one may show that there is no change in the
velocity of sound of a transverse wave, to first order
in the field.
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