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neglect of momentum transfer in the adiabatic theory.
The conclusion that momentum transfer becomes im-
portant in this energy range is consistent with the theo-
retical results of McCarroll. "

A basic assumption in both the Born and impulse
approximations is that the capture probability is small.
This assumption is not consistent with results of
XlcCarrolP' which indicate for energies of about 25 keV
a high capture probability in a range of impact parame-
ters which contributes heavily to the total charge
transfer cross section.

1n conclusion, it appears that no existing theoretical
calculation gives comprehensive agreement with the

measurement over the entire energy range of this ex-

periment, but several calculations agree over a part of
the energy range.
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The classical cross section 0 ~@,for producing a specified energy transfer b,B in the collision of two particles
1,2 having arbitrary masses and velocities v~, v2 in the laboratory system, is derived. The effective average
(for fixed speeds v~, e2} of aqua over all directions of the particle velocities v~ and/or vm is then computed.
These results are required in the classical calculations of atomic-collision cross sections via the procedures
recently proposed by Gryzinski. The method will yield the average of any function F(e,V, cos8) over all
directions of the particle velocities, where v=v& —v2, V is the velocity of the center of mass, and e is the
angle between v and V.

I. INTRODUCTION

ECENTLY, Gryzinski has published three papers' '
detailing his procedures for performing classical

~ ~

~

~

~

(nonquantum) calculations of atomic-collision cross sec-
tions. The utility of these procedures in electron-atom
and electron-molecule collisions has been examined by
Bauer and Sartky. 4 For such collisions, one requires the
cross section ooz(vi, v2) for producing an energy transfer
AE in the collision of two electrons moving with arbi-
trary velocities v1, v2 in the laboratory system. There
also is required ogler"'(vi, v2) the effective average of
ohio(vi, v2) over all orientations of vi and/or v2 for fixed
speeds v1, e2. Gryzinski has derived expressions for these
quantities, but use of these formulas is complicated by
an extremely awkward notation; moreover Gryzinski's
expressions involve some subsidiary approximations. For
these reasons, Stabler' has rederived —and obtained in
much simpler form —the exact expressions for ops and

* Supported by the National Aeronautics and Space Ad-
ministration under Contract NGR-39-011-35 and Research Grant¹-6-416.

' M. Gryzinski, Phys. Rev. 138, A305 (1965).
s M. Gryzinski, Phys. Rev. 138, A322 (1965).' M. Gryzinski, Phys. Rev. 138, A336 (1965).' E. Bauer and C. D. Bartky, J. Chem. Phys. 43, 2466 (1965).' R. C. Stabler, Phys. Rev. 133, A1268 (1964).

0q@"' in electron-electron collisions. Similar expressions
have been obtained by Ochkur and Petrun'kin. ' How-
ever, these authors'' have rederived 0&z only for
electron-electron collisions, i.e., for colliding particles
of equal mass, whereas for calculations of, e.g. , ion-atom
collisions by Gryzinski's procedures, one requires ogg
and 0&z'" for collisions of unequally massive charged
particles.

This paper derives the required exact formulas for
O.g~ and o.qg'" in the unequal-mass case. Application of
these formulas to examination of the utility of Gryzin-
ski's procedures in charge-transfer reactions is under
way (in cooperation with Hsiang Tai and Jean Welker).
This paper obtains the final formula for aqua'"(vi, v2) in
only one case, namely, Coulomb collisions; it will be
clear, however, that the method of performing the
average over all orientations is applicable to arbitrary
interactions, as well as to the averages of quantities
otllei tllaii 0'og(vi, v2).

II. CALCULATION OF eg~

I consider a collision between particles 1 and 2, whose
initial velocities in the laboratory system are v1= v1n1

' V. I.Ochkur and A. M. Petrun'kin, Opt. i Spectrosko iya 14,
457 (1963)

C
English transl. :Opt. Spectry. (USSR) 14, 245 1963)j.
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and v2 ——~2n2, respectively. Their laboratory velocities
after the collision will be v~'=eg'ng' and v2'=~2'+2'.

