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First-order and second-order (in strain) magnetoelastic effects in yttrium iron garnet (YIG) have been
studied using a pulsed ultrasonic technique and have been interpreted using finite-deformation magneto-
elastic theory. Small-amplitude plane-wave modes in (100), (110), and (111)directions in uniformly mag-
netized, homogeneously deformed cubic single crystals have been analyzed including first-order and second-
order magnetoelastic coupling. First-order and second-order magnetoelastic constants have been com-
pletely determined for VIG. The second-order "morphic" effect has been analyzed and completely evaluated
for YIG in terms of 8 "morphic" constants. Experimental results are described which agree with finite-
deformation magnetoelastic theory and disagree with small-strain theory.

I. INTRODUCTION

'HE acoustic velocities of plane-wave-like modes in
saturated ferromagnetic specimens depend on the

magnetic-Geld strength and magnetization orienta-
tion. ' ' Extensive measurements of these Geld-strength
and magnetic-orientation dependencies have been made
on single-crystal yttrium iron garnet (YIG) specimens
and have been interpreted using phenomenological
finite-deformation magnetoelastic (ME) theory. Finite-
deformation ME theory is required to analyze second-
order ME eBects since the usual small-strain theory is
valid only to Grst order in small quantities. For ex-
ample, the symmetry of the second-order "morphic"
e6ect, which results from magnetostrictive distortion
and third-order (in displacement gradients) anelastic
energy terms, is not identical to that of the intrinsic
second-order ME interaction, as is incorrectly pre-
dicted using small-strain theory.

A pulsed ultrasonic technique capable of measuring
small changes (1:10') in acoustic velocity has been used
to measure the velocity dependence on magnetic Geld
strength and magnetization orientation. Using these
measurements, first-order ME constants and intrinsic
second. -order ME constants have been completely de-
termined for YIG. Second-order morphic constants
which characterize the "morphic" eGect have also been
completely determined. This work reports the first
evaluation of intrinsic second-order ME constants and
second-order "morphic" constants. Second-order ME
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lished LD. E. Eastman, J. Appl. Phys. 37, 996 (1966)j.
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constants are of interest in parametric magnon-phonon
processes. ~'

In Sec. II, small-amplitude ME plane-wave propaga-
tion in a homogeneously saturated stress-free ferro-
magnetic medium is considered. The "morphic" eBect
is described and morphic constants are evaluated.
Nondegenerate ME plane-wave modes in (100), (110),
and (111) cubic crystal directions are determined. In
Sec. III, the experimental technique is described and
experimental results are presented and analyzed.

II. MAGNETOELASTIC PLANE-WAVE
PROPAGATION

A. Basic Description

Small-amplitude plane-wave propagation in a mag-
netically saturated, homogeneously deformed single
crystal is considered. A deformed medium must be
considered in treating second-order (in strain) ME
eBects since ferro- and ferrimagnets possess a spon-
taneous magnetostrictive distortion.

It is convenient to describe every material particle
by three positions: the natura/ reference position with
coordinates a;= (a,b,c) in the undeformed reference
state having density po, the initial deformed equilibrium
position with coordinates X,= (X,F,Z) at time to in
the initial state having density p, and the present posi-
tion with coordinates x;= (x,y, s) at time t in the present
state having density p. All three positions are referred
to the same Cartesian system. It is also convenient to
introduce three displacement vectors:

u;=x;—X;= (u, v, io) = displacement from initial
position to present position, (2.1a)

u, '= X;—a;= (u', n', w') =displacement from natural
position to initial position, (2.1b)

43. A. Auld, R. E. Tokheim, and D. K. Winslow, J. Appl.
Phys. 34, 2281 (1963).' F. R. Morganthaler, J. Appl. Phys. 34, 1287 (1963).

s B. A. Auld, Proc. IEEE 53, 1517 (1965).
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q;= x,—a;= (q,r,s) =displacement from natural
position to present position. (2.1c)

The deformation of the body is described in the ma-
terial description by

(2 2)x,=x;(a,,t),
with

x, (o;,t,)=X,=X;(o;).

(2 3)

The magnetization per unit volume M is not con-
served in a ferromagnet undergoing dilatational changes.
Following Brown' and Tiersten, ' it is assumed that the
magnetic moment per unit mass, m= M/p, is conserved
at fixed temperature. '

The stress tensor T;; is not symmetric, owing to
magnetic-body couples. The magnetic-body force term
M, (itH, /Bx, ) in Eq. (2.4) is due to the interaction of
the momentum M, with the nonuniform Geld BH,/jx, .
In Eq. (2.'I), BU/Bmi is an eBective local Geld which
describes ME and magnetocrystalline anisotropy inter-
actions while the third right-hand-side term is the ex-
change interaction.

A more simple and convenient form of the mechanical
equations of motion is obtained when all derivatives
are transformed to natural-state variables. Using the
identityi3

L'qttotions of Motiort

It is assumed that the state of the system is de-
scribed by the temperature T or entropy 5, deformation
gradients Bx;/Bu, , magnetic moment per unit mass m;,
magnetic gradients Bm;/Ba, , applied magnetic Geld Ho,
and external surface force per unit area T;. The general
coupled isentropic equations of motion for the mechani-
cal and magnetic systems have been derived"0 ":

d~xi ~ Tij ~IIi
p -= +M,

dt' Bxj 8xj

with
pp a(xi x2 xg)J=—= = Jacobian,
p 8(a, ,a~,a,)

the mechanical equations of motion become

d'x, BI';I, Bag BH;
pp- = + M,

Bar, Bxj Oak

I';/;= po
a (ax;/aa~)

(2.8)

where

dppEi
—POgij Isla H jg

dt

= stress tensor,
BXj 8U

lii=p
Ba,„B(Bx,/Ba„)

P;I, is the hrst Piola-KirchofI' stress tensor. "
(2 5) The energy function U(S,Bx,/Ba, ,m, ,Bm;/Ba, ) cannot

be an arbitrary function of Bx,/Bo, , m;, etc., because it
must be invariant under all rigid motions of the de-
formed and magnetized body. ' "" As shown by
Tiersten, ' " this invariance requirement can be satisGed
by using variables of the form"

BU 1 8 BU
III„-'=HI„-— +——

poa; p, a; a(a ia;))
= eA ective magnetic field,

(2.7)
with

U= U(5,q;, ,n,*,G, ,), (2.9)

1 t9XIc BXIo
'g j $ 'j strain tensor 2.1Oa

2 8ai 8aj
U = U(S,itx;/aa, ,m;, Bm, /Ba;)

= local internal energy per unit mass,

HI, =HO~+Hg, '= Maxwellian magnetic field,

IIOA, =- applied magnetic field,

III,'= dipolar magnetic field,

glol =gyromagnetic ratio, "
281gC

G;j=
80'.Ic BQg

Bai Baj

8/i Bg& Ogle Bgjc
-+—+

2 Baj Bai Bai Baj

IPx@

A; = Qp,
Bai

(2.10b)

(2.11)

(2.12)

stijl, =unit skew-symmetric tensor.
7 4V. F. Brown, Jr., J. Appl. Phys. 37, 994 (1965).
g H. F. Tiersten, J. Math. Phys. 6, 779 (1965).' This assumption is subject to scrutiny at high temperatures

because of the thermodynamic definition of m;.
'0 D. E. Eastman, Ph.D. thesis, Electrical Engineering Depart-

ment, MIT, Cambridge, Massachusetts, 1965 (unpublished)."H. F. Tiersten, J. Math. Phys. 5, 1298 (1964)."It is assumed in the following that the g factor is constant.

