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The magnetic form factor of nickel has been determined for the erst 27 Hragg reQections by the polarized-
neutron-beam technique. Fourier inversion of the form factor shows that the moment density is quite asym-
metric about the lattice sites and is negative in the region between the lattice sites. The measured form factor
agrees well with a free-atom form factor for Ni++ provided a uniform negative contribution is included in the
moment density. From the comparison of the free-atom and measured form factors it is found that 81~1/& of
the 3d magnetic electrons occupy T2f, orbitals, compared with the 60 j& required for spherical symmetry.
The size of the negative contribution needed for agreement between the measured and free-atom form
factors agrees well with that given by the Fourier inversion, and the analysis of the data is consistent with
the following model for the magnetization of nickel: 3d spin+0. 656pp, 3d orbit+0. 055pp, negative con-
tribution —0.105@,fl.

I. INTRODUCTION

~ 'HE angular distribution of the neutron magnetic
scattering from a ferromagnet is given by a form

factor that is the Fourier transform of the magnetic
moment density. Thus, by making a precise measure-
ment of the magnetic scattering the spatial dependence
of the periodic magnetic moment can be determined. We
have used the polarized neutron beam technique to
measure the magnetic form factor of nickel metal.

Despite the fact that a large amount of work has been
devoted to understanding the nature of the electronic
structure in the transition metals, very little precise
knowledge of the magnetic electrons in the ferro-
magnetic metals is available. 14Iost of the magnetic
scattering comes from unpaired 3d electron spins. The
neutron diRraction measurements give direct informa-
tion about the spatial distribution of the periodic spin
density that is nearly free of theoretical approximations.
There is an orbital contribution to the magnetization so
some of the magnetic scattering takes place from the
orbital moment. However, since the orbital contribution
is small, and the orbital and spin form factors are sin~ilar
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Technology.
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in shape, the orbital moment introduces only a small
uncertainty in the interpretation of the data. In fact,
it is unusual in the study of the transition metals that
precise experimental results have such a direct and
meaningful interpretation.

Magnetic scattering amplitudes are generally quite
small and polarized neutrons must be used for accurate
form-factor measurements. The first form-factor meas-
urements using polarized neutrons were made by
Nathans, Shull, Shirane, and Andresen' on iron and
nickel. Although the data on nickel included only eight
rejections, with fairly large error brackets, Weiss and
and Freeman' interpreted the measurements as showing
a departure of the 3d electrons from spherical symmetry.
In a cubic field the degenerate 3d orbitals split into
triply degenerate T2, orbitals and doubly degenerate E,
orbitals. The T2, orbitals are peaked along the cube
body diagonal direction while the E, orbitals are peaked
along the cube edges. Weiss and Freeman suggested
that the magnetic electrons were predominantly of
T&s symmetry and estimated that 75% of the 3d elec-
trons were in Tss orbitals compared to the 60'Po required
for spherical symmetry. The accuracy of the neutron
data did not warrant the consideration of an orbital

' R. Nathans, C. G. Shull, G. Shirane, and A. Andresen, J.Phx s.
Chem. Solids 10, 138 (1959).

s R. J. SVeiss and A. J. Freeman, J. Phys. Chem. Solids 10, 147
(1959).
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contribution to the form factor or the consideration of
scattering from other than 3d electrons.

Since the work of Nathans el al. , a number of form
factor measurements have been reported. ~~ The most
interesting of these to compare with nickel are the very
complete measurements of Shull and Yamada' for iron
and those of Moon' for hexagonal cobalt. Shull and
Yamada found that the magnetic form factor for iron at
a given value of (sin8)/X is dependent on the direction of
scattering through the crystal, and thus that the mag-
netic moment distribution is aspherical about the
nucleus. Their analysis of the form factor data showed
that 47% of magnetic electrons had T«ysmmetry.
Moon found that the magnetic form factor for hexagonal
cobalt is a smooth functionof (sin8)/X so that the
moment distribution in hexagonal cobalt is almost
spherical.

The data taken by Shull and Yamada, and by Moon
are sufficiently extensive that they could obtain Fourier
maps for the moment density. These maps show that in
both iron and cobalt the magnetic moment density is
negative in the region far removed from the lattice sites.
It was suggested by Shull and Yamada that the negative
density possibly resulted from 4s electrons oppositely
polarized to the 3d electrons.

