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The spin-lattice relaxation time and temperature-dependent chemical shift of Xe"' in liquid and solid

xenon have been measured between 9 and 250'K. A calculation of the transition probabilities for quadru-

polar relaxation of Xe"' in solid xenon via the Raman process is described. The calculation is based on the

theory of Van Kranendonk, modified for the case of a face-centered cubic lattice with electric-field gradients

arising from exchange and van der Waals interactions. The data are shown to verify the predicted tempera-

ture dependence of TI in the solid above 9'K and the absolute magnitude of TI at 100'K. It is demonstrated

that the temperature dependence of the data is consistent with the temperature variation of the Debye
temperature 0 obtained by Packard and Swenson from specific-heat measurements. Quadrupolar relaxation

via diffusing impurities was observed at temperatures near the melting point in solid xenon samples con-

taining roughly 1'Po air. The quadrupolar relaxation time of Xe"' in liquid xenon was found to vary ex-

ponentially with temperature with an "activation energy" E~——640+30 cal/mole. This "activation energy"
is approximately one-half as large as values previously obtained for the activation energy of self-di6usion in

liquid xenon. Measurements of the chemical shift of Xe'" indicate that the local field increases linearly with

density in liquid and solid xenon. Least-squares fits to the data yield the change AH of the external resonant
field with density: —(1/H p) $8 (AH)/Bp j= (5.1~0.5) 0& 10 ' (amagat) 'in liquid xenon and —(1/Hp) t 8 (AH)/
Bp)= (18.2~1.1)&10 (amagat) ' in solid xenon. These data support the previous Xe'~ shift data of Yen
and Norberg but disagree with more recent measurements by Brinkmann and Carr of the density dependence
of the Xe'~ shift in solid xenon.

I. INTRODUCTION
' 'NVESTIGATION of nuclear quadrupole relaxation

and chemical shifts is a useful means of studying
electronic structure and bonding in nonmetallic
liquids and solids. Although quadrupole relaxation and
chemical shifts have been observed in a number of
ionic and covalent solids, there have been no experi-
rnents involving quadrupolar nuclei in the condensed
phases of the rare gases. The comparative ease with
which the interactions (exchange and Van der Waals)
between rare-gas atoms may be treated theoretically
makes these systems attractive for comparison of
experiment and theory. Experiments involving quadru-
pole relaxation and chemical shifts in liquid and solid
rare gases are thus of interest as a means of (1) testing
the general theories of these phenomena in a partic-
ularly simple type of system and (2) obtaining new
information about electronic structure, internal electric-
6eld gradients and thermal atomic motion in liquid and
solid rare gases.

Xe"' (spin —,') is the most abundant (21.24%)
magnetic rare-gas isotope having a nuclear quadrupole
moment. The other magnetic isotope of xenon is Xe'"
(spin -', ) with a natural abundance of 26.24/o. This
species has been the subject of a number of previous
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nuclear-magnetic-resonance investigations of xenon. ' '
The present paper describes the results of pulsed-
nuclear-magnetic-resonance measurements of the spin-

lattice relaxation time and temperature-dependent
chemical shift of Xe"' in liquid and solid xenon. ' In
addition, the theory of nuclear quadrupole relaxation in

a rare-gas solid is discussed and the probabilities are
computed for transitions induced by the two-phonon
Rarnan process for Xe'" in solid xenon.

II. APPARATUS AND MEASUREMENT
TECHNIQUES

Relaxation-time and chemical-shift measurements
were made with a coherent pulsed NMR spectrometer
operating at 3.0 Mc/sec. Coherent radio-frequency
pulse sequences were obtained with a Blume rf gate'
whose output was amplified by three stages of class C rf

amplification and applied to the single transmitter-
receiver coil. Nuclear free precession signals from the
coil were amplihed by a high-gain, low-noise receiver
and mixed with a constant 3.0-Mc/sec reference signal
for coherent or phase-sensitive detection. The reference
signal originated in the master rf oscillator and was
phase-shifted with a General Radio 314-S86 variable
delay line so as to be in phase with the nuclear signal.
The combined reference and nuclear signals were de-
modulated by a diode detector and displayed through a

' R. L. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961).' E. R. Hunt and H. Y. Carr, Phys. Rev. 130, 2302 (1963).
3 W. M. Yen and R. E. Norberg, Phys. Rev. 131, 269 (1963).
4 D. Brinkmann, Phys. Rev. Letters 13, 187 (1964).' The portion of this work dealing with chemical shifts has been

described in preliminary form: W. W. Warren, Bull. Am. Phys.
Soc. 9, 733 (1964).' R. J. Blume, Rev. Sci. Instr. 32, 554 (1961).
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boxcar integrator. " The integrator supplied the inte-
grated signal amplitude to a graphic recorder and simul-

taneously permitted the signal to be observed on an
oscilloscope for photographic recording.