(2.13)
lml

13 I'hysical Acoustics, edited by W. P. Mason {Academic Press
Inc. , New York, 1964), Vol. I—A, p. 91—92.

'4 R. A. Toupin, J. Rational Mech. Anal. 5, 849 (1956).'~ The set of variables n;;, a;*, and G;; in Eqs. (2.9)-(2.12) can
be shown to be equivalent to Brown's (Ref. 7) Ezz, n;*=ca&R;&,
and (Bm;/BX, )(8m;/BX&). The a;*'s in Eq. (2.11) are used in
preference to Brown's ~;*'s as the latter are difficult to evaluate
beyond first order in Bx;f8a, .
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+ g jk)l(np )S)rlijitkl
2l

1
+ gii'kim n (n p ~~) Vij Vk'lou'in

with"

+ 0

+~;,&,,+~,,~En;,«-E

+ 0 ~ ~

)

g (n„*,S)=K„n,*n)'

Expanding U in the usual manner, one obtains

poU= poUo(&)

+g(n.* 5')

+g,, ( .*,s)n;,

(2.14)

initial-state entropy 8 differs from the natural-state
reference entropy. In the analogous expansion of the
Helmholtz free energy, the corresponding P;; is related
to thermal strains. The ME constants b;;E„-E are the usual
first-order magnetostrictive constants, "and the b;jE, E

„'s
a,re Seeker-Doring constants. The latter are usually
much smaller than the former. They are unimportant
in the present study of ME wave propagation and are
henceforth neglected. (4) In Eq. (2.17), the c;,k&'s are
the usual adiabatic elastic moduli. The 8;jkE „'s are
second-order ME constants and are of principal interest
in the present study. (5) In Eq. (2.18), the C;,ki „'s are
third-order elastic moduli. They are of interest because
they are involved in the "morphic" eRect. (6) In Eq.
(2.14), the X;,'s and X;,ki's are exchange and exchange-
striction constants.

In Appendix I, the energy function U for the cubic
point groups 0, OI„and Td is given correct to second
order in Bx;/Ba, in ME energy terms and to third order
in Bx;/Ba; in mechanical-energy terms.

B. Moryhic EBect+ K„„n—,*n,*n;n,*+, (2.15)
2~

gv(nn*P') =P ~+1 *ik «k*«*

+—~t~I;Emrk&g &E 0'm 0'~ +
2I

All ferromagnets with magnetostrictive coupling have
a spontaneous magnetic-orientation-dependent distor-
tion. In a uniformly magnetized stress-free cubic
specimen this distortion is described to lowest order

(2 16) by the homogeneous static displacement gradients":

gijki(np )~) &ijkl+~ijklwaan nrem +ok' ')

g ki (no P)=C ki +"
1 i)'(po U)

h. ;.=—
if )

(2.17)

(2.18)

with

gts —hgClg )

'Vb =hyCX2 )

/
tV, =hqaP)

8, =Wb =n2O. 2+3)
I l r+c a n21&3 )

I
Qb ='U& = n2AyO'. 2 )

~44

(2.19)

~'( oU)
Bj/rE „———

gs~gI E~&~ ~O'~ &, &, a &' „=@=a

In the spirit of Brugger, '7 thermodynamic definitions
of the phenomenological constants E;;, -, 8&'jI,E~&)

are used in Eqs. (2.14)—(2.18). These definitions mini-
mize numerical complexity in actual calculations.

The various terms in Eqs. (2.14)—(2.18) are identified
as follows: (1) poUo is the internal energy at zero
no, q, G. (2) Equation (2.15) describes the magneto-
crystalline anisotropy energy. It contains terms in
Bx;/Bik; due to the no*'s and, in principle, contributes to
first-order and second-order ME effects. Usually n~*
can be replaced by o.~, i.e., deformation effects can be
ignored, because K;j, IC;;I,E, etc. , are numerically very
small compared to b;jI,E, B;;I„E, etc. This is true for
YIG and is expected to be true for nearly all ferro- and
ferrimagnetic materials. (5) In Eq. (2.16), P,, is related
to entropy-dependent strains which arise when the

"Only terms having even powers in aP are allowed because U
must be invariant under time reversal."K.Brugger, Phys. Rev. 133, A1611 (1964).

71 g h2=-
CIy C2 2C44

BQ Bsq
N~ =

BG BQq

BQ2
&c = , etc.

883

C —~D B2—

with C and D being constants. This second-order ME
effect, which is due to static magnetostrictive distor-
tion and anelastic energy interactions, is called the
"morphic" effect. ' lt is similar in form to the dominant

18 The b;;k& reduce to b1 and b2, in the usual notation, for mag-
netically saturated cubic crystals.

"See Vf. F. Brown, Micromagnetks, (Interscience Publishers,
Inc. , New York, 1963}, p. 124. The inanitesimal rotations
$(Nq' —n '), etc., were set equal to zero in arriving at Eq. {2.19).

The bars, n~, etc., denote initial-state values.
Upon expanding the energy about the initial state

and taking this deformation into account, both second-
order and third-order (in strain) mechanical energies
lead to energy terms of the form
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TAsLE I. Morphic constants Dggq.

Dehnition

Dl ll ~1 (3411 41'2+ C111. C112)

D123 =hl (—c12
—c44 —C, 112+CI g)

D144 = h2 (c12—444+2C144)

D155 ~2(412+3444+2Cl 5)

D155(2) =h2(cll+c44+2C155)
D441 1~1( 2444+ C144 C155)

D441 ~1{Cll 412 2C44)

&456 = h2(2444+2C456)

with

C11—C12

Values
(X10' erg/cc)

20.4 ~4.4
= —11.3 ~4.8

12.3 ~2.6
13.5 ~a.S
13.1 ~1.5

= —0.3 +1.7
= —0.18~0.01

2.2 ~1.8

= —2.24~0.12 (x ao-')

2C44

Use cgg and bg g data':
=2.69 (X10"dyn/cm }

cl2 = 1.077 (X10'2 dyn/cm2)
=0.764 (X10'2 dyn/Cm2}

= —4.61~0.13

b» = (3.6&0.2}X10' dyn jcm2

b44 ——(7.2~0.2}X105 dyn/cm2

a Elastic moduli cga data taken from Clark and Strakna (Ref. 22);
btl and b44 taken from Sec. III; Czac taken from Sec. II. All data are evalu-
ated at room temperature.