Two objectives of this work on nickel were to obtain
a better picture of the asymmetry of the magnetic
electrons, and to see if any negative regions appear in
the magnetic moment distribution. The magnetic scat-
tering amplitude of nickel is considerably smaller than
the nuclear scattering amplitude so the nickel measure-
ments required more neutron counting time than the
iron or cobalt measurements. Nevertheless, we were able
to determine the magnetic form factor of nickel for the
first 27 Bragg reRections, which is sufBcient to give an
accurate picture of the magnetic moment distribution.

II. EXPERIMENTAL TECHNIQUE

The experiments were performed on a polarized beam
spectrometer installed at the M.I.T. nuclear reactor.
The experimental arrangement was similar to that
described by Nathans el u/. The polarized beam tech-
nique is used to measure the size of the interference term
between the nuclear and magnetic scattering. The
magnetic-scattering amplitude can be determined Inuch
more accurately from this interference term than from
a direct measurement of the magnetic-scattering inten-
sity. The interference term is linear in the scattering
amplitudes, and thus the sign of the magnetic-scattering
amplitude can also be measured directly. The experi-

' C. G. Shull and Y. Yamada, J. Phys. Soc. Japan, 17, Suppl.
BIII, 1, 1962; C. G. Shull, Electronic Strmctlre ant' Alloy Chemistry
of the Transiti on Efenents (Interscience Publishers, Inc., New
York, 1963), p. 69.' R. Moon, Phys. Rev. 136, A195 {1964).' S. J. Pickart and R. Nathans, Phys. Rev. 123, 1163 (1961).

6 G. Shirane, R. Nathans, and C. W. Chen, Phys. Rev. 134,
A1547 (1964).' %. C. Phillips, Phys. Rev. 138, A1649 (1965).

ment consists of measuring the intensity in a, Bragg peak
when the incident neutrons are polarized parallel and
then antiparallel to the sample magnetization. For an
ideal experiment when no corrections to the data need
be made, the ratio of these two intensities is given by

where P and b are, respectively, the magnetic and
nuclear scattering amplitudes and R is called the Ripping
ratio. E is the quantity actually measured in the experi-
ment and P/b is found from (1). Unfortunately, the
ideal case is seldom realized in practice and there are
corrections to the data that need to be made, particu-
larly for the first few reRections. The data, had to be
corrected for incomplete neutron polarization, half
wavelength contamination in the neutron beam, single

crystal extinction effects, and multiple reflections in the
sample crystal. The neutron polarization could be
measured accurately and was high in all cases. The
polarization corrections were thus small and could be
applied with certainty. The half-wavelength con ta mi-

nation in the beam was very small and introduced
negligible corrections in most cases. Extinction and
multiple scattering were considerably more troublesome
and deserve some discussion .

A. Extinction

In treating the problem of extinction one usually
makes the assumption, first proposed by Darwin, ' tha, t
the sample crystal consists of a large number of small
perfect mosaic blocks tipped slightly in angle relative to
one another. Secondary extinction results from the re-
duction in beam strength seen by those blocks deep in
the sample relative to those near the surface where the
neutron beam enters. All measurements were performed
by symmetric transmission of a, crystal of uniform thick-
ness. For this case the secondary extinction problem has
been solved exactly. ' The size of the extinction correc-
tion depends on the mosaic width, the neutron wave-
length, the Bragg angle, and the crystal thickness. Each
of these factors was exploited in reducing secondary
extinction. The most success was obtained by reducing
the crystal thickness. Crystal slices as thin as 0.0038 cm
were employed for long counting periods. Measurements
from a set of crystal slices of various thicknesses were
used to extrapolate the Ripping ratio to zero sample
thickness. Several sample crystals were examined at
wavelengths of 1.0S and 0.77 A, and ma. ny cross checks
between diferent crystals were employed. By con-
trolling the physical characteristics of the crystals and
the geometry of the experiment, secondary extinction
was reduced to such an extent that corrections could be

' C. G. Darwin, Phil. Mag. 43, 800 (1922).
G. E. Bacon and R. D. I.owde, Acta Cryst. 1, 303 (1948).
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applied with an uncertainty less than the needed
accuracy of the data.