Spin-lattice relaxation times shorter than 5 sec were
measured with 180'—90' pulse sequences. The amplitude
of the free-induction decay following the 90' pulse was
observed as a function of the spacing 7. between the
180 and 90 pulses. This interval was established by a
Tektronix 162 waveform generator and was known to
within &2%. The data were analyzed by fitting

in[1 s(r)/s—(~ )] versus

to a straight line by the method of least squares. The
slope then yielded the spin-lattice relaxation time T&.
For most measurements, the standard error of the slope
wa, s less than 10%. Within the experimental scatter,
single exponential behavior was observed in all cases.

At temperatures for which Ti was greater than 200
msec, data were recorded photographically. The
oscilloscope was triggered by the 90' timing pulse and
the free induction decay was photographed for six or
seven different pulse spacings. The equilibrium signal
was observed with a single 90 pulse. In every case, a
time of at least 5Ti was permitted to elapse between
sequences. Some integration of the data was achieved
by repeating a given 180'—90' sequence several times
and obtaining a multipole exposure.

Values of T~ less than 200 msec could be measured
with the boxcar integrator and much greater accuracy
achieved. The procedure for measuring T~ with the
boxcar was the same as the photographic technique
except that signal heights for the various 180'—90'
intervals were integrated and then recorded with the
graphic recorder.

Relaxation times longer than 5 sec were measured by
the "saturation-90"' technique. After the nuclear spin
system had been saturated by a rapid sequence of 90'
pulses, the recovery of the magnetization was observed
with a 90' pulse. Because of the difhculty of maintaining
exact resonance when T& was long, free induction decays
were detected by ordinary diode detection (no reference
signal) and recorded photogra, phica, lly. The need to
obtain the value of the equilibrium magnetization for
analysis of the data mas obviated by the use of the
delayed function plot':

$(t+6) versus S(t), 5(Ti.
The value of T~ was obtained from the slope of the data
by the least-squares method.

Temperature-dependent shifts of the Xe"' resonance
were observed relative to a proton resonance obtained
with a transistorized crystal-controlled marginal oscil-

lator. ' The oscillator operated at a nominal fre-

quency of 36.6 Mc/sec enabling both the Xe"' and H'
resonances to be obtained in approximately the same
magnetic field. The proton probe was equipped with
Helmholtz coils for 60-cps field modulation and static
field bias. The latter was achieved by superimposing
a dc current on the 60-cps modulation current to
slightly bias the magnetic field at the site of the proton
resonance and permit both resonances to be observed
in the same external field. When the magnetic field was
adjusted to exact Xe"' resonance at a given temperature
by zero beating with the 3.0 Mc/sec reference signal,
the shifts appeared as changes in the dc bias current
required to achieve exact proton resonance. Since the
shifts mere small compared to the total applied field,
the required changes of field at the proton site were the
same as the shifts of the xenon resonance.

The magnetic field produced by the bias coils at the
position of the proton sample was calibrated in terms
of the measured voltage drop across a series 1-0 resistor.
The calibration measurements were carried out with
the modulation-bias coils in the magnet gap at the same
position as when measuring resonance shifts. The
calibration therefore included the enhancing eBects
of the pole pieces on the bias field. The estimated error
in the calibration was +6%. The bias coils were
sufIiciently far removed from the xenon sample that the
bias field at the xenon sample was negligible.

Shift measurements were made relative to the
resonant field value at an arbitrary temperature of
130'K. In the course of each run, the bias field at this
temperature was measured periodically to check for
drifts. Since the method automatically accounted for
magnet drifts, the only instabilities affecting the data
were changes in the master oscillator and marginal
oscillator frequencies. The reproducibility of the data
indicated that these changes were less than the usual
reading error. The latter, which arose from the widths
of the Xe"' and H' resonances, was estimated to be
~0.05 G.