(cx)'(BN/Bu)' terms in the intrinsic second-order ME
energy.

The symmetry of the morphic effect on small-
amplitude wave propagation is not identical to that of
the linearized second-order ME energy because of
contributions from -', c~~q~q~, if the symmetries were
identical, one would need only to dehne new ME
constants B&~'"'=8+8™~~ and proceed" Lace Eqs.
(A2)—(A4)]. This is due to the fact that third-order
&t&I/8a terms in ac~«g~ga cannot be rewritten in the
form of a linearized third-order energy 6C'»&S&SI&S&,
where S~ is the infinitesimal strain,

Bg,
S~= (1——,'5;,) —+—,ij 2, 2 = 1 6. (2.20)

BQ; BQ;

The morphic effect on small-amplitude wave prop-
agation in cubic crystals is described by inserting the
displacement gradients LEq. (2.19)$ in the general
linearized equations obtained from the wave equations
(2.4) or (2.8) and (2.5). This lengthy calculation is
summarized in Eq. (A2) in Appendix I, where simi-
larities and differences of the morphic and intrinsic
second-order MK effects are clearly shown. It is ob-
served that eight morphic constants D~~~ are needed
to describe the morphic effect in cubic crystals (Table I).
In the case of elastic isotropy (c»=c»+2c44), Di&;&;&"

=D~s~"' and D44~ "——0 and the remaining six morphic
constants have a one-to-one relation with the six in-
trinsic B~~g constants, i.e., the symmetries of the
"Earlier work on the morphic effect neglected these )C~an~ng

contributions because of the use of small-strain theory (Refs. 1, 4}.

morphic and intrinsic second-order ME effects on wave

propagation are identical )see Eq. (A3)).
The morphic constants D~~~ can be determined if

c~~,"b~~, and C~gg are known. The third-order elastic
moduli C~&q have been determined for YIG."In units

of 10'i dyn/cm' and at 28'C, they are (in the Brugger"
notation):

QI yl = —23.3 +0.81

Cgg2
———7.14~0.6,

C»,——0.33~1.3,

Qy44 = —1.48&0.29,

Cysts

———3.06&0.14,
C456 = —0.97+0.16 .

Morphic constants for YIG are evaluated in Table I.
A different set of constants results if the equations of
motion are written in terms of initial state derivatives
8/BX, instead of natural state derivatives 8/Ba;

The morphic effect is static in nature and conse-

quently will not occur in high-frequency processes that
use a time-varying magnetization &r, (t) 4' T.he general
linearized equations (A2) and (A5) can be used to
study such processes by simply setting the morphic
constants equal to zero. A straightforward investigation
of the morphic effect for time-varying a, (t) indicates
that it will retain its static character for frequencies
well below the characteristic frequency f V/2L, where

V is the acoustic velocity and I is a sample dimension.
Near and above f„sample resonances are expected.
These gradually diminish in amplitude with increasing
frequency and damping and should have no practical
eRect for frequencies much higher than f,

C. Nondegenerate Plane-Wave Modes

The velocities and polarizations of small amplitude
plane waves propagating in (100), (110), and (111)
crystal directions are now considered. These modes
have nearly pure shear or longitudinal elastic polariza-
tions which permit individual modes to be excited using
transducers. Modes are dominantly elastic in the low-

frequency region of interest (co~10' rad/sec, IIO 1—10——
kOe for experiments), with the ME interaction being a
small perturbation, and will be characterized by their
elastic polarizations.

The two shear modes in (100) and (111)propagation
directions are degenerate in the unperturbed (pure
elastic) approximation and consequently are sensitive
to all perturbations, including small rod misalignment.
While these nearly degenerate shear modes have inter-
esting properties, such as magnetic-dependent acoustic
Faraday rotation, and birefringence, they are difhcult
to use in determining ME constants because of this
sensitivity to perturbations. Consequently, only the
five nondegenerate modes in (100), (110), and (111)
oriented rods are considered in this study. "These con-

-" A. . E. Clark and R. K. Strakna, J.Appl. Phys. 32, 1172 (1961}.
~ D. E. Eastman, J. Appl. Phys. 37, 2312 {1966}.This work is

also contained in Ref. 10.
~ Rod misalignment effects on these nondegenerate modes add

only a small colstant perturbation to the velocity and do not
affect the elastic polarizations.
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TABLE II, Nondegenerate mode velocities in I 001), t 101j, and I iii j oriented rods.

Rod, orientation,
mode

L001j rod,
long. excit.

L101j rod,
long. excit.

Natural velocity'

2bll
(1) poW =c»+I Bl»+5b»+D»1+In Me2j cos 8— —4n-M, sin 8 cos 8xll

M,

Cll+C12+2C44
(2) pPV = +—', {L

—Bl 11+2B123+4B441—6bl1 —4b44 —Dll+2D123+4D441 "—D441 "jsin'8 sin'@
2

1

+f4B»3+4b»+6b44+2D»&(')+2D»5(') j(cos 8—sin 8 cos'p) }— {(bllF 1+b44F2)'xll
M,2

+(bll —b44)'F3'x22} —g{167r(bllFl+b44F2) sin8 cos8xll+2L(4vrM, sin8 cos8)'xll —@AM,' cos'8) j}
sin28 sin28

with Fl = — sin2@ F = — (1+cos2&) F3=—sin2@
sin8

2

$101j rod,
shear excit. ,
u[ib'(L010])

I 101j rod,
shear excit. ,
u~)a'(P10i j}

Liiij rod,
long. excit.

{3) ppW =c44+2{(B456+b44+D456) (cos 8—sin28 cos2&) (B441+bll &b44+D441( +&441( )) sin 8 sin2@}

b44 '
t cos228 sin2&X»+cos28 cos2&X22j

M,

Cll —Cps

(4) ppÃ = +4{—LB»1+2B1 3+6bll+Dlll+2D123j Sin 8 sin'f 112b44 —4b»+2D»3(" —2D» (2)j
2

bll
X (cos'8 —sin'8 cos2$) }——(cos'28 cos2pxll+cos'8 sin2@x22)

M,

Cll+2C12+4C44
(5} poH = + 3 L4B155+2B144+4B456+4b11 +1 ib44

2b44

+4' Al, '+2D»g('l+2D»5(2)+2D144+4D456j cos'8 — —4ziV, sin'8 cos'8xl l

M,

~M
with X»~

4' (co~1co~ sin'8)
a).~ = —yo@rM,

4'M
X22-

4rarII
~a = —po(ao+B')

a The constants DQgQ are summarized in Table I.

[001): u„p;-exp[i(Kc cot)], — (2.21a)

K
[101]: u, , g; exp i (a+c) —cof-

V2
(2.21b)

sist of longitudinal modes with (100), (110), and (111)
propagation directions and two shear modes with a
(110) propagation direction. All erst-order and second-
order ME constants can be evaluated using these 6ve
modes.