Correspondingly, the velocities of these particles meas-
ured by an observer moving with the center of mass are
Oq=Vqn~, 52=52tts (initial) and 5~'=t)q'ni', n2'=52'n2'

(final). ' It is presumed that the coordinate axes of the
laboratory and center-of-mass observers are parallel, so
that the components of the vectors defined above are
consistent with

true that

0(vg, vg) = dn'o(z; n ~ a')

dP'd8' sin8'0 (v; tt ~ n')

d(AE)dy'o(v; n~ n'),
p~V

vy ——V+0~, etc. , (1)
using (6).

where V is the center-of-mass velocity measured by the E (7) d (g )laboratory observer.

(ga)

(gb)

Also,

V= Vnv ——M '(mgvg+mmvm), M=mg+m2. (2)
1

0'gs(vy, v2) =
pa V

dp'8(v; n ~ n') .

For fixed vq, v2, i.e., for fixed 8, @, the right side of (9)
is a function of 8' and, therefore, by (6), of 4E. For
every value of 8' the integral in Eq. (9) runs over all
values of p' from 0 to 2s, because (for any initial 8, @)
the final relative velocity v' can have any direction in
space. The cross section 8(v; n ~ n'), though dependent
only on the angle between tt and n', can be a function
of y'.

The results so far hold for any 0-. For definiteness,
I now specialize to the Coulomb case

(3a)5~=m~ 'v, 52= —m~M
—'v,

5y' ——tnpjV 'v', V2'= —mgM 'v', (3b)

where

v=vg —vm=vn, v =vy —vs =vn, (4)

ZyZ2e
0 (v; n —+ n') = csc'(-', x),

2p'v
(10)

where the center-of-mass-system scattering angle z is
the angle between tt and g'; and Z~e, Z2e are the charges
carried by particles 1, 2. Substituting Eq. (10) in Eq.
(9), and employing

2 ~2~2 2 ~2&2 —2~l&1 2 ~1&1

=m2V. (02' —n~) =pv V(cos8—cos8'), (5)

where p=m&m~ ' is the reduced mass. Equation (5)
shows that for given v&, v2 the quantity DE is a function
only of O'. In fact

(iia)sin'(-', y) =-', (1—cosx) '

cosx= cos8 cos8'+sin8 sin8' cos(P—@'), (11b)
(6)

one finds
d(AE) =pv V sin8'd8'

are the relative velocities before and after the collision.
For given v~, v2 the vectors V, v are determined, so

that for given v&, v2 the polar axis of a fixed system of
spherical coordinates can be chosen along V; in this
system the polar and azimuth angles of g and n' are
8, @ and O', Q', respectively. Now suppose 1 is regarded
as the "incident" particle. Then the energy gain AE by
particle 2 (as seen in the laboratory system) is'

Let 0 (v~, v2) be the total cross section for given v~, vu.
Then the quantity ops(vq, v~) is defined by

a(vq, v2) = d(AE)&rgb(v~, v2).

Z1Z2e2 2 2~

0'gs(vy, v2) =
pvV( pv2 p

where

, (»)
(a bco&)'—

But if 8(v;n —+n') is the corresponding differential
cross section for scattering in the center-of-mass system
(wherein the collision cs,n change only the direction but
not the magnitude of the relative velocity), it also is

~These German symbols have been used here to designate
vectors —and related scalars —measured in the center-of-mass
system because barred boldface Latin symbols were not available.
Where possible, however, the paper follows the customary pro-
cedure of denoting center-of-mass quantities by barred symbols.

This result, and some other equations obtained in this paper,
can be found in Gryzinski s papers (Refs. 1-3), or in the earlier
work of Chandrasekhar. S. Chandrasekhar, Astrophys. J.93, 285,
323 {1941);R. E. Williamson and S. Chandrasekhar, ibid. 93,
305 {1941).

a= j.—cos8 cos8', b= sin8 sin8'.