Sample temperatures between 4.2 and 250'K. were
obtained in a double glass liquid-helium Dewar vessel.
Samples were obtained by condensing xenon gas into
a cylindrical nylon sample chamber which was 1.00 in.
long by 0.450-in. diameter. Temperatures higher than
the bath temperatures were obtained with a resistive
heater wound on a copper can surrounding the sample
container. Studies of liquid xenon at temperatures up
to 250'K were made by applying up to 30-atm pressure
with helium gas. Temperatures were measured with
either copper versus constantan or gold-cobalt versus
normal silver thermocouples located in the wall of the
nylon chamber. The chamber and heater were enclosed
in a brass can containing helium gas for thermal
contact with the liquid-nitrogen or liquid-helium bath.

t J. Reichert and J. Townsend, Rev. Sci. Instr. 35, 1692 (1964).' P. C. Mangelsdorf, J. Appl. Phys. 30, 442 (1959).
' R. L. Garwin, A. M. Patlach, and H. A. Reich, Rev. Sci. Instr.

30, 79 (1959).
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Normally, temperatures could be maintained to within
& j. 'K during a T1 or shift measurement.

The xenon gas used for these experiments was
supplied by Linde' with a speci6ed impurity content of
less than 5 ppm of 02 and less than 85 ppm of Kr, N2,
H2, H20, and hydrocarbons combined. For some
experiments, the sample was doped with air in an
approximate concentration of a few parts per thousand.
"Clean" sample experiments were run as follows. All
xenon was removed from the system and the sample
handling system was pumped down for several days
while metal parts of the system were outgassed. After
cleaning, the sample storage cylinder was re6lled with
fresh Linde xenon. Throughout the course of the
"clean" sample experiments, the xenon gas pressure was
maintained at several atmospheres so that the sample
could not be contaminated by leaks into the sample
system. No runs under helium pressure were made with
the "clean" sample.

III. SPIN-LATTICE RELAXATION

In systems of nuclei with spins greater than —,', the
dominant spin-lattice coupling is often provided by the
interaction of the nuclear quadrupole moment with
time-dependent electric-6eld gradients. In the present
experiments, the spin-lattice relaxation times of Xe"'
were orders of magnitude shorter than those of Xe'"
in spite of the larger magnetic moment and greater
abundance of Xe'~. This strongly suggests that quad-
rupole interactions of the Xe'" nuclei are responsible
for relaxation of this isotope in liquid and solid xenon.

A. Theory

The quadrupole Hamiltonian for a single nucleus with
spin I and quadrupole moment Q may be written"

where

Qo
——A (3I ' —I2) Vo= V...

Q~g ——A (I~I,+I,I~), V~g ——V„aiV„„ (2)

Qgm
——AIg', Vgg=-', (V~~—V„,)&iV „,

in which A=eQ/4I(2I 1), I+ I,&iI„an—d V is——the
electric potential at the site of the nucleus. In these
experiments,

(~.)«(~ ---)
The Hamiltonian (1) has matrix elements between
nuclear Zeeman levels differing by Am=~i, +2.
Electric-6eld gradients which are time-dependent with
a spectrum containing frequencies near the Larmor

'0 Union Carbide Corporation, Linde Division, Rare Gas
Department, 270 Park Avenue, New York, New York, 10017."M. H. Cohen and F. Reif, in Solid State Physics, edited byF. Seitz and D. Turnbull (Academic Press Inc. , New York,
1957), Vol. 5.

where W1 and W2 are the probabilities for transitions
between Zeeman states differing by Am=&1, &2,
respectively,

W1= W3/2, 1/2 W—1/2, —3/2 )

W2= W3/2, —1/2 W1/2, —3/2 ~ (4)

In a situation where spin-spin interactions are
suKciently strong, one may assume that after a time
of the order of the spin-spin relaxation time T2 following
an initial rf pulse, the system can be described by a spin
temperature different from the lattice temperature.
Under these conditions it has been shown" that the
system will relax exponentially to the temperature of
the lattice with a single time constant. For I=2, the
relaxation time is given by

1/Ti = —', (Wg+4Wg) .

The theory of spin-lattice relaxation thus reduces to
the calculation of the transition probabilities W1 and
W2. In what follows, the transition probabilities will be
calculated for a solid xenon crystal in which the time-
dependent electric-6eld gradients are produced by the
thermal vibrations of the crystal lattice.

