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y(0) under perfect collimation (i.e., B=O), and should
not be a function of energy. (b) The calculated potential
V(x) should be independent of the proton energy, E„.
This requires that it (a) is satisfied, the angular width
of y(n) should be inversely proportional to the square
root oi energy E„. (c) Measurement of y(n) near n=0
produces values of V(x) for x&X. However, values of
V(x) near x =0 are obtained for large u, where the model
is not expected to be applicable. Consequently, the
estimate of the potential near the center of the channel
is not expected to be good.

The experiment was conducted with protons of
energies 70 and 100 keV. The beam was swept across
the (001) plane of a copper crystal for which the L0017
direction was parallel to the surface normal. The plane
was crossed at 30' to the surface normal and the stereo-

gram of the (001) surface indicates that no other low-
index planes were encountered during the sweep. The
data are shown in Fig. 8.

The averaged potential was then calculated using the
above equations. The results are shown in Fig. 9. For
comparison, the planar-averaged Nielsen potential
between two planes may be written

7l Z26' ag
V(X)—V(x) = K ln

1—(4x'/D')—

1—(4X'/D')

where uii is the atomic screening radius and 1/A is the
atomic density in the plane. " This potential is also
shown in Fig. 9, where good agreement appears between
the calculated and the predicted potential for x&X
(i.e., for n=0).
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An analog of Wick's theorem is developed for spin--', operators, and a linked diagram expansion for spin
Green's functions is derived. As an application we derive the familiar Anderson approximation for spin
waves in antiferromagnets, and we then obtain the leading dynamical and kinematical corrections to that
approximation. The Oguchi form of correction, usually obtained by a formal expansion in 1/5 extrapolated
to 5= —',, is found here as the leading term of an expansion in powers of 1/s, where z is the number of nearest
neighbors. However, the Oguchi result is here found to be valid only for spin waves with wavelengths
greater than two or three interspin distances.

1. INTRODUCTION

A MAJOR diKculty in the theory of spin systems
has been the lack of a practical analog of Wick's

theorem. That theorem relates averages of products of
many boson or fermion operators to averages of pairs,
and it is the basis for the Feynman diagram representa-
tion of perturbation theory. ' In this paper we develop
such a theorem for spin operators, albeit of a somewhat
more complicated form than in the fermion or boson
cases, and we demonstrate the corresponding linked-
diagram expansion.

As illustrations of the diagram method for spin
operators, we first show that spin excitations in a
ferromagnet generate diagrams which can be trivially
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summed to infinite order, giving the well-known rigor-
ous spin-wave result.

The simplicity of the ferromagnetic case precludes a
full demonstration of the diagrammatic method. To
illustrate the more general aspects we then consider the
nontrivial problem of spin excitations in a Heisenberg
antiferromagnet. Summation of the lowest order (simple-
chain) diagrams yields the familiar spin-wave approxi-
mation of Anderson. ' We show that if we restrict our
attention to spin waves with wavelengths greater than
about two interspin distances, the diagrams can be
classified according to their order in 1/s, where s is the
number of nearest neighbors. Furthermore this classi-
fication is equivalent to a classification according to the
order in BSO', the deviation from perfect alignment in
the ground state. The leading diagrams in 1/s are chains
dressed with bubbles (a dynamical correction) and with
loops (a kinematical correction). The resultant correc-
tion reproduces the result of Oguchi. '

Although the excitation spectrum has been obtained

' P. W. Anderson, Phys. Rev. 86, 694 (1952).' T. Oguchi, Phys. Rev. 117, 117 (1960).
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previously, we believe that the present derivation pro-
vides a new and instructive perspective to this problem.
The Oguchi result nominally follows from an expansion
of the Holstein-Primakoff transformation in powers of
1/S (keeping only terms of low order). This expansion
is a dubious one for S=-,', which is the case here con-
sidered. One might conceivably doubt the Oguchi result
for this spin value, or one might infer that the nominal
expansion in 1/S is in fact implicitly coupled to an ex-
pansion in some less obvious but more satisfactory
parameter. Our calculation indicates that this expansion
parameter is 1/s, but it explicitly limits the result to
spin waves of wavelength greater than two or three
interspin distances.

In a recent short note Tyablikov and Moskalenko4
have given an iteration procedure for the decomposition
of products of spin--,' operators. Also, while we were
writing the final version of this paper Dr. R. E. Mills
called to our attention two short summaries of talks
presented at meetings; one by Mills, Kenan, and Kor-
ringa' at the Congress on Many-Particle Problems in
Utrecht, 1960, and one by Kenan' at the Eighth Inter-
national Conference on Low Temperature Physics,
j.963. Those authors have clearly developed the same
expansion theorem that we subsequently discovered (a
full five years later). However, their interest was in
thermodynamic properties, and they have given an
approximation which appears to be somewhat related
to the random-phase variant of Green's-function
theories.

2. CAUSAL-SPIN GREE¹SFUNCTIONS
AND WICK'S THEOREM

We consider a system in which a spin of magnitude
S=-', is localized at each lattice point of a Bravais
lattice. The spin operators at the mth site are designated
by S +, S —, S '. We define the Green's function
G(l,m) by

G(l,m)= i(0~PS—(t )S +(t )~0), (2.1)

where 5~ (t&) is in the Heisenberg representation (indi-
cated by the tilde); ~0) denotes the true ground state;
and P is the Dyson time-ordering operator (not the
usual Wick operator), which arranges operators in order
of increasing time from right to left. If an S+ and an S—
operator have equal time arguments the S+ is to be
ordered to the left. This definition of the Green's func-
tion agrees with the standard definition of causal
Green's functions for bosons (for which Dyson and
Wick operators are identical). Consequently, the con-
ventional analysis of the spectral representation and

4 S. V. Tyablikov and V. A. Moskalenko, Dokl. Akad. Nauk
SSSR 158, 839 (1964) I English transl. :Soviet Phys. —Doklady 9,
891 (1965}j.' R. L. Mills, R. P. Kennan and J. Korringa, Physica 26, S204
(1960).

'R. P. Kenan, in Lpm Temperature I'hysics, edited by R. O.
Davies (Butterworths Scientific Publications, Ltd. , London,
1963).

analytic properties of the Green's function can be taken
over in toto from the familiar boson case. ' This does not
imply that the spins are here considered as bosons, for
the full spin commutation relations will be retained
throughout the analysis.

As usual we now re-express the Green's function in
interaction representation. For this purpose we choose
some effective Geld a&~/(gee) to de6ne the unperturbed
Hamiltonian; co~ will be chosen differently for "up" and
"down" spins in the antiferromagnet, but it will be
taken as independent of I (the site label) in the ferro-
magnet. The unperturbed Hamiltonian is

3Co=Q a&St*, (2.2)

and the perturbation SC' is

K —X 3CO ~ (2.3)

An operator O(t) in interaction representation is re-
lated to the Schrodinger operator 0 and to the Heisen-
berg operator 0(t) by

O (t) =e'x"Oe-*xo'= S(t)0(t)8-'(t), (2.4)

where

(2.5)

In particular,

S,+(t) =e+'"&'S +, (2.6)

' See, for example, A. A. Abrikosov, L. P. Gorkov, and Z. E.
Dzyaloshinski, Methods of QNanhctn Field Theory in Statistical
I'hysics (Prentice-Hall, Publishers Inc. , Englewood, New Jersey,
1963), Chap. 2.