When' a'&~b', as is the case for a, b of (13)

Thus,

d@
(a—b co~)' (a —b )' '

27r ZyZ2e (1—cos8 cos8 )
OAE(vl, vl) (15)

pv V pv'
i
cos8—cos8'

i

'
9 E. T. Whittaker and G. N. Watson, A Course of N'odern

Analysis (Cambridge University Press, New York, 1940), p. 113.
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Or, using (5), case, therefore, using (16)

O58('V1, V )2

2~(Z,Z;e2) 2 V'
1—cos'0+

V2[gE)2 pz' V

(Z1Zle') '
cosg, 1{)a

mph''

dllydI1g

with the restriction, also from (5), that

—1 & cos8 DE—/12v V & 1, (16b)

V2 hE
1—cos20+

pvV
cos0, 19

v= (V1 +'V2 —2V1'vllll 112) (17a)

V=M '(ml Vl +m2'v22+2mlm2vlv2nl nl)'~2, (17b)

which guarantees o11s&~0. For given vl, v2, if (16b) is
not satisfied, then

v2g(v»v2) =0) (16c)

i.e., values of AE for which (16b) fails cannot occur.
Equations (16) are the desired result for vials, in what

proves to be a convenient form for calculating ogg"f.
In terms of v&, v2, the quantities v, V, cosa are, using
Eqs. (2) and (4),

where v, V, cos8 are given by Eqs. (17), and the allowed

ranges of nl, n2 must be consistent with (16b), i.e., m

(19) appear only those nl, nl for which e~s(v»v2) &0.
Specifically, for given V1, vl, hE the integral (19) ru»
only over those directions n~, 112 for which

—1+DE/pv V« cos8~& 1, AE&~ 0 (20a)

—1 ~& cos8 ~& 1+DE/pv V, AE ~& 0. (20b)

Despite its apparent complexity, the integral (19)
can be evaluated in closed form. For any integrand
F(lll, lll, 'vl V2)

cos8 = (v V)
—'v V= (Mv V) '

XLmlvl m2v2 +(m2 ml)vlv2nl'n2j ~ (17c)
Fdn~dn2 ——

Vy V2

v1 dn11'2 dn2F(n1 n2 1'1 1'2)

It can be shown that in the special case m~ ——m2 ——m,
Eqs. (16) reduce to the seemingly very diferent ex-
pression for viz given by Stabler, l namely, '2 his Eq. (8).

or. cmcULmrON OF ~, «

Suppose the target particle 2 has an isotropic velocity
distribution in the laboratory system. Then for any
actual v~ the effective erg g is defined by

1
vla11s"' ———dn2~ vl —vln2~(T2z(V1 V2).

4x
(18)

' iXote that although Stabler regards 1 as the "target" electron
and 2 as the "incident" electron, his b,j', defined by his Fq. (1),
is identical with my AF. of Fq. (5).

This definition of the eQective fT~g is appropriate when,
e.g., the particles 2 are bound electrons in stationary
atoms being ionized by a beam of protons (particles 1).
If the atoms have velocity v, /0 in the laboratory
system, e.g., if the atoms form a beam, the velocity
distribution of 2, though isotropic in a coordinate system
moving with the atoms, is not isotropic in the laboratory
system. In this event, realizing that the total reaction
rate (e.g. , the total rate of ionization) is independent
of the observer's velocity, the simplest procedure is to
compute the total reaction rate in the system where the
velocity of 1 now is v~ —v, .

Once, as in (18), the distribution of v2 is accepted as
isotropic, the value of 0.&z'" obviously cannot depend
on the direction of n~. In other words, o~g'" now
depends only on the magnitudes of v~, v~, and so can
be averaged over n~ as well as n2. For the Coulomb

z 1 d111dz71z 2 dI12dz 2

Vy V2

X 8(V1 vl)8(V2 v2)F(lll 112 Vl V2) ~

But vy d11&dv& is the volume element di& in the space
formed by the components of the vector v&= ~&nl ~ Thus,
Eq. (19) can be replaced by

(Z1Z2e') '
eff

8~~ ~E~ 2V12V22
dVldV28(vl 'vl) 8(V2 v2)

V2 AE
X—1—cos'8+ cos8 21

pvV

eff
(Z1Z2e') '

82r
~

AE I 2V12V22
dvdV8(vl —vl) 8(v2 —V2)

V' hE
X—1—cos28+ cos8, 23

'v pvV

"Again the exigencies of the printer have determined the choice
of symbols. As used here, the dot in no way is related to the time
derivative. Instead, the quantities 81, 82 here merely denote dummy
VariableS tO be diStinguiShed frOm 7li, V2.