Primary extinction is much smaller than secondary
extinction and we will only consider it briefly. Primary
extinction results from the reduction in neutron inten-

sity seen by those atoms at the bottom of a mosaic block
relative to those at the top of the block where the beam
enters. Probably the most physically significant formu-
lation of primary extinction is due to Ekstein. "Using
the Ekstein formulation one can distinguish between

primary and secondary extinction by their diferent
dependence on the scattering angle. A careful measure-
ment of the angular dependence of the flipping ratio
showed that the error introduced by primary extinction
was small compared to the statistical uncertainty of
the data.

3. Multiple Scattering

Moon and Shull" have shown that multiple reflections
have a large effect on the neutron intensity diffracted by
single crystals. The effects of multiple reflections cancel
somewhat in taking the flipping ratio; nevertheless, the
eRects are still large enough that they must be correctly
taken into account. For this reason all the data were
collected as the crystal v as rotated slowly in azimuth
about the scattering vector. Any abrupt changes in the
Bragg-reflected intensity with azimuth angle are an
indication of multiple reflections and the data in that
region were disregarded. The magnitude of multiple
scattering eRects is very sensitive to the crystal
geometry and very little multiple scattering was seen
with thin crystal slices.

nr. DrSCvSSroN oz RESmTs
The most direct method of analyzing the scattering

data is to Fourier transform the measured form factor
to obtain density maps of the magnetic moment dis-
tribution. The magnetic scattering amplitude for the
(000) reflection cannot be measured but can be calcu-
lated from the magnetization. If we take the magnetiza-
tion of nickel to be 0.606pp per atom at O'K and the
relative magnetization at room temperature to be 0.946
of that at O'K," the magnetic scattering amplitude for
the (000) reflection at room temperature is given by

p(000) = (ye2/mc' )(-', (rte)) =0-.155X10 '2 cm, (2)

where (rttt) is the room temperature number of Bohr
magnetons per atom and p is the magnetic moment of
the neutron in nuclear magnetons. To find the magnetic
scattering amplitude from the measured data we must
know the nuclear scattering amplitude. I.03~0.01
)& 1.0 "cm is the accepted value of the nuclear scattering
amplitude of nickel. "The form factor is given by the

'" H. Ekstein, Phys. Rev. 53, 721 (1951)."R. M. Moon and C. G. Shull, Acta Cryst. 17, 805 {1964}."P. Weiss, quoted in Bozarth, Ferromagnetism (D. Van
Xostrand, Inc. , New York, 1951), p. 270.

"G. E. Bacon, Neutron Digraction (Oxford University Press,
l.ondon, 1955), p. 28.

TAur. E I. Summary of experimental data.

iii
200
220
311
222
400
331
420
422
511
333

531
600
442
620
533
622
444
551
711
640
642
731
:)D3
800
733

(sing)/'A

(A ')

0.2462
0.2843
0.4021
0.4715
0.4925
0.5687
0.6197
0.6358
0.6965
0.7387
0.7387
0.8042
0.8411
0.8530
0.8530
0.8991
0.9322
0,9430
0.9850
1.0153
1.0153
1.0252
1.0639
1.0920
1.0920
1.1373
1.1637

0.1193~0.0006
0.1058~0.0006
0.0672~0.0005
0.0483~0.0005
0.0468~0.0004
0.0236+0.0004
0.0253~0.0004
0.0198~0.0004
0.0162~0.0005
0.0054~0.0005
0.0165~0.0004
0.0087+0.0005
0.0048~0.0005

—0.0037+0.0004
0.0079~0.0005—0.0014~0.0005
0.0054~0.0005
0.0009~0.0005
0.0056~0.0005
0.0014~0.0005—0.0071~0.0005—0.0001~0.0005
0.0001~0.0005—0.0040~0.0005
0.0018+0.0005

—0.0095~0.0005—0.0025~0.0005

f
0.793+0.009
0.703~0.008
0.447+0.005
0.321~0.005
0.311~0.004
0.157~0.003
0.168~0.003
0.132~0.003
0.108+0.004
0.036~0.004
0.109~0.003
0.058~0.004
0.032~0.004