S(*(i)=Si'=S Si (t)Si+(t)—=S—Si S(+. (2.7)

The unperturbed Green's functions are then

G'(l, m) = ie ""&'~ "~'"'—8(i~ i~)b~~. (—2.8)

Furthermore, invoking the usual "adiabatic turning-
on theorem" for the eGect of the perturbation on the
ground state, we obtain in the standard way":

G(i,m) = i(0~ PS—) (t()S„+(t„)S(—~) ~0)/

&ols( ) lo), (2.9)

where ~0) denotes the unperturbed ground state.
The analysis of the Green's function (2.9) will pro-

ceed, of course, by series expansion of the operator 8(~ ),
Kq. (2.5).We thereby encounter expectation values such
as (0~PS&+(t&)S2 (t2)SS+(t3). ~0). In such a product
there are, perforce, as many S+ operators as S opera-
tors (else the product vanishes), and we have taken
advantage of the freedom of rearrangement under the I'
operation to list these in alternating sequence. Because
of the separability of the unperturbed density operator
such a product factors into similar products each re-
ferring to a single site. For a single site the spin-
commutation relations for S=—,

' are identical to fermion
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3. THE HEISENBERG FERROMAGNET

The Hamiltonian of the system to be considered is

I'IG. 1. The two systems of contractions contributing to

(OiPSg (4)Sg+(l4)Sg (tp)Sy+lt2)S~ (4)S„+(til iol.

The first contraction carries the signature (—1)& =+1, and the
second contraction carries the signature (—1) = —1. Each
Green's function line also contributes a factor (iU'), as indicated
in Eq. (2.10).It is assumed in the diagram that m /f, and that the
times are ordered I1 &t2 ( ~ ~ (t6.

~= —E JrpSI Sp+wH Z Sx'+~p~
f, g f

(3.1)

where p, —=gp~ is the magnetic moment per spin and H
is the externally applied magnetic field. Jf, is the ex-
change integral between sites f and g. The ground state
has all spins down, and Eo is chosen so that the energy
of this state is zero:

commutation relations. These two facts enable us to
transcribe the usual fermion form of Wick's theorem,
with suitable modifications, to the spin case. A detailed
proof is given in Appendix A for the following theorem:

where

Ep NJ (0)——s'+IiHiYS,

~(0)=E JI'
(3 2)

(3.3)

(ol~s/ ( f) P (~p)s& ( i)s (~ )' ' ' lo) We choose the unperturbed Hamiltonian as

where 0., P, y, 8, . is some permutation of the indices

f, g, f, m, , and where the summation is over all
permutations. The quantity Q is the number of "half-
overlapping" pairs of Green's functions in the set
GP(u, g)G'(y, b), defined as follows: We first note that
GP(a,P) vanishes unless r =rp, so that each of the
nonvanishing Green's functions in the product can be
indicated more explicitlyasG'(r t, r 1 ) or Gp(r„t„,r„t,),
the bar indicating the terminal time. The pair of
Green's functions G'(r t, r t ) and GP(r~t„, r~t~) is said
to be half-overlapping only if r =r~ and if either
t & t~ & t & t~ or t~ & t & t~ & t . Pictorially, this means
that the two Green's functions must be on the same
site, the second one starting between the beginning and
end of the first one, and surviving it in time.

A pictorial representation of this form of Wick's
theorem is particularly useful. Given the product
(0 lysi+(&i)sp (4)sp+(tp)

l
0), we reserve a horizontal

line for each diferent site index in the product, diGerent
sites having lines one above another, as in Fig. 1. The
horizontal scale denotes time, which proceeds from right
to left. Each operator Si+(t i) is represented by a cross on
its appropriate site line, at the horizontal distance ap-
propriate to 3i. Each S (t ) is similarly represented by
a circle. The entire product is then represented by all
possible ways of drawing directed lines (unperturbed
Green's functions) starting at crosses and proceeding
horizontally to the left to terminate on circles. In each
such set of contractions one and only one Green's
function line can terminate on any circle, or initiate on
any cross. The sign to be associated with each diagram
is (—1)o, where Q is the number of pairs of half-
overlapping Green's-function lines.

To illustrate the applicability of this diagrammatic
representation to the series expansion of Green's func-
tions we first consider the admittedly trivial case of spin
waves in a Heisenberg ferromagnet.

with

3Cp —pip Q Sg+Sg
f

co p J(0)+pH——,

We here distinguish between the "transverse corn-
ponent" of the exchange Jf, and the "longitudinal
component" Jf,', although these subsequently will be
taken as equal.

We now consider the Green's function G(l, m)
G(rifi, r t—), noting a notational convention which

will prove useful henceforth. That is, the index t denotes
both the time tE and the spatial index r~, the bar dis-
tinguishing the terminal time, or the time associated
with an 5—operator, but not aGecting the spatial index.

As in other diagrammatic expansions the numerator
of the Green's function G(f,m) Las given in Eqs. (2.9)
and (2.5)] can be expanded in the form

(—i)'
dt, (o

l
rs;(t, )s„+(i.)sc'(~,) l

o)y
2I

X dtl dtp&olPsi —(ti)s~+(t~)K'(ti)3C'(t, ) lo)

+ (3 5)

This series can be represented as follows: One starts
with the source point I and the terminal point l, as in
Fig. 2. These are then connected with all possible dia-
grams involving horizontal Green s-function lines and
vertical interaction (wavy) lines. All Green s-function
lines must be directed from right to left, and the end
point of one must be connected by a vertical wavy line

whence the perturbation Hamiltonian is

3c'= —2 [~I.si+s. +f ~.'s~'sr s.+s. ] (3 4)
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to the initial point of another, except at the "external
points" l and m. The vertical interaction lines corre-
spond either to transverse or longitudinal interactions,
and these are distinguished by their mode of connection
to Green s-function lines. Each vertical interaction line
of transverse type connects two Green's functions, one
terminating and one initiating at the respective ends of
the interaction line. Each longitudinal-type interaction
line connects four Green's functions, one terminating
and one initiating at each end of the interaction line.
The contribution of such a diagram to G(l, m) is obtained
by associating —Jt, with each transverse-type (vertical)
interaction line, —iJ~, with each longitudinal-type
(vertical) interaction line, an unperturbed Green's func-
tion with each horizontal line, summing over all inter-
mediate lattice sites (vertical positions) and integrating
over all intermediate times (horizontal positions). The
factor 1/n! appearing in Eq. (3.5) need not be con-

sidered, for reasons which will be discussed below.
We note the following facts immediately:

1. Since all unperturbed Green's functions must be
directed from right to left, the Green's function G(l, m)
vanishes unless the source point m is to the right of the
terminal point l (i.e., ti) t„).

2. All diagrams proceed monotonically to the left,
and therefore no half-overlapping diagrams occur.

3. The longitudinal interaction makes no contribu-
tion to any diagram because of I and 2 above.

4. There are no unconnected diagrams, or diagrams
with parts disjoint from the source and terminal points
m and l.

5. There are no diagrams whatsoever corresponding
to the denominator (0~ $(~) ~0) of the Green's function,
except for the trivial diagram represented by unity.

This reflects the fact that the ground state in the ab-
sence of the perturbation is identical to the ground
state in the presence of the perturbation, so that
~0)=g(t) ~0), consequently, taking t= ~,

(OIS( )10)=&010)=1. (3.6)

Because of the above considerations we see that
Fig. 2 gives the zero-order, erst-order, second-order, and
third-order diagrams contributing to the Green's func-
tion G(l, m).