I. Theory of Quadrupole Relaxatiort via Thermal
Phonons in Rare-Gas Solids

The importance of nuclear quadrupole relaxation in
solids was first recognized by Pound, " who observed
that relaxation times of the correct order of magnitude
could be calculated for certain quadrupolar nuclei if
one replaced the dipolar interaction by the quadrupolar
interaction in the %aller theory of dipolar relaxation. '
The %aller theory predicts transition probabilities
arising from modulation of the dipolar interaction by
vibrations of the crystal lattice (phonons). Although
these calculated dipolar transition probabilities are
much too small, the greater strength of the quadrupole
interaction leads to predictions in much better agree-
ment with experiment. It has been generally accepted,
therefore, that the quadrupole-phonon interaction is
responsible for spin-lattice relaxation of many nuclei
with spin greater than —, in nonmetallic solids. Quad-
rupole-phonon relaxation has been observed previously

"L.C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959)."R. V. Pound, Phys. Rev. 79, 685 (1950).
&' I, +&aller, Z. Physik 79, 370 (1932),

frequency cop or near 2&op can induce transitions between
Zeeman states and produce relaxation.

If the effects of spin-spin (dipolar) interactions are
ignored, it can be shown that after the application of a
180' pulse, the magnetization M, of a system of nuclei
with I=-, will recover to equilibrium with a time
dependence of the form

1 M—,(t)/M, (~') =Ae '~-"+Be
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in two general classes of solids: (1) ionic solids" "
(notably the alkali halides) and (2) covalent solids24

(III-V compounds).
The electric field gradients V„produced by a distribu-

tion of charge about a nuclear site can be expanded in

powers of the relative displacements of the atoms about
their equilibrium positions":

The first term is the static field gradient which does
not contribute to relaxation and need not be considered

further. (In the fcc structure of the rare-gas solids the

static field gradient vanishes because of the cubic

symmetry of the lattice. )
It can be shown" that the "direct process" induced by

the linear term of Eq. (6) makes a negligible contribu-

tion to the nuclear relaxation time. The reason is that
the Grst-order Hamiltonian has matrix elements only

between phonon states difI'ering by the presence of a
single phonon having a frequency of coo or 2cvo. Since
the density of phonon states is very low at the usual

nuclear I.armor frequencies, the "direct" contribution
is small compared to the quadratic or Raman term

except at extremely low temperatures. The Raman
term corresponds to absorption and emission of phonons
whose frequency diQerence is coo or 2coo. The whole

frequency spectrum of the phonons is therefore available
for this process.

A detailed theory of quadrupolar relaxation by the
Raman process has been given by Van Kranendonk"
for a solid with a thermal phonon spectrum described by
the Debye distribution. Following the method of Van
Kranendonk, one deiines the functions B,(k,s) and
I.„;I,,j as follows:

B;(k,s) =b(s, 1)Leos(k a,)—1]+b(s,2)sin(k a;), (7)

where a; is the vector from a given atom to the nearest
neighbor designated by the index i and 5 is the
Kronecker delta function in which s takes the values
1 and 2) and

where the brackets indicate an average over all direc-

tions of the wave vector k. One can then write

where T*=T/O~, c=k a=@2(3x')"', x=hoi/kT, 0 is

the Debye temperature, k is the maximum value of

the wave vector, and a is the nearest-neighbor distance.
Ke define the quantity

AT
c& palm= AIttsj. Aplm &

(10)

where A„;j is the coefFicient of the second-order term

r, r, in Eq. (6). In terms of the foregoing definitions, the
basic result of the Van Kranendonk theory" is that the
transition probability between states m and m+p is

where C=3no/xv'd', no is the number of atoms per unit
volume, e is the velocity of sound, and d is the mass
density of the crystal. The lattice functions D„I„,j
are determined by the lattice structure and the gradient
functions X„;j~ depend on the distribution of charge
about the nucleus.

Lattice functions The . calculation of the lattice
functions D„~,.j is simplified by the fact that for the
interactions considered in the rare gas solids,

A„;j)„——A„;;b;j. (12)

Thus the only lattice functions multiplied by nonvanish-

ing tV», i~ in Eq. (11) are those of the form D„i,.;i.
Furthermore, the fcc lattice exhibits inversion sym-
metry and it can be shown" that the only nonvanishing
lattice functions are those of the form D„~,„~.