with the understanding that under the integral sign
v» v2 now replace vl, vl in Eqs. (17) for v, V, cos8. Con-
sequently, recalling (2) and (4), the equations relating
vl, v2 to v, V in (21) must be

v1=81nl ——V+m2M 'v, v2 ——v2n2=V mlM 'v. (22)—

With (22), the Jacobian of the transformation from
dv&di2 to dvdV is unity. Hence,



148 ENERGY TRANSFER BETWEEN TWO MOVING PARTICLES 57

wherein, recalling 8=cos '(it nz),

zr (ZzZze') '
&5E vl)v2

b

dv d V de sin8

XVV48(vz —vz)8(vz —ziz)[1—cos'8+(AE/44V V) cos8], (2a)

vz ——(V'+mz'M 'v +2m~ 'VV cos8)"' (24a)

vz= (V'+mz2M 'v' 2m—M 'vV cos8)"' (24b)

Since (20) and the integrand in (23) do not involve nv
or the azimuth angle p, Eq. (23) simplifies to

l9

~i~

i bi
~

(4)

i

I

I

J

(c)

where the limits of integration over 0 are determined

by (20).
Integrate (25) over the allowed range of cos8, recalling

that

dxj(x)8[g(x)]=+ — f(x)
dx

(26)

where x; are the roots of g(x)=0 in the integration
interval. Because of (24a), the quantity vz —vz as a
function of cos8 vanishes only at

cos8, = (2mzM 'v V) '(vz' —V' —mz'M 'v'). (27)

Thus,

zr(ZzZge') '
Odg'ff vl v2 =

1aE1'vz'vzz

(m,~-'vV -'tt hE
XVV41 —

I
1—cos'8;+

Vl 5 i4VV
cos8,

1)
t'M V mzv mzvz )

X8
1

+ —
1

—V2 (28)
-k mg M m2 /

(V—mzM
—'v)'~& vz, ',

vz, '~& (V+mzM 'v)',

where, recalling Eq. (5),

(29a)

(29b)

integrated over that portion of the 6rst quadrant of the
v, V plane for which cos8; from (27) lies within the
limits on cos8 specified by (20). These restrictions on
v, V implied by substituting (27) in (20) take the form,
for positive or negative AJ",

~i~

(b)+

FIG. 1. Integration region (shaded) in the v, V plane for Eq.
(28}. Lines (a}, (b), (c) are plots of Eqs. (31a), (3ib), (31c),
respectively. Lines (a), (c} intersect at v=v„; lines (b), (c) at
v =v&, . The ellipse (d) is a plot of Eq. (32), for the case that its
intersections with the boundaries of the shaded region occur on
lines (a), (b), at v=v, vp, respectively. In this case, the limits
of integration in (33) are v~

——v and v =vp.

below the line [termed line (a)]

V—mgM 'v=vi. ,
'

lying above the line [termed line (b)]

m~ 'v —V=v

snd lying above the line [termed line (c)]

V+m2M 'v= via.

(31b)

(31c)

The shaded region in Fig. 1 is this allowed portion of
the v, V plane.

The 8 function in (28) vanishes unless

—,'M V'+-', pv'= —,'m&vi'+-,'m2v2' ——E
= 2mzvz + smzvg (32)

tvhere E is the total energy in the laboratory system. In
other words, the quantities v, V in (28) indeed must
have values consistent with conservation of energy.
Equation (32) is an ellipse in the v, V plane. Then,
integrating (28) over V, and again using (26),

zr(Z42, e')'
e~44"(»,vz) =

Of course

vi, = smaller of v~, vi',

vyg= greatel' of vy, v] (30a)
AE

dv V' 1.—cos'8 1 cose, 33
pv V,.

»'= [v,' (2/m, ) (a—Z)]"',
v&' ——[vz'+ (2/m&)(AE)]"'.