We need only concern ourselves now with the factors
1/n! appearing in Eq. (3.5), and then proceed to sum
the diagrams of Fig. 2. Consider a diagram of nth order,
having n wavy lines. Each wavy line corresponds to one
free time index, over which we must integrate. The
labels t&, t.. . t„of these integration variables may be
permuted in n ~ ways, to give n ~ equivalent diagrams. If
we consider only one such diagram, we need not divide

by n~t. We therefore consider only a single diagram of
each structure, two diagrams being said to be of the
same structure if one can be distorted continuously into
the other, ignoring all internal labels.

Another way of looking at the statement above is to
recall that in the derivation" of the series expansion for
S(~ ), the form given in Eq. (3.5) is a secondary result.
The primary result of the standard derivation is similar,
except that the 1/n! factors are absent, whereas the

oo t1 t2

multiple integrals are of the form dt~ dt2 dts ~ ~

rather than all extending from —~ to ~. The unper-
turbed Green's functions insure that our integrals actu-
ally are of this form, and the 1/n! factors consequently
need never arise.

To summarize, then, the Green's function G(l, m) can
be read from Fig. 2 as follows:

G(l,m) =G'(l m)+ dtidt~G'(l, l)[—Ji 8(ti—t~)]G'(m, m)+g
—oo

dtidtidtzd4G'(l, l)f—J118(t1—ti)]

XG (1,1)$—Ji 8(tz —t )]G'(m, m)+ p
&1 &2

dtidtidtzdtzdtzdglG'(l, t)L—1128(t 1
—t2)]

or, defining 8G'"& (l,m) by
XG'(2, 2)L—J216(t2—tz)]G'(1, 1)L—Ji 8(ti—t„)]G'(m,m)+ .

, (3.7)

G(l m) Go(t m)+ P 8G&"'(i,m), (3.8)

8G&"&(l m) = (—1)"(—i) "+' dtidt 1 ~ dtzdtie '"'~'& '"'&8(ti —ti)8(ti —t 1)8(t,—t„,)
X8(t2 t1)8(t1 t ) Q J a 1iJm z, n—2Ja——2, a——2' ' ' J21Jler p (3 9)

i"(t, t„)"—
= —ie ' "'1 '"'8(ti —t )

n! r1 ~ ..r~
J~,n-i . J2jJ~~. (3.10)
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(a)
m q " m

(b) taken as

3C=Iz(H~+H)P SI' zz—(Hz H—)Q S,*
f

(c)

gc

+22 Jf,(l(Sf+S. +S.+Si )}

+2 Q J„'S,*S,*, (4.1)

It is convenient to simplify this term further by intro-
ducing the Fourier components of J;;:

whence

1
J;,=—Q J (k) exp[ik (r„—r;)],E k

(3.11)

z" (t,—t )"
8G&"&(t,m)= —ie '"'« ' '8(t~ —t )

FIG. 2, Zero-order to third-order diagrams for a ferromagnet. The
zero-order diagram contributes only if r =r&,.

where H is the external field and H~ is a staggered field
which removes ground-state degeneracies, but which
can be allowed to approach zero at the end of the
calculation (or, alternatively, interpreted as a mag-
netocrystalline anisotropy).

It is convenient to express g-site operators in a
coordinate system rotated 180' around the x axis, so
that

(4.2)

Then the Hamiltonian can be written as the sum of an
unperturbed part BCp and a perturbation 3C'

1
3C =BCp+BC' )

X—P(J(k))" exp[ik (r(—r„)], (3.12) ~ „,p S+S +„pR pR
k

(4.3)

(4.4)

X'=Q Jyg(Sg+Rg++Re Sg )

The Fourier component G(k, &a) in k, ze space is, then,

G(k, ze) =
ze zo (k)+ib—

(3.14)

G(t,m) = —i8(t,—t„)
1

X—+exp(i[J(k) —ceo](ti—t )+ik (r~—r )}.(3.13)
X k

and

roe tz(Hg+H)+ J'(0——),
co =zz(Hg H)+ J'(0), —

J'(o) =Z Jf,'=2 Jf,'.
g i

(4.6)

(4.7)

(4.8)

—Q 2Jfg'Sf+St Rg+Rg, (4.5)

where

(u(k) =coo—J(k) =zzH+ J(0)—J(k) . (3.15)

The unperturbed ground state is then dined by

Sf lo)=0) Re lo)=0. (4.9)

Thus G(k,~) has the standard form of an independent-
excitation free Green's function, with the energy ze(k).
This energy agrees, of course, with the well-known spin-
wave excitation energy.

4. THE HEISENBERG ANTIFERROMAGNET

Having illustrated the simplest aspects of the diagram
method by consideration of the ferromagnet, we proceed
to the nontrivial problem of the Heisenberg anti-
ferromagnet which will exhibit the diagram expansion in
much greater generality.

We consider a system of two crystallographically
equivalent interpenetrating sublattices such that the
nearest neighbors of an ion on one sublattice lie entirely
on the other sublattice. Designating the spins on the
"down" sublattice by the running index f and those on
the "up" sublattice by the index g, the Hamiltonian is

We define two kinds of unperturbed Green's functions

G'(f', f) = —z(ol&Sf (tf )Sf'(t~) lo)
= —ze '~«'&' '»8(tf tf)$f f (4.10)

and

go(tt', 8) = —z(o
I
J'R, .-(t,.)R,+(t,) l

o)
ie '~ "&'~' 'g&8(te —tg)—bg 0

—(4.11)—.
Henceforth the indices in a G' function will be under-
stood to apply to the down sublattice, whether they are
labelled by f or by some other convenient running
index, and similarly for g'.

In contrast to the ferromagnetic case, the linked-
diagram expansion theorem for the Green's function
G(l, m) [Eq. (2.9)] is no longer trivial, for the denomi-
nator now generates diagrams which cancel the unlinked
diagrams in the numerator. Before denionstrating this
cancellation we consider the numerator of G(l,m), ex-
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(c)

(b)

I
(d)

FIG. 3. Representative diagrams in the series expansion of the
numerator of the Green's function.

' For example, J. Hubbard, Proc. Roy. Soc. {I.ondon) A240, 539
{1957).

panding it in terms of unperturbed Green's functions by
Wick's theorem. The resultant series can be represented
as follows. '5"e start with the source point m and the
terminal point l, as in Fig. 3. %e then draw all possible
diagrams involving horizontal Green's function lines

and vertical interaction (wavy) lines. There are two

types of Green's function lines; solid lines to represent
f-site functions (G"s) and dotted lines to represent
g-site functions (g"s). Each must be directed from right
to left. There are two types of interaction lines. A

transverse-type of interaction line vertically connects
the initial point of a G line to the initial point of a gg

line, or a terminal point of a G' line to the terminal point
of a g' line. A longitudinal type of interaction line

vertically connects four Green's functions, with a G'
initial and a G' terminal point s,t one end, and a g'
initial and a g' terminal point at the other end. Both
disconnected and connected diagrams must be con-
sidered.