—0.025~0.003
0.052~0.004

—0.009~0.004
0.036+0.004
0.006+0.004
0.037+0.004
0.009+0.004

—0.047+0.004
—0.001+0.004

0.001+0.004
—0.027+0.004

0.012~0.004
—0.063~0.004
—0.017~0.004

magnetic scattering amplitude normalized to unity at
(000). The results of the polarized beam experiments
are given in Table I. A 1% error in the normalization
of the form factor has been included to take account
of the uncertainty in our knowledge of the nuclear
scattering amplitude.

The periodic magnetic moment density in Bohr
magnetons per cubic angstrom is given by

( ) = (( )/ l') Z F. (3)

v here V is the unit cell volume and

Ft,ttt= Zy fa~«","',
where the summation is to be taken over all the atomic
positions of the unit cell and ft, t, t is the form factor. The
Fourier summation was done on the M.I.T. Computa-
tion Center 7094 computer. Figure 1 shows the magnetic
moment density plotted along the three main crystal-
lographic directions. %'e see there is considerable asym-
metry in the moment distribution as p(r) is spread out
a.long the [111j direction relative to the [100]direction.
This shows that the magnetic electrons are predomi-
nantly in T&, orbitals. The density p(r) falls to zero
quite rapidly and is quite small over most of the
unit cell.

The density seen in Fig. 1 is really the true density
as seen with finite resolution since data are available
only up to the 733 reflection at (sin8)/X= 1.16 A '. This
is the optical equivalent of viewing an object through a
finite-sized aperture. The resolution function in Fig. 1 is
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FxG. 1. Distribution of magnetic moment density a1ong
the three major crystallographic directions.

obtained by Fourier transforming a constant form
factor for all reflections up to and including (733) and
letting the form factor be zero for all higher rejections.

The resolution function shows the diGraction eGects
that would be produced in attempting to map a lattice
of points using the same set of reQections used in the
nickel measurements. Any detail fjner than the width
at half-maximum of the resolution function cannot be
resolved.

The limited resolution also causes the p(r) obtained
from the Fourier series to oscillate at large r. We would
like to be able to determine the size of the moment
density in the region between the atoms, but oscillations
obscure the real value of p(r) which is smaller than the
amplitude of the oscillations. The problem is that the
Fourier series for p(r) converges too slowly to give the
moment density in the region between the atoms. This
problem h ~s been solved by deriving the Fourier series
that gives p(r) averaged in space over a small cubIc
blocl. . The Fourier series for the average density p(r) is

given by

(I9)
p(r) =

z+- 8

—2g s(h.I /a; t-I I/ju+ tz/a)d~d~, d,
hI]C l

( ) 1 P„, ; 2hh 2kb (215)sin sin — sin
V (2ITb/a)I &«I hhl g

(5)

where a is the lattice constant and (25/a) is the length
of a side of the cubic block over which the average is
taken. '4 This series smears out the moment density
somewhat but converges much more rapidly than the
series given in Eq. (3) because of the factor (hhl) '. The
convergence for the point (a/2, 0,0) is shown in Fig. 2 for
6/a=0. 075. The continued sum of the Fourier series is
plotted versus (sine)/]I so successive points are obtained
by increasing the number of terms in the series by one,
except the average is shov n when two reflections fall
at the same value of (sine)/]I. The size of the oscillations

0.3—

is a, measure of the convergence of the series. The p(r)
given by Eq. (3) is still oscillating widely at (sint])/X
= 1.16 A ', but the series for p(r) has converged nicely to
—0.0085LIII/AL. several different cube sizes (26/a)' were
tried. Good convergence has been obtained with cube
blocks as small as 0.07 lattice constants on a side. For
much snuiller blocks, p(r) does not converge well and
would approach the p(r) given by Eq. (3) if the cube be-
came small enough. If the block is large the moment in
the region of the atom is smeared out over the entire unit
cell. For intermediate block sizes the Fourier series
for p(r) converges to a negative density of about
0.0085LILI/A' in the regions of the unit cell farthest
removed from the lattice sites.
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FIG. 2. Fourier series convergence at the point (a/2, 0,0) for p(r)
the magnetic moment density and for p(r) the magnetic moment,
density averaged over a cubic block 0.15 lattice constants on a
side. The total experimental error gives an uncertainty in p(r) of
less than 0.004 pp/A'.