(30b)

Equations (29) imply that (28) is integrated over the
portion of the first quadrant of the v, V plane lying

integrated in the range v~~& v~& v for which points v, V
on the ellipse (32) lie in the shaded region of Fig. 1.
Here, for given v~, v2

V;(v) = [M '(2E—44V')]"'
—[M (mzvz +mzv& 44v&)]z/2 (34a)
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and, in (33), V, replaces V in the definition of (27),
1.e.) now

cos9,= (2VV,) '[vi' —v '+M '(ml —ml)v') (34b)

as one expects from Eqs. (17a) and (17c).
Equations (34) reduce (33) to a simple integral over

v, yielding finally

1r(ZiZle')'
Ogg Vy)V2 vl —v2 v2 —vl vl —vu

+(vi'+vl'+vl"+V1")(V. —11)—v(v. '—vl') j (35)

where vl', vl' are given by (30b). The integration limits
vl, v, in (33) and (35) remain to be determined. Other-
wise, (35) is the desired result for vqs"'.

IV. DETERMINATION OF v~) v„

Evidently, v&, v„are the values of v at which the ellipse
(32) intersects the boundaries of the shaded region in
Fig. 1.From Eqs. (31c) and (32) one sees that the elhpse
always has two real intersections with line (c), of which
both, or only one, or neither may lie on the boundary
of the shaded region, depending on the values of v~, v2.

These intersections occur at v= v~ and v= v&, given by

4E &&0, i.e. , vlg
——vl, (36a)

vs= vs+v2)
/ /

b,E&&0, i.e. , vl, =vl', (36b)
VC= Vs +V2,

where v~ &~ v&. Similarly, in the first quadrant of the v, V
plane, lines (a) and (b) each have at most one inter-
section with the ellipse, at V=V and v= vp, respectively,
given by

(iii) V„~&V~, Vl &~ Va. (39c)

(iv) v.,&v, ~&vv, &vl,
or equivalently, v ~& v„, vv, &~ vv (39d)

(v) either vv &~ v„or (39e)

where V., is the value of v at the intersection of lines

(a) and (c); vv, is the value of v at the intersection
of lines (b) and (c). These values are, for positive or
negative AE,

v. ,= (2ml)
—'M(vl, —vl.) = (2ml) 'M ivl —vl'i, (40a)

vv, ——(2ml) 'M(vl, +vl, ) = (2ml) 'M(vl+vl'). (40b)

Equations (36) and (40) imply" that cases (i)—(v) of
(38) correspond to the following limits in Eq. (35), and
occur under the following circumstances:

(1) 'vl= V1 vi
g

vu= vl +vl ) /lE' ~&0

v~ =vl+ vl, gE ~( 0

when

(41a)

(41b)

4mgm2 V2 Vy

AE. &&El El+ El ——El , (—41c)—
M' Vl V2

provided also 2mlvl &~
~
ml —ml

~
vl DE &~0 only (41d)

(ii) vl VV' vl——', v—= vi+vl, /lE& 0 (42a)

(again referring to Fig. 1)

(i) v, & v.„vv. & Vl,
.

or equivalently, v„&~v, vv. ~& vv (39a)

(ii) v, & v .« vl & v v. ,

or equivalently, v„&~v, vv ~& v b, (39b)

vl v2 vl v —vl~+v2', &E & 0 (42b)/ /

AE&~0, i.e. , vl, ——vl', (37a.)
Vp V2 +Vl ) when m~& m2 and

V~= V2—Vy )

Vp= V2+Vj )

4mgm2 V2 z'1/iE &~0, i.e. , vl, ——vl. (37b) E, F,
M2

Because the ellipse (32) is everywhere concave down-
vrard in the first quadrant, it must intersect the boundary
of the shaded region no more than twice; it may not
intersect the boundary of the shaded region at all. Thus,
referring to Fig. 1, it is clear that the only possible limits
of integration in (33) are

4m], m2 V2 Vj.
& AE ~( El El+El —E—l . (4—2c)—

M' vy vg

(iu) vl= vl —vl, v~= vl+V1
&

AE&~0 (43a)

vl=vl' —vl', V~= vi'+v1', DE&~0 (43b)
(1) 'Vl = V~, V~= VV,

(11) vt=va )

(iii) vl ——v„v„=v„
(1V) 'Vl = V» V~= VP,

(v) no intersections, aqua" (vl, vl) = 0.