The first step in the evaluation of the lattice functions
for a fcc solid is the calculation of the functions L„~„~.
It is easily shown from (7) and (8) by elementary
integration that

I/T~ g2gx

D„, , ; (7 ) = T* — L„i,-, ;„(cT*x)dx, (9)
0 (e*—1)'

=(B;(k,s)Bi(k,s))(B,(k', s')B (k',s') ), (8)
L n'ii=L-', f(klan+ail)+If(kl a,—a

7

L2i~'i=LB(kla' «I) 2f(klan+ail)7
"N. Bloembergen and P. P. Sorokin, Phys. Rev. 110, 865

(1958).
"O. Kraus, Bull. Am. Phys. Soc. 3, 166 (1958).
"W. G. Clark, Bull. Am. Phys. Soc. 4, 418 (1959).' E. G. Wikner, W. E. Blumberg, and E. L. Hahn, Phys. Rev.

118, 631 (1960).
'9 E. R. Andrew, K. M. Swanson, and B. R. Williams, Proc.

Phys. Soc. (London) 71, 36 (1961).~ W. G. Clark, thesis, Cornell University, 1961 (unpublished)."P. P. Mahendroo and A. W. Nolle, Phys. Rev. 126, 125 (1962).
~' M. J. Weber, Phys. Rev. 130, 1 (1963).
~ Y. Yamagata, J. Phys. Soc. Japan 19, 10 (1964).
~' R. L. Mieher, Phys. Rev. 12$, 1537 (1962).
~~ J. Van Kranendonk, Physica 20, 781 (1954).

where f(x) = (sinx)/x. In a fcc solid there are only three
unique functions for each value of s. These correspond to
pairs of vectors to nearest-neighbor atoms, a; and a~,

such that

a; a)= &a2
a, a, =O,
a"a) ——+-'a'

If the expressions (13) are evaluated for these three
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cases, six unique L„& „& are obtained:

L~(ka)= 4gf(2ka) 4f—(ka)+3 j" s-=1, a,"a~= &as

Lo(ka) = Pf(&2ka) 2f—(ka)+1j' s=1, a,"a~=0

Lo(ka) = ~gf(v3ka) 3f—(ka)+2]' s=1, a"a, =~—'a'
(15)

S=2, 8i 8)= ~QL4(ka) =-', L1—f(2ka)]'

Lo(ka) =0

Lo(ka) = 4kf(v3ka) f(ka—)j'
s=2, ai a) ——0

s=2, ai a) ——a-,'a2
~

D (T*)=T*
l j7"* g2~x

I. (cT*x—)dx.
(ez 1)2

Although the integral in Eq. (16) cannot be evaluated
explicitly, the high-temperature expansion of Van
Kranendonk may be employed"

The integrals D„&„&may be reindexed to correspond to
the six L„~„~functions:

functions S„„is carried out in three steps: (1) assump-
tion of a suitable crystalline wave function and compu-
tation of the gradients V„ for an arbitrary configuration
of nearest-neighbor atoms; (2) expansion of the
gradients to obtain A„,; and hence iV„;,~~, and (3)
summation of the cVp„;~~ according to Eq. (21) to
obtain X„„.

The contribution of exchange interactions to the
electric-field gradient is obtained by assuming that the
crystalline electronic wave function of the rare-gas
solid is given by the overlap model of Lowdin. "In this
model, the electron distribution about a given atom is
that of a free-atom overlapping with the ground-state
wave functions of its neighbors. Since exchange —van
der Kaals cross terms are small, '~ the contribution to
the gradient from the van der Kaals interactions may
be considered separately and added to the exchange
contribution.

If the position of the ith neighbor is denoted by the
direction cosines u„ it, , y; the gradients (2) may be
written

D.(T') =L.o
——,', L. (oc T)-'+

The expansion coefficients are given by

Uo=Z'~'h'' —o)

U~r ——Q, X,~,(u,&iit;),
U~o ——-', Q, X;(u;&if;)'.

(22)

L „=c 'x"L„(*—)dx. The contribution of exchange effects to the quad. rupole
interaction is then given by the theory of Kondo and
Yamashita":

Numerical evaluation of the coefFicients 1-„0 and I- ~

then yields the following high-temperature expansions
of D„(T"') for a fcc lattice: where

X,'*=—(12e/5)(r ')»(S„'+S«'—S,~'), (23)

Dg(T*) = 1.286—0.0695T* '

Do(T")=0.411—0.0326T* '

Do(Z') =0.521—0.0294T*-o

D4(T")=0.199—0.00657T* '

Do(T*)=0,
Do(T*)=0.028—0.000520T* '.