"This series giving the average density is an extension to the
three dimensional case of the series used by Moon to obtain the
average projected moment density.
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I'. 'rG. 3. The average magnetic moment density p(r) for a cubic
block 0.15 lattice constants on a side plotted along the L100]
direction.
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p(r) for a cubic block 0.150 lattice constants on a side
is plotted in Fig. 3 for the direction along the [100]
axis. Note that the moment density hump near the
origin is spread out more than in Fig. 1 a,nd the maxi-
mum value of the moment density is thus reduced,
The p(r) for other directions in the crystal are similar
to p(r) along [100], the part of the density in the 3d
hump being slightly diferent in diferent directions
owing to the asynunetry in the moment distribution.
The negative background seems to be fairly constant
over a large part of the unit cell. Of course any varia-
tions smaller than the averaging block size would be
obscured by the averaging process.

The magnetic moment density in the [100]and [110]
planes is shown on the contour maps in Figs. 4 and 5.
These maps again emphasize the strong asymmetry in
the magnetic electron distribution. The part of the
moment density near the atomic sites in the 3d magnetic
moment humps was given by the series for p(r). The
series for p(r) was employed to give the moment density
in the region far removed from the lattice sites. The
Fourier maps show that the moment density consists of
large positive asymmetric contributions near the lattice
sites imposed on a small negative background. It is
worthwhile to empha, size that the Fourier inversion
technique requires no theoretical model of the magnetic
moment distribution and gives the spatial distribution
of the magnetic moment density directly from the
measured data and the calculated point at [000].

NICKEL
NUCLEUS )looj— 0

2

-0,0085 @pi

IV. COMPARISON OF MEASURED AND
CALCULATED FORM FACTORS

A second approach to analyzing the scattering data is
to compare the measured form factor with any cal-
culated form factors that are available. With the excep-

NICKEL
NUCLEUS —[I to]

NICKEL

0 -0.0085
P~~ 3 g,

-0.0085 PP,.3 -0.0085 p,p'/'d

aL

FIG. 5. The magnetic moment distribution in the $110]plane.

tion of some recent work by Hodges, Lang, Ehrenreich,
and Freeman, " theoretical calculations giving form
factors for nickel atoms in a metal lattice have not been
available. However, Hartree-Fock free-atom form fac-
tors for nickel are available for various stages of ioniza-
tion and the measured form factor was compared with
the free-atom form factors. Three contributions were
considered in constructing the free-atom form factor:
an electron-spin contribution, an orbital contribution,
and a contribution from the spin-polarization e6ects of
the core electrons inside the 3d shell. The form factor
thus may be written as

f(k) = (2/g) f,p,„(k)+[(g—2)/g]f. ,b;, (k)+f,.„(k),(6)

where g is the spectroscopic splitting factor. For nickel,
g=2.20 as given by the magnetomechanical measure-
ments of Scott."The spin contribution is by far the
largest, the orbital contribution being about 10% and
the core contribution being almost negligible. When the
measured form factor is compared with free-atom form
factors calculated using Eq. (6), it is found that the
measured form fa,ctor is appreciably higher than the-
calculated form factors. However, the Fourier maps
show that there is a negative contribution to the
moment density; thus it would be reasonable to include
this negative contribution in the comparison between
the measured and free-atom form factors. We can do
this by assuming that the spin part of the form factor
can be written in the following manner:

O

0
2

-0.0085 pp

where o is a constant. nb(k) only makes a contribution
at k =0 and thus corresponds to a uniform contribution
to the magnetization. This treatment of the spin part
of the form factor is the same as that used by Moon. 4

As he points out, the proper way to ask whether the
shape of the observed periodic spin density is the same
as that given by a superposition of 3d atomic functions
is to test for proportionality between the observed and
calculated form factors for all rejections other than

NICKEL
NUCLEUS

E&zG. 4. The magnetic moment distribution in the L1001 plane.