The contribution of a diagram is obtained as in the
ferromagnet. Each solid horizontal line represents a 6',
each dotted line a g', each transverse type of interaction
line represents (+JI,), and each longitudinal type of
interaction line represents ( 2iJ~,—') Again . we must
sum over all internal sites and integrate over all internal
times, with appropriate parities assigned. The parity of
the diagram is determined by the number of half-

overlapping pairs of unperturbed Green's functions, and
the parity changes in a complicated fashion as one
integrates over the internal times (a problem to which
we return in the next section). Finally we must divide
the contribution of each diagram by a symmetry factor
p. This symmetry factor is equal to the number of ways
in which the diagram can be rotated or reflected into
itself; an example in which y= 2 is shown in Fig. 3(d).
The symmetry factor p is discussed in various standard
references, ' and the manner in which it arises in our
problem is discussed in Appendix B.

Although the above convention for the diagrammatic
expansion of the numerator of G(l,m) is formally cor-
rect, it is far from practical. The difFiculty arises from
the complicated behavior of the parity factor (—1)& as
the time integrations are carried out. The essence of our
theory lies in a method of coping with this complication,
to which we now turn our attention.

(a)
f f

(c)

(e) );c ) ) —,A
f'

(g)

(f) ) &g
i'

FIG. 4. Replacement of "old-type" diagrams by "main" dia-
grams plus "lock" diagrams. The old-type diagram (a) is replaced
by the new-type "main diagram" (b) and the two correction
diagrams (c}and {d).Also the old-type diagram (e) is replaced by
the main diagram (f) and the two correction diagrams {g) and (h).

5. THE "LOCK-DIAGRAM" CONVENTION, AND

THE LINKED-DIAGRAM THEOREM

To eliminate the parity changes which occur as
Green's function lines overlap, wholly or partially, we

introduce a new diagram convention.
Consider the diagram of Fig. 4(a). If tf(if' as

shown, the parity of the diagram is positive. It becomes
negative when ty&t~ &ty&tp, or when ty. &tf(t f 4$f.
Ke replace this "old-type" diagram by the sum of "new-

type" diagrams, shown in Fig. 4 (b), (c), and (d). In
Fig. 4(b) the parity of the diagram is to be interpreted
as positive, independent of the overlapping or non-

overlapping of the Green's-function lines during inte-
gration. Figure 4(c) and Fig. 4(d) are then the correc-
tion diagrams. Each has a weight of —2, and the
encirclement of the two half-overlapping lines indicates
that the ranges of time integrations are to be limited so
that the Green's functions remain half-overlapping.
These two Green's-function lines are said to be "locked"
in the correction diagram. Similarly Fig. 4(e) is replaced

by Fig. 4 (f), (g), and (h).
All accidental half-overlaps henceforth are to be

ignored in the contributions of "main diagrams. " Cor-
rection diagrams contain one or more "locks," limiting
the range of integration of internal time variables (and
of summs. tion of internal site indices). The weight of
such a correction diagram is (—2)~, where L is the
number of locks.

To corroborate that (—2) ~ is the proper weight of the
correction diagram, consider the situation in which
there are I.pairs of half-overlapping Green's functions
(more than one pair can share a common unperturbed
Green's function). The parity of the diagram should be

(—1)r, rather than the value (+1) assigned in the main
diagram. In addition to appearing as an accidental
overlap in the main diagram, the diagram has also ap-

peared as an accidental overlap in each of the
~

diagrams with a single lock. Similarly, it has appeared in

each of the
2 ~

correction diagrams with 2 of the LD
2]

pairs locked, etc. If we associate the fa,ctor (—2) with
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each locked half-overlapping pair, the total weight as-

sociated with the case of L overlaps will then be

/L~+(—2)'( [= (—1)', (5 1)
&I.i

which is correct.
The final aspect of the diagram method, which re-

mains to be proved, is the cancellation of unlinked
diagrams in the numerator and denominator of G(l,m).s

The denominator (0~ S(~) ~0) is represented by closed

loop diagrams with no external points. The numerator
generates linked diagrams with external points and also
unlinked diagrams. Each such unlinked diagram is a
product of the contributions of its linked and its
disjoint parts. Collecting all diagrams with a common
externally connected portion, their disjoint portions
reproduce the denominator. These cancel, and finally
only connected diagrams need be considered. That is

G(l,m)= i(O—~PSr (f,,)5 +(f )g( ) ~0)„„„„„„e;„„,
(5.2)

It must be noted that a lock can connect an otherwise-
unconnected diagram. Thus the diagram of Fig. 4(c) is
connected.

6, SIMPLE SPIN WAVES; SUMMATION
OF CHAIN DIAGRAMS

Before considering the relative importance of the
various types of diagrams we shall simply (and arbi-
trarily) proceed to sum all diagrams which contain
neither locks nor longitudinal interactions, that is, the
simple "chain" diagrams shown in Fig. 5. %e shall find
that these diagrams lead to the familiar simple spin-
wave theory first given by Anderson. ' These then
provide a zero-order theory, to be corrected by the
addition of those diagrams with locks and longitudinal
interactions. The classification of the correction dia-
grams according to their order in 1/z (where z is the
number of nearest neighbors) will be developed and
discussed in Sec. 8.

The summation of diagrams in the antiferromagnet is
complicated by the interdependence of the ranges of

fA ~ m

g&~-~o
f

integration of the free internal time indices. For ex-

ample, in the fourth-order diagram of Fig. 5(b) the

upper limit of integration of t, (=fr) is either fr or t„
depending on which of these is the earlier. As the order
of the diagram increases, the conditions which deter-
mine the ranges of integration rapidly escalate in

complexity. Fortunately, however, in the Fourier-
transformed representation of the diagrams the re-

strictions on the integration ranges translates simply
into energy-conservation conditions, and the diagrams
are then easily summed.

We first recall that the Green's function G'(f, f) is
independent of rf, and its spatial Fourier transform is
independent of k. Its temporal transform is

gs(ce) = 1/(cu —ce +ill) . (6.2)

Consider, as a typical example, the fourth-order chain
diagram of Fig. 5. Its contribution is

5G&+(l,m)= p dtrdt, dt, dtrdtrdtgtgt Gs(m, m)

XJ-,~(t-—t,)8'(g, g)Jr A(&r —&,)G'(f,f)
XJf '5 (tr—t,)g'(j j)J, cb(t, —f c)G'(l l) . (63)

Taking its Fourier transform we find immediately

~G'"(») = LG'( )j'[8'(—)j'[J(k))' (64)

This is an example of the general rule that each of the
diagrams of Fig. 5 can be re-interpreted in Fourier
space, associating an ~ and a k with each line. Both ~
and k must be conserved throughout the diagram. Each
solid horizontal line carries a contribution of G'(co), each
dotted line g'(c0), and each transverse-type interaction
line J(k).

The sum of all chain diagrams, G'(cu, k) is, then,

G'(cu, k) = Go(ce)+G'(ce) fJ (k)g'( —cu)J (k)G'(cu) }
+G'(m) (J(k)8'(—~)J(k)G'(~) }'+

=Gs(m)/[1 —J'(k) 8'(—~)G'(~)j
= 1/([G'(~)j ' —8'(—~)J'(k)}, (6.5)

G'(or) = d(tr tr)G'—(f f)e'"&fr 'r&=1/(co ces—+ib),
(6.1)

and similarly,

(b)

Fio. 5. Chain diagrams.

which is of a familiar form, identifying J (k)gs( —or) as
the "proper self-energy. "

Inserting the values of G'(ce) and g'( —cu) from Eqs.