ME waves propagating in [001], [101],and [111]
directions vary as

with u, b, c=natural position coordinates, p. ,=o.;—cx;

=magnetic wave vector, K=co/W= wave number, W
=natural velocity. The natural velocity W is the wave
speed referred to natural dimensions,

lW= I.p/TI. , (2.22)

where Lo is the acoustic path length in the natural
undeformed state and TI. is the acoustic transit time.
Thurston and Brugger'4 give an excellent description
of the natural velocity. It is advantageous to use the
natural velocity instead of the actual velocity V,

K
[111]: u;, p; exp i (a+b+c) cot—, (2.21c)—

v3

V= W(L/L o), (2.23)

~R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(1964).
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where I. is the initial-deformed-state path length, as

length changes and propagation direction changes due

to magnetostrictive distortion are then automatically
taken into account. '4

Nondegenerate small-amplitude wave velocities" and

polarizations are obtained by substituting e; and p, ; of

Eq. (2.21) into Eqs. (A2) and (A5) and solving the
resulting linearized equations. Results are summarized

in Table II. The polar angles 0, p denote the static
magnetization direction in the laboratory coordinate
system (d', b', c') defined in Fig. 1 (8=polar angle

measured from i', @=aximuthal angle measured from
tt'). The c' axis is taken parallel to the rod axes of rod

specimens. Velocity expressions in Table II are inde-

pendent of E and are valid in the low frequency region.
The approximations cv«coq and 'AE2~~&co~ have been

made, where col, is the spin-wave frequency.
More general dispersion relations valid in the cross-

over region can easily be obtained from those in Table
II by substituting

W'= ((a/E) s,

X22
41r(Ms —ht )

~11
4K(res M )

c OOI

C

a[

A

b'

=b 010

Fro. i. Crystal coordinate system (e,b,c) and laboratory co-
ordinate system (a', b', c'). The crystal directions of the laboratory
system axes are as follows (rod axes along c'):

Specimen
orientation b'

$001) L010j
fiOij L010j
Liiij I 110j

Arc
$001)
I 101j
Liiij

III. EXPERIMENTAL METHODS AND RESULTS

A. Experimental Methods

First-order and second-order ME interactions have
been studied by measuring the velocity dependence on
6eld strength and magnetization orientation in mag-
netically saturated single YIG crystals. A pulsed ultra-
sonic system has been constructed" that is capable of
measuring acoustic velocity changes of 1:10'for 25—50
psec acoustic delay times, which are readily available
in high-Q YIG. In this system, which uses a phase-
comparison technique, changes in the one-way acoustic
transit time TI. are measured as changes in the carrier
frequency f of the input pulse,

with 6f/f = ATr/Tr, — (3.1)

~2= u1+co~ sin 8,
Q)ex= XK COg& p

M P= CO 1C02
&

4)1=GOIxr+GOe~
&

and solving for ~ versus E.
Various features of the modes in Table II are dis-

cussed in context with the experimental results. The
magnetic body force Lsee Eq. (2.4)J afFects only longi-
tudinal modes to lowest order and results in b~~
appearing in the form (bggg 2s.bf,s)' in longitudinal
wave velocities, while appearing in the form (b~n)s in
shear wave velocities.

"Equations (A2) and (AS) have been derived for a homo-
geneously saturated ferromagnet. Only ellipsoidal bodies can
possess a uniform magnetization when placed in a finite uniform
field and specimens of interest are cylindrical rods; however, the
approximation of uniform M, is a reasonable one in the high dc
field region of interest Hs&2 ~8' ~, where 8' is the static demag-
netizing field. The applicability in practice of the assumption of
free mechanical boundary conditions is also subject to scrutiny,
since nonspherical bodies oriented in a magnetic field experience
a net torque exerted by the field which must be balanced by ex-
ternal surface forces from the specimen positioning apparatus.
I'or YIG, a straightforward estimate of the average strain due to
these forces yields Bu'/Ra~10, which is two orders of magnitude
smaller than the static strains due to rnagnetostriction,

TmLE III. YIG specimens. a

Specimen
number

Rod
orientations

(100)
(100)
(110)
(110)
(111)

Dimensions
(rnm)

10.54X3.14 diam
8.4/X3 63

10.4& X3.20
13 63X3 125
7.08 X2.S

' Specimens 1 and 3 are from the Microwave Chemicals Laboratory,
Inc. , New York, New York; specimens 2 and 4 are from the Airtron Divi-
sion of Litton Industries, Morris Plains, New Jersey and specimen 5 is
from the IBM Watson Research Center, Yorktown Heights, New York.

Specimen is approximately circular in cross section and has 1-p 6nish.

The carrier frequency f was adjustable in 20-cps steps
over the 30~1.5-Mc/sec frequency range used.

The temperature was regulated to &0.02'C near
room temperature using a water jacket and circulator
(Haake model Fe, Brinkmann Instruments, New York).
Specimens were mounted in an orientation apparatus
having two orthogonal rotational degrees of freedom
with an angular resolution of &2'. The apparatus was
positioned in a magnet supplying a 0—10 koe field.
X-cut and AC-cut quartz transducers (coaxial plated,
s-in. diam) were used to generate longitudinal and
linearly polarized shear excitations. Salol (phenyl sali-
cylate) was used to bond transducers.
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(a)
2.0—

H |KOE)

I I I I l I

2.5—
{I)* DATA
DASHED LII((IES a FITTED
HYPERBOLA

l5 ~ ~ (b)

5~(c)
I.O —

~

& ~(d)

0 ) ) I

0 IO

1 pb4
' M.

2&44&~, Bp+e(.)'
(b) L101j rod «lib', M llu

(3.2a)

pinning the magnetization more strongly and diminish-

ing the spin vrave admixture in the ME mode.
As seen from Table II, the shear modes (3) and (4)

are most suitable for determining b» and b44 as they
have the strongest field dependence and involve b11 and

b44 separately. The following four experiments were per-

formed using sample No. 4:
Experiment

(a) L101] rod, ullf)', M. llK

FIG. 2. Frequency change (kc/sec) versus fieM Hf& (kOe). $101j
YIG rod (specimen No. 4). T=28.8'C. Shear excitation.

(a) u(tb'(L010j), M.)jK(8=0), f=29.76 Mc/sec,
measure b44 = 73)&10' erg/cc.

(b) u((b'(I 010)), M, ((u(8=m/2), f=29.76 Mc/sec,
measure b44= 7.2X10' erg/cc.

(c} ut/4'(I 101j), M, f)K(8=0), f=30.15 Mc/sec,
measure b11=3.8X10' erg/cc.

(d) ut)d'(L101j), M, )fu(8=~/2), f=30.15 Mc/sec,
measure b11=3.6&10' erg/cc.