"L.Hodges, N. D. Lang, H. Ehrenreich, and A. J. I'"reeman,
J. Appl. Phys. 37, 1449 (1966)."G. G. Scott, J. Phys. Soc. Japan, 17, Suppl. Bi, 372, 1962.



148500 H, A. MOO K

~ MEASURED FQR M FACTOR
o CALCULATED FORM FACTOR

0.6

04

0.3

0.2 0
O~ 4O
4 AJ

8 od

4

IA
Q rn ~

lA 'tl IO
N lA

0ON 4 to@
O 4 4 ~ 4

4 CU Q4 OJ

0)
4

—0, I

100.6
SIN 8

0.8 ).20402

FIG. 6. Comparison of calculated and measured form factors.

(000).The introduction of the delta function permits us
to compare the shape of the radial distribution of the
moment density in nickel metal with that in a free atom
and still deal with normalized form factors.

Because of the asyrriinetry of the magnetic electrons
the form factor of nickel is not a smooth function of
(sine)/X. In a cubic field the fivefold degenerate
orbitals of the 3d electrons split into triply degenerate
T2, orbitals which transform like xy, xz, and yz; and
doubly degenerate E, orbitals which transform like
3z' —r' and x~—y'. The scattering amplitudes for these
two sets of orbitals are different, and Weiss and Free-
man' have shown that the spin part of the form factor
for 3d electrons in a cubic Beld can be written

where (jo) represents the spherical part of the spin dis-
tribution and (j4) the aspherical part. y is the per-
centage of 3d electrons in F., orbitals and is 40%%uo for
spherical symmetry. AAI, ~ is a function of the direction
that is being examined in the crystal and is given by

h'+ k'+l' 3(h'k'+h'P+ k'P)—
&1 Itic)

(h'+ k'+ P)'

The aspherical orbital contribution is small compared to
the aspherical spin contribution and we will neglect it.
The form factor then becomes

f(lt) = (2/g) (1+a)L(jo)+ (—'y —1)A a~i( j4)]
+L(g—2)/g) f„b.(k)+f„„(k)—(2/g)nb(k) . (10)

Watson and Freeman have performed several different
calculations for the spin and orbital parts of the form
factor corresponding to diff'erent electron configurations.
The spin parts of the calculations have been pub-
lished" ' and the orbital parts were privately com-
municated. The core part of the form factor was ob-
tained from an unrestricted Hartree-Fock calculation
for Ni++."The data were compared with all the avail-
able calculations and the best 6t was obtained using the

(jo) from an unrestricted calculation for Ni++, 'o the

(j,) for Ni++," the orbital contribution for Ni~, and
setting y=19%%uo and a=0.19. The comparison of the
measured and calculated form factors is shown in Fig. 6.
Note that the agreement is extraordinarily good and
thus that the shape of the moment distribution in
metallic nickel is almost identical to the shape of a
moment distribution which consists of free atom-
like distributions imposed on a constant negative
background.

(jo) is not needed to find y, since (jo) can be elimi-
nated between two equations like (10) written for the
same value of (sine)/X but for difFerent hkl. In practice
the best way to determine p is to Fourier transform the
diff'erence between the calculated and measured results
for various y. For the correct value of y the Fourier
transform of the difference will have spherical sym-
metry. In this manner it was determined that the best
fit is obtained if 81&1% of the 3d magnetic electrons
are placed in T~, orbitals.

Setting n=0.19 corresponds to including a uniform
negative contribution to the moment density of
—0.0091ys/A'. This agrees well with the negative mo-
ment density observed on the Fourier maps. The two
methods of analyzing the data are thus consistent with
each other and lead to a model of the magnetization
which distributes the magnetic moment per atom in the
following way:

3d spin 0.656pp,

3d orbit 0.055pp,

Xegative contribution —0.105@p.

If the negative contribution were spaced uniformly
throughout the unit cell it would amount to a magneti-
zation field of about 1.1 kG.