(6.1) and (6.2), and taking Jr,'= Jr„
r".( Li' The linked cluster theorem for fermion and boson systems was ( ' r /[ ( )+

first proved by J. Goldstone, Proc. Roy. Soc. (London) A239, 267
(1957). +8/[ + cu(k) cosibs+j, (6.6)—
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where

"i(k)= s (~.—~-)+H(~.+~-)/2)' —J'(k)3"'

= i"&+J(0)( (1+o)'—r') '"

(a,(k)+(u„1 1+n=- 1+, (6~)
cu, (k)+(u2(k) 2 ((1+n)'—v)P) "--

(6.10)
cg, (k)+co, (k) 2 ((1+o)'—yg')'"-

n =c"Hg/J (0) . (6.11)

Thus the excitation energies lie on two branches
Lwith frequencies coi(k) and co'(k)] which become de-

generate for H =0.
For future reference we note that if o =0, and if

coq=" =—~0 (corresponding to 6=0), then

e(k) —=co, (k) =co, (k) =J(0) (1—r,')'"
(1—y ')'", (6.12)

G'(cv, k) = . (6.13)
(o) e(—k)+ibi+)(co+ e(k) cb,—+)

Similarly,

M+COp

g'( —co —k) = (6.14)
(cu+e(k) i8,+)—(co e(k)—+ib.+)

The sublattice magnetization at zero temperature can
be obtained easily by noting that

(OISI'IO) = ——',+(OIS&+Sr—IO) = ,'+i —lim—

'J'~~ J+ 2m'cV

XQ dcuG(cu, k)e '~c'i 'I& (6.15)
k

~, (k) =
2 ((g„—"~)+I (((u„+co„)/2)'—J'(k)j'"

= —pQ+ J(0) ((1+a)'—r~') '", (6.8)

7. THE FIRST-ORDER CORRE CTIOH;
LOOP AND BUBBLE DIAGRAMS

Again, at this point, the canonical procedure would

dictate that we estimate the magnitude of all types of
correction diagrams, demonstrating their dassification
according to powers of a small expansion parameter

(1/s). But again we shall postpone the classification,

simply asserting that the dominant correction consists
of a particular set of diagrams, to be described and
summed below. In Sec. 8, with these first-order correc-
tions in hand, we shall be able to justify our classifica-
tion a posteriori . In addition we will then be able to
interpret the diagram series in a more transparent and

physical context than would be possible at this juncture.
We claim, then, that if the primary chain diagrams of

interest are those with small k, then the dominant
correction diagrams are all those with either a single
lock, or a single longitudinal interaction. We proceed to
sum all such diagrams. More precisely, we shall sum all

diagrams such that the irreducible self-energy contains
either a single lock or a single longitudinal interaction.

Portions of a diagram containing a single lock are
shown in the first two columns of Fig. 6 and portions of
a diagram containing a single longitudinal interaction
are shown in Fig. 7. These are the twelve basic elements
which must be summed.

Our summation procedure can be summarized as
follows. We shall show that diagrams (a) and (b) of
Fig. 6 can be paired to give a single new loop diagram
(Oi), as shown in the Figure. Similarly with (c) and (d),
etc. This reduces the number of first-order diagrams to
eight. Then Zi and Z3 (which are the loop and the
bubble alone, as shown in Fig. 8) can be considered as
self-energy corrections to renormalize O'. Similarly 2&'

and Z3' (Fig. 8) renormalize g'. And finally Z2 and Zc
renorrnalize exchange interactions connecting terminal
points of Green's functions, whereas Z~' and Z&' renor-
malize exchange interactions connecting initial points of
Green's functions, as shown in Fig. 8.

~ ~

f f'

Inserting G'(co, k) from Eq. (6.6) and closing the co

contour in the upper half-plane we pick up the residue
of the pole at ~ = —co2(k)+i8'+. Consequently

+
f f f

(c)

~ ~"f f

(4)

1+(x
(o I

S'I 0) = —-'+—2 —1
2& t ((1+~)2—yg2)ii2

( a') (4)

—=—-', +ISO'. (6.16)

The results for the spectrum and for the spin devia-
tion 85p' are recognized to be precisely the simple spin-
wave results first found by Anderson. '

+

(c') ( b')

FIG. 6. Pairing of lock diagrams.



O'ICK'S THEOREM FOR SPIN —-', OPERATORS 427

FIG. 7. Longitudi-
nal correction dia-
grams.

La+b]= (—2) dt's dtgG'(tg, t)G'(t)t&)g'(t&, 4)
t t

t
XQ Jfg'+ (—2) dt's

t

dtlG (tl., tl)

XG'(t t)g'(t„t,)P J„'. (7.&)

To undertake the program above we first establish the
relationships indicated in Fig. 6, in which two ba,sic
types of lock diagrams are combined to give a new type
of loop diagram. %e consider explicitly the combination
of Fig. 6(a) and (b) to give the new diagram (o~).

The sum of the diagram elements (a) and (b) of
Fig. 6 is (suppressing the site indices f and g)

function) is to be associated with the factor ( —Zi) .
Similarly the other relations of Fig. 6 can be corroborated
directly.

Although the loops and bubbles in (or), (o~), (o~'),

(o,'), (o 3) and (o.3') have been drawn with only one f
site and one g site (and two transverse interactions), it
is clear that the loops and bubbles can be of any size.
This is accomplished simply by reinterpreting one of the
unperturbed Green's functions internal to the loop or
bubble as a simple chain Green's function. It should be
noted that we are free to so reinterpret either the
internal f-site Green's function, or the internal g-site
Green's function; to do both would clearly overcount
the diagrams. Henceforth we shall interpret the dia-

grams in this way, and we have indicated the chain
Green's functions by a double arrow in Figs. 6, 7, and 8.

The question of the symmetry factor p of diagrams

(b) and (c) of Fig. 6 now arises. The main diagrams, to
which (b) and (c) represent corrections, have symmetry
factor p= m if the order of the disjoint portion of the
diagram is of order 2m (cf., Fig. 9). Consequently the
same multiplicity factor must be associa ted with the

-h
I ~

V

Inserting the values of the G"s and g', we find the
integrands to be identical, so that

~ ~

M

(b)
t tI

Pa+b]= (—2) dt's dtgG'(4, tg)
FIG. 9. Alternative loci. ings, which compensate the

symmetry factor p,

XG'(t, t)g'(ti, ti)P Jrg' (7 2)

In this equation we can replace

G'(t, t) = iG'(t, tr)G'(tg, t) ) (7 3)

m.zg
l

+ - - +

FIG. 8. Renormalization of Green's functions and interaction lines.

in which case we recognize Eq. (7.2) to be precisely the
representation of the diagram (a.~) of Fig. 6, providing
we adopt the following convention. The "tri p/e point"
(the point of union of the loop to its parent Green's

correction diagrams (b) and (d) of Fig. 6. For instance,
we should divide the contribution of diagram (a) of
Fig. 9 by &= 2. However, G'(f, f) may be locked with
another Green's function line in the disjoint diagram, as
shown in Fig. 9(b). As both contributions are clearly
identical, we regain a factor of 2, which cancels the
symmetry factor. Consequently, the symmetry factors
do not enter, and the relationships such as a+6= o.I of
Fig. 6 remain true for loops of arbitrary size.

The actual summation of the diagrams, indicated
schematically in Fig. 8, is most conveniently carried out
in the Fouri er- transf ormed space.