1 b44 ' M

2c44 M, Hp+H(p)'+4mM,

(c) l 101) rod, ulf(V, M, l[K

1 b11 ' M,

(c))—c)p) M, Hp+H(, )

(cl) l 101) rod, ull(1', M. llu

(3.2b)

(3.2c)

The cylindrical rod specimens which were used are
described in Table III. The rod ends are optically
polished and parallel and rod orientations are within
~2' of specified directions.

B. Experimental Results and Discussion

l. First-Order ME Constants b11 and b44

Examination of mode velocities in Table II shows

that perturbation terms which are an explicit function
of the magnetic 6eld (those containing X~) or Xpp) in-

volve b11 or b44. These perturbations are due to small
spin-wave admixtures in the ME modes. They are
linear in X» or X» and result in velocity changes AV
~ (H,+const) ' at fixed M, . This f(eid dependence
occurs because an increasing dc field lifts the spin wave
manifold farther above the operating frequency, thereby

1 b11)' M,
, (3.2d)

(& —&, )(M.i H +P«, '+4 M,

where H(,~' and H(IO' are average demagnetizing fields

and 6$' is the natural velocity change due to the field-

dependent ME interaction. Measured data (Af versus

Hp) is presented in Fig. 2. All frequency changes are
measured relative to Af=0 at Hp= 10 kOe. Measured
frequency changes and natural velocity changes are
related, using Eqs. (2.22) and (3.1), according to

5f/f = AW/II'.

It is seen in Fig. 2 that measured and predicted fre-
quency responses, hf ~ (Hp+const) ', are in excellent
agreement in the high-Geld region 8p+ 4AM = 1760 Oe.
The dashed curves in Fig. 2 are calculated using the
theoretical expression

Tash IV. Determination of b11 and b44.

1—Af(cps) =C(l
~H p+C p 10+Cp

(3.4)

I. Curve fitting'
C1 (X10' b11, b44

Expt. kOe/sec) C2 (kOe) (10' erg/cc)

II. ProIate
spheroid
approx. b

bll b44

III. Uni-
form M,
approx. '
b11, b44

(a)
(b)
(c)
(d}

7.5
7.25
1.9
1.8

—0.05
1.24—0.05
1.24

7.3
7.2
3.8
3.6

7.3
6.8
3.7
3.3

6.7
3.8
3.3

Values of cg» in Table I and 4u.Ms =1.76 kOe were used. H&o&' = —0.05
kOe and Hg&'= —0.52 kOe. It is well known (Ref. 26) that byes and b44
are positive.

b H(u&' ~ -0.12 kOe and Hy&' = —0.82 kOe.
OH(u&'= -0.68 kOe at Hn~10 kOe and = —0.21 kOe at Hn=2 kOe;

H(f»' ~ -0.79 kOe at Hn =10 kOe and = -0.78 kOe at Ho =2 kOe.

with H p in kOe and C1, C2 chosen for best fit to experi-
mental data. The experimentally-determined constants
C) are easily related to b)) and b44 using Eqs. (3.2), (3.3),
and (3.4). Table IV sununarizes experimental values of
C1 and C2 and determined values of b11 and b44. Excellent
agreement between experiments (a) and (b) and be-
tween (c) and (d) is obtained. In experiments (a) and
(c), s-directed (M, llK) spin waves are involved while
z-y directed (M,J K) spin waves are involved in experi-
ments (b) and (d).

An alternative way to determine b11 and b44 from
data in Fig. 2 is to use Eq. (3.2) and calculated average
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demagnetizing fields H(,&' and H(q)' rather than curve-
fitted values. This calculation has been performed for
two approximations. In the first, the demagnetizing
field of an inscribed prolate spheroid was used. In the
second, assuming M, is constant everywhere, the 6eld
H'(s) along the rod axis due to surface poles was
evaluated and the average group velocity 8' was
calculated,

W= li'0+const(H '), ,

where 1WO is the uncoupled (infinite field) velocity ind

IQ

(H ')„=— (Ho+H'(s)+4nM, sin'8) 'd,z.
Lo 0

The constants bii and b44 (bi alld b2 in the literature)
have been determined at room temperature by other
investigators using various techniques. Smith and
Jones" used a ferromagnetic-resonance technique and
determined bii =3.5X10' erg/cc and b44= 7.0X 10"'

erg/cc. Cls,rk et al "u.sed a strain-gauge technique and
determined bii 3——4X.10' erg/cc and b44=6.6X10"'
erg/cc )their hi and h2 are given by Eq. (2.22)). Ms, t-
thews and LeCraw" measured acoustic Faraday rota-
tion in a (100) YIG rod and determined b44= 7.4X10'
erg/cc. Olson" measured the ME interaction effect on
a microwave parallel pump threshold curve and de-
termined b44=4.7X106 erg/cc. Comstock'" has reviewed
these various techniques.

The average demagnetizing fields 17' in Eq. (3.2) are
then given in terms of (H '), by

R.esults for these two approximate inethods are sun~-

marized in Table IV. In the second method, data, were
evaluated using the field points HO=2 and 10 kOe,
since the eRective demagnetizing fields H~, )' and H(l)'
in (H '), are functions of Ho. Values for H~, &' and
H~&,&' in (H '), were calculated to approximately 1'Po.
It is seen from Table IU that the agreement of curve-
fitted and calculated values of b~~ and b44 is fairly good
even though curve-6tted and calculated internal fields
differ considerably. The above experiments (a), (b), (c),
and (d) were repeated using sample No. 3 and all
determined values of b~~ and b44 agreed to &0.1)&10'
erg/cc with corresponding values in Table IV except
experiment (c), for which the calculated value bii
=4.0X 10" erg/cc was obtained.

The ME constant b44 was also determined using a
longitudinally excited L111) rod with 8 fixed at 45'
(see Table II). Using a prolate-spheroid demagnetizing
field approximation, b44 was found to be 7.0X 10' erg/cc.

Referring to Fig. 2, the curve marked (d) shows a
distinct deviation from hf ~ (HO+const) ' at low field
strengths. This is a demagnetizing eRect. The saturated-
state internal demagnetizing Geld is about 900 Oe with
Ho perpendicular to K. This field strength corresponds
quite closely to the point of abrupt change. Similar
data on a transversely excited L001) rod showed an
even more pronounced eRect.

The shear velocities (3) and (4) in Table II indicate
that no field dependence should be measured with M,
orthogonal to K and u. This behavior was experi-
mentally con6rmed. With u parallel to 8' or b', a fre-
quency change less than 40 cps in 30 Mc/sec was ob-
tained when H0 was varied from 10 to 2 kOe. A com-
parably small frequency change was also measured for
longitudinal modes in the L001), L101), and (111)
directions with 8=0 or ir/2. This is expected from the
formulas in Table II.

an Qa

'3 0.6—

0.4—

0:=
po 304 90o

Fro. 3. Frequency change versus M, orientation. $0=8 for
(a) and (c), 0=& for (b).jDashed lines are predicted curves using
experimental constants. Hp=10 kOe. (a) L001j rod (specimen
No. 1), long. excit. , f=30.60 Mc/sec. (b) $101j rod (specimen
No. 4), long. excit. , 8=~/2, vary @, f= 29.22 Mc/sec. {c) I 101)
rod (specimen No. 4), shear excit. , u(4'{L010j},M, J 4'(qb=x/2},
vary 8.