Ke cannot determine the origin of the negative con-
tribution from the neutron diffraction measurements.
However, one very good possibility is that the negative

"R. E. Watson and A. J. Freeman, Acta Cryst. 14, 27 (1961)."See Ref. 17, p. 231.
'~ R. E.Watson and A. J.Freeman, Phys. Rev. 120, 1125 (1960).~ See Ref. 19, p. 1134.
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moment density arises from 4s electrons ~vhose spin is

oppositely polarized from the 3d electrons. This possi-
bility was utilized by Shull and Yamada in the analysis
of their form-fa, ctor data for iron. 4s form factors fall
to immeasurably small values before the first Bragg
reflection. Equation (10) can thus be taken to represent
scattering from both 3d a,nd 4s electrons if 3d, 4s cross
terms are neglected. It is difFicult to determine the
nature of any 3d, 4s cross terms that would be present;
ho~ever it is expected that a,ny such terms would be
very small.

It is also plausible that the negative contribution
stems from spin polarization effects in the 3d band. It is
expected that the wave functions at the top of the 3d
band are very similar to free-atom wave functions, ""
Presumably this is why the 3d free-atom form factor
provides the good fit to the data shown in Fig. 6. The
3d wave functions at the bottom of the band are quite
diffuse. There is no net difference in the number of
electrons with spin up and down at the bottom of the
band, however scattering can still take place from the
bottom of the band if there is a difference in the radial
distribution of spin-up and spin-down electrons. Watson
and Freeman's unrestricted Hartree-Fock calculation
for Ni++ shows that there is some variation in the radial
wave functions for spin-up and spin-down electrons in
the free atom. Perhaps in a metal these spin polarization
eGects ca,n account for the negative density observed
on the Fourier maps. In this case all the scattering
would come from the 3d band and it would be un-
necessary to include 4s electron effects.

It is conceivable that expression (2) for p(000) is
incorrect in a metal and that there is no negative con-
tribution to the moment density. This seems unlikely
as the magnetic cross-section expressions from which
(2) is derived appear to give the correct experimental
results for the magnetic scattering from salts and
generally seem valid for the rare-earth metals. More-
over, if the magnetic scattering amplitude expression (2)
were incorrect, one should expect to find that the rela-
tive negative contribution in iron, cobalt, and nickel is
the same, whereas these are not the same, the negative
contribution being 18% for cobalt and 10% for iron.

The magnetic form factor of nickel has been deter-
mined for the first 27 Bragg reQections. The form
factor contains information about the spatial distribu-
tion of the magnetic moment density in the unit cell.
There are two approaches one can take in obtaining
this information. The first is to Fourier transform the
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forn& f;~ct,or to obtain a, three dimensional map of the
moment distribution. The Fourier series gives accurate
information about the shape of the moment density in
the regions of the unit cell where the moment density is
large but converges too slowly to give any information
in the region far from the lattice sites where the moment
density is small. A Fourier series was devised that gives
the density averaged in space over a cubic block. This
series smears out the moment distribution somewhat
but converges quickly, giving accurate information in
the region where the moment density is small. A map
of the moment density derived from these Fourier series
shows that the magnetic electrons must be predomi-
nantly in T2, orbitals and pictures the moment distribu-
tion as being similar to asymmetric free atom distribu-
tions placed on a negative background.

The second approach to analyzing the data is to
compare the measured form factor with calculated form
factors. Unfortunately, there are no calculated form
factors available for nickel metal; however a number of
free-atom form factors are available for several stages
of ionization. It is surprising to find that the free atom
form factor for Ni++ fits the data extremely well pro-
vided a uniform negative contribution is added to the
moment density. The measured form factor is not a
smooth function of (sin8)/X and from the comparison
with the free-atom form factor we 6nd that 81&1% of
3d electrons occupy T2, orbitals. The size of the negative
contribution needed for agreement between the calcu-
lated and measured form factors agrees well with that
observed in the Fourier maps, and the two approaches
to analyzing the data appear to be consistent with each
other in every way.

This work on nickel completes the magnetic form-
factor measurements for the three classical ferromagnets.
The relative size of the negative contribution to the
moment density of nickel is considerably larger than that
observed for iron but similar to that found for cobalt.
Nickel has considerably more asymmetry in its moment
distribution than iron or cobalt, iron having 47% of its
magnetic electrons in T2, orbitals and cobalt having an
almost spherical moment distribution.
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