(38)

when

4mgm2 V2 V1
/lE &~El El El —Ev , (4—3c)———

Vy V2 1

provided also

The conditions for the above cases to occur are"-

"See Sec. V of E. Gerjuoy, University of Pittsburgh Space
Research Coordination Center Report No. 25, 1965 {unpublished).
The present paper is a condensed version of this report.

211livi &~
~
mi —ml

~
vl, DE~& 0 only. (43d)

(iv) vl = vl —vl, v =vl'+ vl', AE & 0 (44a)

v 1= Vl —V1, V„=1ll+ Vl, /lE &~0 (44b)
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AE~&0; (45b)

when Eq. (43c) holds and Eq. (43d) fails, provided

~E&0. (45c)

Of course, because ri', v2' in (30b) must be real, Eq.
(45a) holds unless

——,'m2v2' ~& aE ~& —,'m~vg', (45d)

which expresses the fact that the particle losing energy
in the collision cannot lose more than its initial kinetic
energy.

The above conditions for the occurrence of cases
(i)—(v) can be expressed in a variety of alternative
forms. For example, when AE~& 0, each of the following
conditions is implied by and implies" (i.e., is equivalent
to) the pair (41c), (41d):

(2m~) '(Mvi'+
~
mi —mg

~
vi) ~& vg, (46a)

(2~2) '(~»+ ~~i—~2~»') &~~2', (46b)

0~&vi'~&(2mi) '(M» —~mi —m~~»'). (46c)

The equivalence of (46a) and the pair (41c), (41d) when
AE~&0 is easily demonstrated. "Actually, (46a) is the
condition which follows directly from the first set of
conditions for case (i) in (39a), namely, from r~ &~ v„„
vq, ~&», Eq. (46b) is obtained from the equivalent set
v. ,&v, vz, &~op. Thus, Eqs. (46a) and (46b) must be

when mg&m2 and

4mymg
I'g —I'g —5')—+ I'g—

M Vg

4?H QP?$'&

&~ DE &~ Ei L'+—L2 —L—i .—(44c)
M' 'V2 'L'y

(v) ass" (vi, n2) =0 (45a)

when Eq. (41c) holds and Eq. (41d) fails, provided

equivalent statements of the same restriction on the
values of ni, vg, AE, i.e., if either of (46a), (46b) holds
for given ~~, ~2, AE then both of them must hold. Indeed,
the equivalence of (46a) and (46b) can be demon-
strated" directly, without reference to their common
genesis in (39a). Conditions (46a) and (46b) arose from
the use of (26) to eliminate first the b(8i —vi) factor in

(25); eliminating first the 8(82—v2) factor in (25) leads"
to the condition (46c). Similarly —via the procedures
which have just been described —one obtains alternative
equivalent conditions for the remaining cases (ii)—(v),
as well as for case (i) when hE &~0.

Equations (35) and (41)—(45) complete the specifica-
tion of ~qs"'(si, s2) for Coulomb collisions. However,
comparing Eqs. (19) and (33), it is clear that the calcu-
lation of 0&z"'(vi,») for any (central) interaction would
not be essentially difference from the Coulomb case.
Whenever, as in (10), the angular variation of o depends
solely on the angle z between n and n', 0~x(vi, v&)

defined by (9) will depend only on cos8 and cos8'. But
cos8' then can be eliminated in favor of AE via (5), so
that a~a"'(vi, v2) defined by (18) will be an average over
all ni, n2 of a nzz(vi, v2) depending only on V, v and cos8,
where Eqs. (17) and (20) continue to hold. Thus, one
will be led to a single integral involving 0~ s of form (33),
between upper and lower limits v~, v„given by precisely
the formulas developed in this section. Similar remarks
pertain to an average over all n&, n2 of any function of
v, V, cos8, where these quantities obey Eqs. (17). Of
course, only in special cases, such as the Coulomb case,
will the aforementioned integral from e~ to e„be doable
in closed form.

I mention that the result (35) does reduce to
Stabler's' '0 when m~= m2.

ACKNOWLEDGMENT

Finally, I wish to thank Hsiang Tai for checking the
algebra and helping proofread the manuscript.