"A. B. Smith and R. V. Jones, J. Appl. Phys. 34, 1283 (1963)."A. E. Clark, B. DeSavage, W. Coleman, and E. R. Callen,
J. Appl. Phys. 34, 1296 (1963).' H. Matthews and R. C. LeCraw, Phys. Rev. Letters 8, 397
(1962).

'9 F. A. Olson, J. Appl. Phys. 34, 1281 (1963)."R.L. Comstock, Proc. IEEE 53, 1508 (1965).

Z. Second-Drder ML Constunrs B~lfq

Examination of mode velocities in Table II indicates
somewhat complicated orientation-dependent perturba-
tions involving second-order ME constants B~Lt t:,
morphic constants Dg~q, and first-order ME constants
b~~. The angular dependence of these perturbations
becomes simplified for orientation changes in the planes
normal to 4', b', and c'. By measuring the velocity
change as a function of orientation in these three planes
for each of the 6ve modes in Table II, the seven dif-
ferent linear equations involving the B~~q s listed in
Table U can be evaluated. Maximum accuracy is
obtained when all data are evaluated between the three
8', b', and c' orientations, i.e., (8,&)= (0,0), (&r/2, 0) and
(ir/2, &r/2), using the largest possible dc field so as to
minimize field-dependent perturbations.
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'l'AsI. z V. Experiments and formulas for evaluating the magnetoelastic constants B~p&;.

Rod
orientation,

Expt, mode

L001) rod,
long. excit.

Orientation
change'

(e,e) (&,@)

—~ (0, @)
2

if df Af
Formulas for Bye g"

f, 1 f f

g j 2

( 1 ) Bl lt+~bll+D]11 2C11
I il

$101j rod,
3. shear excit.

nil&'1Eotojl

{101jrod,
4. shear excit.

u((5'(L010)1

$10ij rod,
long. excit.

—+ —0

—,0 ~(0, y)

—,0 ~ (0, @)

(2) 4[B111+2B1'8+2(~b11 b]])+D]]1+2D1a+2(D];,;,
("—D];,;,"')j——xt]

.1I,,

Cl l. C12 6f "
=2

2 IF, ]

2 gf 2

(3) —,')B441—B4ss+b11—Sb44+D441(') +D441(2) —D4ssf+ —x11 ——2c44—
37,

b 2
f gf I2

(4) B4ss+b44+D4ss ——yl] = 2c44-
iM, f

C11+C12+2C44 ~ f
(5} 2BIss+2b11+3b44+D] s„'"+Diss("——2

2

L111)rod,
long. excit. (~) ~3I 4BIss+2B144+4B4ss+4b11+1ib44+2DIss" '+2D1~s"'+2D144+4D4ss]

I 101j rod,
long. excit.

Cl 1+2C12+4C44 ~f
=2

2

f

C11+C12+2C44 ~J
=2

2 f
a The subscripts 1 and 2 denote initial and final state.
b The D~Bc's are defined in Table I. 4~-&&s~ terms have been dropped in Eqs. (1},(5},and (6}.

Three representative measurements of frequency
change versus orientation are shown in Fig. 3. Curve

(a) gives Af versus 8 for a longitudinally excited t 001$
oriented rod (sample No. 1). The dashed line is the
function cos'8 predicted from formula (1) in Table II.
(The b~PXn term is negligible at Ho 10 koe.) The-—
experimental resolution is Df/f~LOX10 ' and the
total frequency change is 6f/f =40X 10 '.

Curve (b) in Fig. 3 gives frequency change versus
orientation as M, is rotated in the transverse plane
(8=s./2, &=0—+ n./2) of a L101$ oriented rod. An iso-

tropic material should show no frequency change under
this rotation. Longitudinally excited L001j and L111j
oriented rods exhibited no frequency change as M,
was rotated in the transverse plane; this is expected
from formulas (1) and (5) in Table II.

Curve (c) in Fig. 3 exhibits more complicated be-
havior: Af (8) varies approximately as Df& cos'8
+hfmsin228, where Afq and Df2 are constants. The
sin'20 term is due to the 6eld-dependent term ~ X~~ in
formula (3) of Table II, which is still significant at

HO=10 koe. (The di]ference in direction between H0
and M, due to the demagnetizing held has been taken
into account. ) The disagreement between measured and
predicted (dashed line) values is probably due to the
variation of the demagnetizing held. An inscribed pro-
late ellipsoid demagnetizing factor was used in plotting
the dashed line. EBects of such 6eld-dependent terms
on the determination of B~~q constants are minimized
by evaluating all data between (8,&) =o', b', and r,

'

orientation directions.
Experimental frequency change versus orientation

data were taken for all 6ve modes in Table II using the
samples listed in Table III. A summary appears in
Table VI. Average data for specimens i and 2 and
3 and 4 are given in lines j.—10. The general angular
dependence of Af-versus-orientation curves predicted
by formulas in Table II was observed in all experiments.
The tolerances are estimated from the experimental
frequency-change resolution and bracket experimental
data on specimens 1 and 2 and 3 and 4. The sum of the
three frequency changes corresponding to orientation
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Speci- Rod
men orient. Excit.

Orientation
change 1~ 2

gf 2

10'—

'I'AHI. z VI. Summary of frequency-change-
versus-orientation data.

Experiments 1 through 6 have been used to evaluate
the 8~~~'s and experiment 7 has been used as a con-
sistency check.

Experimental error tolerances on the B~~t.-'s are
large, percentage-wise, but are relatively small ener-

getically, as the B~~q's are small:
1 1 and 2 I001j long. —,p ~ &0, p) 3().3&1

', ui~
I
-vill» I

=10"'Iv ~ I" «g/cc
-'2I.I. eolrt~llrtello *«*

I
=-1o'I rl ~ I' e'g/cc

2 3 and 4 t 101j long. —,— —+ —,0 171+1
2 2 2

3 3 and 4
C
101] long. —,0 ~ (Qt p) —3.8~1

Parametric spin-wave —phonon processes involving
the second-order ME energy are expected to have high
thresholds in YIG. According to Morgenthaler, ' a
spin-wave —phonon process can dominate the second-
order spin-wave process if

5 3 and 4 I 101j shear' —,— —& —,0
2 2 2

11.3~0.7

4 3 and 4 I 1011 long. (0, @) ~ —,~ —14.1~1
2 2

with

c]$

+44] 2 4' 3Ig

Q 2AII(,l c]4

Q= acoustic quality factor,

fi 3 and 4 L101] shear" —,0 ~ (0, @) —36.0~1.7
2

3 and 4 L101$ shear"' (0, P) -~ —,-- 2&.4%1
2 2

3 and 4 I 101j shear" —,— —+ —,0 30.9~1
2 2 2

&) 3 and 4 I 101j shear' —,0 + {'0, @) —1.0~0.7
2

10 3 and 4 L101] shear' (0 P) ~ —,— —31.0~1
2 2

L111) long. —,@ ~ (0, y) —&.7a &.3
2

a ullb'.
af ~ af Afb ~ll~'—f i f ~ f

T =29~1 C, Ho =10 kOe.