Each diagram can be interpreted directly in Fourier
space, by the following conventions (which can be
corroborated easily in particular cases).

To each directed line there is to be associated an co

and a k in such a way tha, t cv and k are conserved at each
vertex. The contribution of a transverse interaction line
is +J(k), independent of its associated ~. The contri-
bution of a longitudinal interaction line is —2iJ(k). A
solid line contributes G (co) or, if it carries a double
arrow, G'(&u, k) ™'rlya dotted line contributes g (co)
or g'(cu, k). And finally a triple point, connecting a
correction loop to its parent diagram, contributes a
factor (—2i). Finally all free k's or co's are to be summed
or integrated.
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Consider now the renormalization of G'(a&) by loops
and bubbles, as shown in Fig. 8. And, for simplicity, let
both external field and anisotropy be zero. A similar
analysis can be applied in the presence of these fields,
giving a final result also identical to that obtained by
Oguchi. '

The contribution of the loop is

Similarly, we find

(7.12)
(o—(1+A)u& p+i &i

1 dG)

Z, = (—2i)—Q —G'((o, k)g'( —&0)J'(k)
» j 2m.

1 G)+M p=(»)—2E 2ir (&0
—e(k)+ibi+) (&0+ c (k) i—hg+)

Thus renormalization of the unperturbed Green's
functions by loops and bubbles merely shifts their poles
from &00 fo (1+5)&op.

Consider now the renormalization of a transverse
interaction line by the terminal loops Z2 and longi-
tudinal interactions Z4, as in the third relation shown in
Fig. 8.

The contribution of the terminal loop Z2 is

1 J'(k)

e(k)

X J'(k)—4)—Gl p+ 9 1
~2= (—»)—E

de—G'(&d)G'(co)g'( —&d,
—k)J'(k)

2'
Zg=—= —26SO* (7 13)

Mp1 —~(k)
e(k)

(7 4)
COp

The diagram segment between f' and g' in (0.4) of
Fig. 7 is (assuming the input momentum is k)

dc'
'(~') 8'(—~')

2'
&&J(it)J(k—A) =J (k)Z4, (7.14)

1 Mp where
ISO* P ————1 =—Q —1; (7.5)

,(k) 2~ &, (1 ~ 2)~&2 1
Z4 —— Q —e(k) = =28SO*+6, (—7.15)

X&0Q & 6 (k) &dp

COp

and defining

Recalling that the spin deviation at zero tempera-
ture, anisotropy and field is, in the chain approximation
[Kq. (6.16)], X p

we have

1 1
Q q(k) =—Q [1—(1 —y„2)«2], (7.6)

~o» P f(k)J(k)J(k—k) =
J(k)

P J'(k)f(A), (7.16)
Mo

and where we have used the relationship

Zi =coo[25Sp*+6].
Similarly the contribution of the bubble is

1
Z3 ——[—2iJ(0)]—

»

(7.7) which holds for all f(k) having the point group sym-
metry of the crystal.

The renormalization shown schematically in the third
relation in Fig. 8 is, then,

J(k) =J(k)+22J(k)+Z4J(k) =J(k) (1+6), (7.17)

Mo Mp1—
S « ~(k)

= —2oro8~o .

The Dyson equation corresponding to Fig. 8 is

(7.9)

and the same relation is found for the last renormaliza-
tion indicated in Fig. 8.

According to the above renormalizations we sum all
first-order diagrams by reinterpreting the simple chain
diagrams, replacing all Green's-function lines and all
interactions by their renormalized counterparts.

Denoting the corresponding approximation to G(~,k)
by G"i(co,k), we have [analogous to Eq. (6.5)],

1

or

g („) Go(„)+,Go(„)[g,+.g,]g („) (7 10) G&" (&d,k) =
[G'(~)] '—8'(—~)J'(k)

(7.18)

G'(~) = (7.11)
[Go(u)] '—noh &d —(1+6)&do+i'

u&+ (1+A)cop
G&'i ((u,k) = (7.1~)

(o' —(1+6)'&do'+ (1+6)'J'(k)
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The spin-wave energies are again degenerate, with

«&'&(k) = (1+6)«(k)= (1+5)J(0)(1—yp')"'. (7.20)

This is precisely oguchi's result. '

8. THE 1/z EXPANSION; CONCLUSIONS

Let us now recapitulate, taking stock of the results of
our various diagram summations. In particular we wish
to interpret the significance of our choice of diagrams
and to establish the 1/z criterion which has been as-
sumed implicitly in that choice.

Returning to the initial summation of simple chain
diagrams (with neither locks nor longitudinal inter-
actions) it will be recalled that we obtained the familiar
Anderson spin-wave theory. This is hardly surprising,
for the Anderson theory is characterized by two ap-
proximations. Firstly, simple spin-wave theory replaces
S+ by (2S)''a and S by (2S)'"a+ where a, a+ are
boson operators, thereby ignoring the kinematical limi-
tation to 2S+ i states at each lattice point; a limitation
represented by locks in our diagrams, and ignored in the
chain approximation. Similarly the S S,' terms in the
Hamiltonian are replaced by S'—S(a;+a;+a~+a, ),
thereby neglecting the longitudinal interaction a;+a;a,+a;
precisely as in our chain approximation.

In our next approximation we introduced self-energy
corrections containing either a single lock or a single
longitudinal interaction, asserting that either of these
corrections is of order 1/z. In fact we found, by direct
calculation, that the self-energy contributions so ob-
tained are, typically Z2 ———25SO' or Z&+24=6. We
must therefore estimate the magnitude of d, and of
550', in Appendix C we show that each of these quanti-
ties is of order 1/z.

Consider now the renormalization of an unperturbed
Green's-function line with a bubble 23. The ratio of the
Green's function with one bubble to the bare Green's
function is

G'(«p)Z«G'(«p)/G'(«o) =Z G'(«o)
= —2~ASo*/(~ —~o), (8.1)

and inserting the simple spin-wave frequency for «o (the
first-order frequency «&'& (k) would do as well) and taking
2hSo* 1/z,

Go(«p)Z«G«(«o)/Go(«p) = 1/zf«oo/(o~o —«(k) )). (8.2)

Consequently the ratio of the dressing to the bare
Green's function is of order 1/z if «(k)««pp (long
wavelength). Thus our 1/z criterion is meaningful only
if «(k) is less than (approximately) ~p/2. This restricts
our theory to wavelengths greater than roughly two
interspin distances.

It is of some interest to note that it is only the bubble
renormalization which restricts the theory to long
wavelengths. For instance, the addition to a transverse
interaction of a loop (Z,) and a longitudinal interaction
(Z«) simply replaces J(k) by J(k)5 LEq. (7.17)], and

f f

0
9 9

Fzo. 10. Representative first-order correction diagrams.

the ratio of the dressing to the bare interaction lines is

1/z, independent of k.
The physical origin of the 1/z criterion now becomes

evident. Consider first the bubble corrections and refer
to diagram (a) of Fig. 10. The incoming Green's func-
tion line G'(f, f) represents a spin flipped up on the

f site (which is normally down), and precessing ("propa-
gating") in the environinent of its surrounding spins, all
of which are presumed to be in the Neel ground-state
configuration. However, in the true ground state there
are vacuum fluctuations, one of which is shown to occur
at time t& in the Figure. At that moment the normally up
spin g flips down and the normally down spin / flips up
(maintaining the total S*, of course). This vacuuin
fluctuation occurs with a probability proportional to
ISO'. There are, however, s neighbors, so that the
probability of such a flipped neighbor is of the order of
unity. This situation is comparable to that in Fig. 10(b),
in which the existence of the annihilation process at t3

guarantees the existence of a flipped neighbor just prior
to t3. In both cases the correction diagram then depends
on the probability that the longitudinal interaction will
occur before the neighboring spin-flip annihilates. The
vacuum fluctuations which occur at time t have energy
coo, and by the uncertainty principle they have a mean
lifetime (tp —ti) 1/oop. The occurrence of a longitudinal
interaction during this time is brought about by the
operator exp( tJ'S+S R+S t), so t—hat we ca—n con—sider
such interactions to occur with a frequency of order J'.
Thus the probability of an interaction in the interval
tp —t, is J'(t,—t,) J'/«op=1/z.