AH I„.
——spin-wave linewidth.

For YIG, assuming P = 10' and AIIq ——1 Oe, this
requires

C11

or
~441

&8X10 ',

or
I
II1»

I
+2000X 10' erg/cc,

I
8441 I

& 500X 10' erg/cc.

Measured values are Bi~~ ——(173&12)X10' erg/cc and
II441 ( 24& 14)X 10' erg/cc. The threshold equations
in Ref. 5 effectively neglect b~l~ and 4~M, ' terms com-
pared with 8~~~ because small-strain theory was used.
This is a reasonable approximation in view of the small
values of b~e ( 5X10' erg/cc) compared with B~oo
+Age values ( 2000 or 500X 10') that are required for
interesting spin wave-phonon thresholds. Finite-de-
formation theory enables one to ascertain the validity
of such approximations.

B~~q constants

8111= 173&12

8123,= 22~19
8144= —5~41
B1g5= —37&
8441= —24~ 14

8456———27& 7

Experiment 7 check

1/4 (I 1» 2II12$+4II1M 4II441)

= 19&33 (calc)

24&12 (meas)

changes of (8,@) of (~/2, s./2) ~ (w/2, 0), (s/2, 0) ~
(0,&), and (0,@)—& (~/2, ~/2) provides a check on ex-
perimental accuracy.

ME constants 8~~~ have been evaluated using the
formulas in Table VI, and experimental data in Table
VI, and c~~, b~~, and morphic constants in Table I. In
units of 10' erg/cc, they are as follows:

3. L'xPerimentat Check on Finite-
Deformation MF Theory

This section describes an experiment that agrees with
finite-deformation ME theory and disagrees with small-
strain theory.

Referring to Eq. (4) in Table II, a L101) rod with a
shear excitation ulla'(LIOlj) subjected to a 90' ori-
entation change at constant H0 in the a'c' plane, i.e.,
(8,&),~ (8,&)2 is (n/2, 0) ~ (O,g), will undergo a
natural velocity change

2&11+&44+DI55 ' —D]5g "')

1 (cll c12)

~ ~(~»le=a —&ail e= g2) . (3.5)
M,
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It is convenient to rewrite Eq. (3.5) in terms of the The calculated velocity change using finite deformation
actual velocity V =W(L/Lo) using the relation theory, i.e., Eq. (3.7), with b» and b44 given in Table I,

is
ZV2 a1. 2 alV 2

=—+
V, g I. g tV

(3.6)
gV 2

= (—5.1&0.2)X10 '.

ZI 2

=h2 ———
I. AV '-

= (—0.6&0.06) X10 '. (3.10)

with the magnetostrictive length change determined as The calculated velocity change using small-strain
theory Lthe —2b» term in Eq. (3.7) is set equal to

b44 zero j is

Upon substituting Eq. (3.6) in Eq. (3.5) and using the
definitions of D155&'& and D155&2& in Eq. (A4), one obtains

AV~2 1

i 1 (511 512)

t) 11—2bll — (&11[e=o—~11[e=.n) .
M,

(3 7)

BI. '
= (—4.62&0.13)X 10 '.

The term —2b~~ within the brackets is neglected in
small-strain theory. It is due to the antisymmetric
part of the stress tensor T;, which originates from
MX 8 body couples and which is accounted for by the
use of the 0.;* rather than the direction cosines n; in
the ME energy.

The above experiment has been performed using
specimens No. 3 and No. 4 with a 10-kOe dc field (see
line 9 in Table VI). The measured velocity change is

AV' Af ' AL '-

+—= (—5.6&0.8)X10 ', (3.8)
f 1

with
2

= (—1.0a0.7) X 10-',

Comparison of Eq. (3.8) with Eq. (3.9) and Eq. (3.10)
indicates good experimental agreement with 6nite de-
formation theory and an order of magnitude disagree-
ment with small-strain theory. This experiment demon-
strates the validity of finite deformation ME theory
and illustrates the inexactness of small-strain theory
in the treatment of second-order ME eRects.
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APPENDIX' ENERGY FUNCTION U AND
LINEARIZED EQUATIONS OF MOTION

A. Internal Energy U

The energy function U LEqs. (2.14)—(2.18)] for the
cubic point groups 0, O~, and Td, has the following form
(Mason' and Hearman" have done work on the deter-
mination of independent coefficients b,;51, C;,53, etc.):

Cll C44

poU= ppUO(S)+p(7/1+7l2+'g3)+ ('0l +'92 +'g3 )+C12('gl'92+92lt3+'93gl)+ ('g4 +'go +'gp )
2 2

C 1 ll C112 C144+ (gl +$2 +$3 )+ (2&1 ('92+93)+lt2 (93+91)+93 ('gl+'92))+C123'919293+ ('gllt4 +'g2'g5 +'g3gp )
6 2 2

Ci55
+ ((ltl+ri2)'96 + ('92+'93)g4 + (lt3+'gl)95 )+C456949PI6+b»(ltlQ1 +92Q2 +lt3Q3 )

2
~ill

+b44(g4Q2 Q3 +95Q3 Ql +96Q1 Q2 )+ (gl Ql +92 Q2 +'g3 Q3 )++123(nllt2Q3 +'g2'g3Q1 +'g3'glQ2 )
2

+@144('gllt4Q2 Q3 +'g2'95Q1 Q3 +'O'PlpQ1 Q2 )+Igloo((etl+62)glQ1 Q2 + (le2+93)ri4Q2 Q3 + ('93+ltl)'g5Q3 Ql ))
844'

+ (94 Ql +95'Q2 +96'Q3 ) +Il45(6'g4'95Q1 Q2 +'VPI6Q2 Q3 +'ge'94Q3 Ql )
2

4m%
+A&(Q1~Q2*'+Q2*'Q3*2+Q3*2Q1*2)+ ( ~

&.ml )
'+

~
V.mp ~2y

~

V'.mo
~

2) (A1)
2

"R.F. S, Hearman, Acta Cryst. 6, 331 (1953).
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where

qp= (2—B,,)pt,;, ij A,

El=magnetocrystalline anisotropy constant,

X= exchange constant,

b~B b;,7,~, etc.

The abbreviated notation of Brugger" has been used. The expression for the energy pbU in Eq. (A1) is valid

to second order in Bq;/B45; in ME terms and to third order in mechanical terms. The lowest order magnetocrystal-

line anisotropy energy is included in Eq. (Al) for generality. It is not considered in this paper. To second order in

Blf,/B45, , n,* may be replaced by a; and pz by Sz [Eq. (2.20)j in the second-order ME energy. In the first-order

ME energy, the n;~ lead to antisyrnmetric terms in the stress tensor.