If this heuristic argument does not seem plausible
(and it is meant to be only that, rather than a proof,
which has already been given) an alternative way to
consider the probability of a longitudinal interaction is
as follows. The amplitudes of longitudinal interaction
and annihilation process are governed, respectively,
by the matrix elements J'(0

~

S+S R+R
~
0) and

J(0(S R (0).Theratiois (0(S+S R+R ~0)/(0~S R ~0)
(BSo*)'/bSo* 1/z.
We turn our attention now to the kinematical loop or

lock diagrams. The purpose of these diagrams is to
correct the error committed in the simple spin-wave
(chain) theory, in which the spin states were approxi-
mated by boson states. Our single-lock diagram corrects
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P ~
—2a e—3a

5Sp'

1+5Sp'

z -3
—(~so*)' (8.4)

1+5Sp'

Higher order lock diagrams eliminate the third, fourth,
etc. nonphysical states, with population probabilities
P3 (~so*)', P4 (bso*)4, etc. Again we observe the
ordering of the kinematical correction diagrams in
powers of 1/s.

It is of interest to note the existence of a stringent
internal test of self-consistency in our theory. The
isotropy of the Hamiltonian precludes the presence of an
energy gap in the excitation spectrum. Maintenance of
this isotropy throughout the calculation requires a
delicate balance of diagrams involving longitudinal
interactions with those involving transverse inter-
actions. Any arbitrary selection of diagrams has an
overwhelming probability of upsetting this balance and
giving an energy gap. The classification according to 1/s
is strongly substantiated by its success in maintaining
isotropy to the given order.

With the 1/s criterion thus rationalized we examine
the result of the first order calculation. Ke found that,
except for extremely short wavelength spin waves, the
spin-wave energies are

&"&(k)= (1+~)J(0) (1—y")'"= (1+~)e(k) (8 5)

This result is identical to that found by Oguchi, ' who
ostensibly obtained the spectrum for all wavelengths.
The Oguchi method is based on expansion of the
Holstein-Primakoff radical

Sf = (2S)"'o+(1—(o+~/2S))'"= (2S)'"
&(a+[1—(a+a/4S) —[(a+a)2/32S27 — ~ .7. (8.6)

This method appears to us to be of dubious validity for
S=2. The magnitude of the pth term is ((a+a)")/S".
However, for an exponential probability distribution
((@+a)")is of the order of (@+a), independent of p (for
example one easily computes ((a+a)2) =(@+a)+2(a+a)2).
Thus the numerators in the expansion (8.6) are all of the

' H. B. Callen and S. Shtrikman, Solid State Commun. 3, 5
{1965)."J.Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys.
30, 1 (1958).

the first nonphysical state (m = 2 for S=-';; more gener-

ally the first nonphysical state would be m=2S+1).
Now the probability of population of the various boson
states in the simple spin-zuve theory is exponential, ' "
P =e "/pop e ~"'. The pa, rameter a in this proba. —

bility distribution can be related to the physical
quantity 6Sp', for

z —(m) —+me am/Qe ' =1/(ea 1) (83)

whence

same order, and the expansion is strictly an expansion
in 1/2S.

Mattis, "- in his recent book comments on the pro-
cedure of expansion of the square roots in the Holstein-
Primakoff representation. "For large spins, the agree-
ment of even the linearized theories with the classical
equations of motion gives some confidence in this
procedure, for which there is no other formal mathe-
matical justification. " The present authors confess
surprise that, except for very short wavelength, we
corroborate Oguchi's result.

where
qi =1—28i e(t —ti),

8(i —t,)=1, if t )t',
=0, if

(A1)

(A2)

and, since products of the q's frequently occur,

g(li, l2, )= g ni;i;
2;&2;

(A3)

Then the relationship between the I and T products
can be written conveniently in the form

(OIPSi (ii)S2+(i2)S3 (r3) "Io)
=(OiTsi (ti)S2+(4)ss (ts). . i0)g(1,2,3, . ). (A4)

In the special case in which r~ ——r2=r3 - the product
q(1,2,3, ) =gigi3 . g2g24 ., and each factor such as
/f3 is simply +1 if t»t3 and is —1 if t2&t3, exactly
cancelling the minus signs introduced by the T operator.
In the more general case in which r~/r2, for instance
g»= 1, and the entire product merely factors into
products for individual sites, to each of which the dis-
cussion above again applies.

Consider a single subproduct, and suppress the corn-
mon site index:

&OiPS-(r, )S+(~,)S-(i.)" io)
=(Oi Ts (ti)s+(t2)s (t3) . . iO)g(1, 2)3, ). (AS)

'2 D. Mattis, The Theory of Magnetism (Harper and Row, New
York, 1965), p. 171.

13 Yung-Li %ang, S. Shtrikman, and Herbert Callen, J. Appl.
Phys. 37, 1451 (1966).

APPENDIX A: WICK'S THEOREM

A direct proof of Kick's theorem for spin operators is
given below; a simple alternative proof using the
coupled-fermion representation" of spin operators has
been given elsewhere. "

To prove the form of Kick's theorem enunciated in
Eq. (2.10) it is convenient to define the analog of the
Kick time-ordering operator T. The T product of a
sequence of S+ and S operators arranges the factors in
increasing time order from right to left, multiplying the
product by —1 for each interchange of two spin opera-
tors of the same site necessary to achieve the chrono-
logical order. Again, if an S+ and an S operator have
equal time arguments, the S+ is ordered to the left.

Ke also define the symbols
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Since, for a single site, the commutation relations of the
spin operators are identical to those of fermion opera-
tors, the Wick product on the right of Eq. (AS) is
subject to Wick's theorem in its usual form:

&oIPS (tl)s+(ts)s (ts)s+(t4) s'(ts-)Io)
= &(ol Ts-(tt)s+(ts) lo&&ol Ts-(t,)s+(t,) lo) "

X(ol TS—(tent)s+(ts„) lo)
~(0

I
Ts-(tt)s+(t4)

I o&(o I
Ts-(ts)s+(t. ) I

o)" .
x&0ITS-(t - )s'(t") lo)

) rt (1,2, ,2n) . (A6)

It will be recalled that the sign of each term is de-
termined by the number of interchanges required to
rearrange the operators from their order in the left-hand
member to the order in the particular term in the right-
hand member.