B. Linearized Mechanical Equations of Motion

Mechanical equations of motion for a uniformly magnetized ferromagnet in a uniform external held free from

applied forces are obta. ined using Eq. (2.8) and the energy function in Eq. (A1). The morphic effect is included

by linearizing Eq. (2.8) about the initial deformed state having the displacement gradients of Eq. (2.19). Upon

de6ning morphic constants D~B~ which are as analogous as possible to the intrinsic second-order constants B~Bq,

the following equations of motion are obtained:

~P I ~02 ~P I ~+3 ~Pl
pOu Cllu +aCa12(V b+aW )+acC 4(u4bb+u c+ci b+aW ')+ac2k11481 +544 481 +482 +481 +483

Bc Bb Bb Bc Bc

aII, aH 1 BH1
+Mc 481 +483 +433 +Alc41'uaa+APlc43uba+A3481C43uca+ (A 3%8 +A4CX8 )ubb

Bu Bb Bc

+Aba8483ucb+ (A3C13 +A4433')ucc+A8481C42(8aa+8bb)+A 9483 bC+aA842 84388ca+A8413438Vcb+A9 418433cre

+ALP'1488(Wee+Wee)+A8482483Wba+AV488 Wca+A9481483Wbb+A848P'8Wcb
~ (A2)

where

u, b =Bpul/Ba—,Ba8 B8u/BaB=b, etc., u, = 45;—a;,
e,= initial state value.

The constants Al—Ag are de6ned in terms of b~B,
BABc and D~Bg according to

A 1 Bill+ 5b11+Dill y

A 3= 2 (~155+2&44+D155'") ~

A 3=B441—2b44+D44, (l)
~

A 4
——D441&"+bll —2b44,

A 5= 2(&458+&44+D454) c

A e= Blss+2bll+b44+Djss"',

A 7 BJ23+B441 b44+D123+D441 p

A s= B144+B4se+b44+D144+D4se,

A 9=B4ss+2b44+D4se.

The morphic constants D~Bq are de6ned in terms of

c~~, C~Bq, and b~B according to

Dill kl (3cll C12+clii C112) )

D123 hl ( C13 C44 C112+C123) )

D144=kp (C12—C44+ 2C144),

Dlbb'" ——k8(clp+3c44+ 2C155),

Dlbb"' =h8(cll+ C44+2C155),

D441 hl( 2C44+C144 +155) I

D441 hl(cll C12 2c44)
&

D454 k3 (2C44+ 2C458), ——

with kl and h8 defined in Eq. (2.19). Equations for p96
and p8w' are obtained from Eq. (A2) by cyclic permuta-
tion of the components of u;, e;, p, ;, Of;, and H;.

C. Linearized Magnetic Equations of Motion

Magnetic equations of motion are obtained for a uni-
formly magnetized ferromagnet in a uniform external
field free from applied forces using Eq. (2.5). In the
magnetostatic approximation (VXH=O) and with u;
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and p; assumed to vary as

EI,' is given to first order as

EXI' ——HPI+FJ l'

1—$—2b~~a~u„+b~4(ai(tlt, +v.)+'a, (n, +;(„)g
M,.

47r—M, Vg[ V, (p., B,—(u„+rb+w, ij
+4m A 7','my,

Equations for H&' and H&' are obtained from Eq. (AS)

by cyclic permutation. The third right-hand-side term

in Eq. (A5) is the effective magnetoelastic coupling

field linear in Bu;/Ba, . A similar term of the form

p, (BN, '/Bar, ) has been dropped from Eq. (A5) because

it is quite small. The fourth and 6fth right-hand-side

terms in Eq. (AS) are the dipolar (including the dilata-

tional dipolar Geld) and exchange fields. Using Eq. (2.5),
the linearized equations of motion are

with
X;=unit vector in propagation direction,

Bp; ——external fieM,

H,'= static dipolar field.

+06ijk(0'jkk ++1Hk ')
q

with h&' and HI, ' defined as the spatially varying and

spatially nonvarying portions of Hq' in Eq. (A5).
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Possible Experimental Test of the Band Theory of Magnetism

P. LEDERER AND D. L. MILLS*

Faculty des Sciences de Paris-orsay, Service de Physique des Sordes, Orsay, France
I'Received 4 February 2966)

$& e suggest an experiment which may allow the band theory of ferromagnetism to be tested in a direct way.
If a dc electric field is applied to a sample, the magnetic electrons will drift. The frequency of a spin wave
of given wave vector, when viewed in the laboratory frame, mill suffer a Doppler shift when compared with
the case when the electric field is zero. This Doppler shift, although small, is considerably larger for the band
model than the electric field dependence of the spin-wave dispersion relation for a localized spin model.
KVe discuss the possibility of detecting the Doppler shift by measuring the phase velocity of a coupled spin-
transverse-phonon wave. Similar measurements have been performed on insulators doped with paramagnetic
impurities. In these measurements, high precision has been obtained by employing an interference technique
which allows a null experiment to be performed.

I. INTRODUCTIOÃ

ARIOUS models have been proposed to describe
the magnetic properties of transition metals.

%'hile these models assume very diferent mechanisms
are responsible for the magnetically ordered state, they
nonetheless predict elementary excitation spectra and
thermodynamic properties which are qualitatively
similar. As a consequence, it is dificult to decide from
experimental measurements which of the models is most
suited to describe the magnetism of the transition
metals.

Historically, the first approach to the problem was

by Heisenberg, ' who employed a model of localized
spins, each coupled to its nearest-neighbor spins by
means of the exchange interaction which results from
the overlap of atomic orbitals. If the exchange integral
has the appropriate sign, the ground state of the system

*National Science Foundation Postdoctoral Fellow.
'%'e refer the reader to the review article by J. H. Uan Uleck,

Rev. Mod. Phys. 17, 27 (2945).

is ferromagnetic. The elementary excitations of the
system are spin waves, ' and one finds that as the tem-
perature is increased from zero, the change in mag-
netization varies as T'', in agreement with experi-
mental observations. This model has been studied
extensively. A number of other magnetic properties of
transition metals, such as the variation of the magnetic
susceptibility with temperature just above the Curie
point, ' and the magnetic critical scattering observed in
neutron diffraction experiments4 may be accounted for
with this theory. In the Heisenberg model, the inter-
action between the localized spins is short-ranged, since
the wave function of a given spin overlaps appreciably
only with its nearest neighbors. The conduction elec-
trons (s electrons) play no role, as far as the magnetic
properties of the system are concerned.

' F. Bloch, Z. Physik 61, 206 {1930).
'See for instance, M. E. Fisher, in Proceedings of the Inter-

national Conference on Magnetism, Xottingfgam, 1964 (Institute
of Physics and the Physical Society, London 1965), p. 79.

4 R. J. Elliott and %'. Marshall, Rev. Mod. Phys. 30, 75 (1958).