There are, of course, various rearrangements of the
operators in the left-hand member of Eq. (A6), and
these must all give identical results. For instance we can
rewrite Eq. (A6) with 1, 2, 3, replaced by 1', 2', 3',~, where 1', 3', 5', is any permutation of 1, 3, 5,
and 2', 4', 6' is any permutation' of 2, 4, 6, and
where, of course, i and j are replaced by i', j' in the
factors p;, . The first term in the new equation, or

&0
I
Ts-(t, .)s+(t,.) I o&

X(OITS (t )S+(t )Io) rt(1', 2', ),
must then be identical to one of the terms appearing in
Eq. (A6), whence rt(1', 2', ) = kr)(1,2, ~ ~ ), the + sign
depending on the parity of the permutation from 1, 2, 3,

to 1', 2', 3', . lt follows that Eq. (A6) can be
rewritten in the more symmetrical form

(o I
ps-(t, )s+(t,)s—(t,) I

0)

= 2 &&ol Ts (t )s+(t ) lo&

x(ol Ts-(ts. )s+(t4) Io&".)(1',2', )&, (A7)

where the summation is over every permutation of
1

y 3) Sy to 1
p 3

y
5

y y
and of 2, 4y 6p to

2', 4', 6', Furthermore, we note that

(ol TS (tt )S+(ts) IO) =iG (t 6t
—

t), 6(AS)
as can be corroborated by noting that the I' and T
products are equal if tj'&t2', whereas both sides of
Eq. (AS) vanish if tt &ts . Finally we obtain

(olPs-(t, )s+(t,)s-(t,) lo&

=Q&iG6(tt. , ts)iG6(ts. ,ts) rt(1', 2', )}. (A9)

Of the various rt;; factors occurring in (1',2', ),
those with subscripts corresponding to a single Green's
function are redundant. This results from the fact that
G'(t;, t,') =0 if t,'&t,', whereas rt,'; =1 if t,') t,'.

"Other permutations, which intermix even and odd indices,
lead to Green'6 functions like (0

~
TS (t~)$ (ts) ~0), which vanish.

The pictorial representation discussed in Sec. 2, and
indicated in Fig. 1, provides a useful interpretation of
the quantity rt(1, 2, ). For the f site, the first set of
contractions in Fig. 1 contains the nonredundant factors
rtssr)64rtssr)42 (+1)'= 1, whereas the second set of con-
tractions contains the nonredundant factors g6~gegg4gg42
= (+1)(+1)(—1)(+1)= —1.The Green's functions in
the first case are totally overlapping, and those in the
second case are half-overlapping. A moment's reflection
reveals that the product of rt;, factors is positive for non
overlapping or totally overlapping pairs of Green's junc
tions, and is negative for half overlap-ping pairs of Green s
functions.

For more than four operators the average value
(0 I

PS (tt)s+(ts) S+(ts ) Io& is again the sum of
product of Green's functions corresponding to all possi-
ble contractions. Each product carries the signature
(—1)6t, where Q is the number of pairs of half-over-
lapping Green's functions.

The discussion above was restricted to products of
operators corresponding to a single site. In fact the
result can be written without this restriction, for the
"extra" permutations (which pair operators of different
sites) vanish by virtue of the delta function in the
unperturbed Green's functions I cf., Eq. (2.8)j. Conse-
quently, we write the more general form of Wick's
theorem for spin operators as

&0IPsr (tf)s,+(t,)s;(t,)s +(t )" lo)

= 2 &~.e'G, v(, (3,y, t, ))
Ia}

= 2 &iG- 'iG (—1)')
(et}

where cr, P, y, is a permutation of f, g, l, and Q is
the number of half-overlapping pairs of Green's func-
tions (i.e., pairs of Green's functions with the same
spatial indices and half-overlapping time indices).

APPENDIX B: THE SYMMETRY FACTOR

The origin of the symmetry factor is the 1/(n!) factor
appearing in the nth term of the expansion of S(t). It
will be recalled that this factor was precisely cancelled
by the multiplicity of the diagrams (under permutation
of indices) in the ferromagnet. Because of the occurrence
of disconnected diagrams this cancellation no longer
follows. We must therefore turn our attention to the
recurrent problem of diagram counting.

By convention the set of diagrams representing the
numerator of the Green's function G(l,m) contains only
a single diagram of a given structure (two diagrams are
said to have the same structure if they can be deformed
into each other, ignoring differences in labelling indices).
To each such diagram we must associate a multiplicity
factor describing the number of terms (in the algebraic
expansion) corresponding to this structure. For de6-
niteness, consider a particular diagram with m of each of
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the two kinds of transverse interactions and n'= n —2m

longitudinal interactions. This arises from a product of e
factors KiKi .3Ci in the expansion of $(~). The
particular diagram, which attributes the n' longitudinal
interactions to a particular set of n' ion pairs, is achieved
many ways in the product XpC& K&, the longitudinal
part of K~ can be chosen from e' of these n factors in

ways, and then the site labels can be distributed ine'
n'~ ways among these n' factors. Thus the longitudinal
interactions contribute a multiplicity of

nI/n~ n!
n'!/

kn'l (n n'—)! (2m)!

Similarly one type of transverse interaction can now be
chosen in

(II—II

)
ways from the remaining (n —n') factors of Ki, and
then the site labels can be distributed in mf ways.
Finally, the remaining transverse interactions permit
only a permutation of the site labels in m~ ways.
Collecting these factors, we have a multiplicity of

n! (2m)!
(m!)'=n!

(2m)! (m!)'

exactly cancelling the expansion factor 1/n!, precisely as
in the ferromagnetic case. However, we now recognize
that the internal indices are to be summed over. For a
disjoint portion of a diagram this summation can
reproduce some of the terms which have already been
counted in the multiplicity factor nor. Thus in the dia-
gram of Fig. 3(d) the same term will be achieved when
fi=1, fs=2, gi=3, g2=4 as when fi 2, fs 1, gi=—4—,

——
g2=3. Thus the summation over indices overcounts

diagrams. We therefore define a symmetry factor y [=2

in the case of Fig. 3(d)j which is the order of the
symmetry group of the diagram, or the number of ways
in which the (unlabelled) diagram can be rotated into
itself. The contribution of each diagram must then be
divided by the appropriate symmetry factor p.

which holds for systems with nearest-neighbor inter-
actions and with a center of reflection symmetry at each
magnetic ion. Expanding the radical in Eq. (7.5) we find

»"=-:&-:( )+-:(~)+—,.( )+
The ratio of terms can be computed for simple structures

(y')/(y') =0.42 (sc), 0.42 (bcc)

(y')/(y') =0.24 (sc), 0.24 (bcc)

(y')/(y') =0.15 (sc), 0.16 (bcc)

(C3)

suggesting that (y'")/(y') = 2 "+' as a rough a.pproxima-
tion. This approximation would give [re-summing the
series (C2)j

~So*-(1/s)(L1/(1 —s)"'j—1)—(1/2s) (C4)

In fact 550' has been calculated for several structures" "
and it appears to lie between 1/4s and 1/2z; for simple
cubic 850*——0.078 whereas 1/2s=0.083; for bcc»o*
=0.059 whereas 1/2s=0.062. Thus use henceforth con
sider ZhSO* to be of order 1/s, and similarly for ttte

closely relgted quantity d.

"R.Kubo, Phys. Rev. 87, 568 (1952).
"H. C. Davis, J. Phys. Chem. Solids 23, 1348 (1962).

APPENDIX C: MAGNITUDES OF &SO' AND OF d

The clue to the magnitude of ISO' and of 6 lies in the
easily proved identity