(19)

In terms of the six unique lattice functions, the
transition probabilities (11) may be written

S„„= @„*(r)y„(r)dr (24)

a.nd the average (r ')„„is taken over the outer p states
with n= 2,3,4,5 for hie, Ar, Kr, Xe, respectively. The o-

s.nd 7r orbitals in Eq. (23) are p states directed parallel
and perpendicular, respectively, to the vector from the
atom of interest to the ith neighbor. Adrian-' has
computed the contribution to the quadrupole coupling
of the van der 9'aals interaction and has found

~= (9e/20)u 'R '(r-') (25)W, +„=C~Q„~'T*' Q iV„D (T*),

in which

(20)
where n„ is the atomic polarizability of the rare gas.
Thus,

tV, i = 1V„4=+' 1V„„«~i,
il

tV„o=1V„o=Q' tV„;,&(,
il

JV „o=cV„o Q' N„„n, ——
il

8 '8) —+C

a; aE=O

8 "8 =+gC

(21)

3,=(3e/5)(r ')»[-,ou„'R '—4(S.,-"+S«'—S ')]. (26)

The gradients (22) can be expanded in a straight-
forward manner to obtain the functions cV„;i~~. When
these functions are summed over the twelve nearest
neighbors in the face-centered cubic lattice a rather

The prime on the sums in Eq. (21) indicates that the
summation is to be restricted to the indicated pairs of
nearest neighbors i and l.

Gradient functions The calcul. ation of the gradient

"P.O. LOwdin, Ark. Mat. Astron. Fysik 35As No. 9 (1948)."F. J. Adrian, Phys. Rev. 138, A403 (1965)."J.Kondo and J. Yamashita, J. Phys. Chem. Solids 10, 245
(&959).
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lengthy calculation yields the six gradient functions:

1Vzz =Xzz =4a '[(35u'+ v'+6K'+ 10uv+ 16Xu+ 2Xv)

—n'(19u'+ v'+ 10uv+ 2Xv) ],
iV»='Vzp=4zz 4[( 1—1uz+6PP —2uv+16Xu+2Xv)

+a'(57u'+6uv 2—Xv)],

-~ »=-~'ip=8~ z[(20zP+12hz+4uv+32Xu+4Xv)
—a-"(19u'+-', v'+6uv+4ihv)], (27)

Xzz= Xz&= a 4[(121zz"-+3v-'+24Xz+30uv+64Xu+6Xv)

+az (19zzz+ v'+ 10uv+ 2Xv) ],
Xzz ——Xzp ——zz 4[(13u'+24hz —2uv+64Xu+6Xv)

+n'( —57u' —6uv+ 2Xv)],

;l zz
——Xzp ——2a [(61u —zvz+48X'+10uv+128Ãu+12Xv)

+n'(19u'+ z~v'+6uv+4Xv)],

At temperatures well above the Debye temperature,
the terms proportional to (T*) z in Eq. (30) are small
and the theory predicts that the transition probabilities
vary as T*'. To obtain the approximate temperature
dependence in the region where T*(1,one can follow
the procedure used by Van Kranendonk25 for the NaC1
lattice and write

2 &,-D.(T*)=E.(")E(T*).
n=l

(31)

The function E(T") has been evaluated numerically by
Van Kranendonk. Since E(T~) is unity when T*))1,
the E„(~)can be obtained from Eq. (27) and the first
terms of Eq. (19). The temperature dependence of Ti
should thus be given by

where 1/T, T*'E,(T*) . (32)
n=——', aX' —'A, e—=4X—-'aP '+ —'a9." (28)

and the prime represents difTerentiation with respect
to R. The dependence of the transition probabilities
on the orientation of the crystal is contained in the
terms proportional to

~H PH +~H pH +pH pH ) (29)

where o.lI, PII, yII are the direction cosines of the
magnetic field relative to the crystalline axes.

Fvafuatiozz for solid xenon The grad. ient functions for
solid xenon were evaluated numerically from Eq. (26)
using the atomic parameters and overlap integrals
employed by Adrian for calculating T& for Xe"' in
the gas. Substitution of these functions and the high-
temperature expansions of the lattice functions into
Eq. (20) yields the following expressions for the transi-
tion probabilities for Xe"' in solid xenon:

Wz = (2.24X 10 ') T*'[(67 3—77.1n')
—T* '(3.56—4.16a'))

Wz = (0.56X 10 ') T*'[(196+77.1a') (3o)
—T* '(10.1+4.16a')].

In evaluating the constant C, the velocity of sound was
estimated by assuming the Debye temperature to be
55'K29 and using the values of the density and lattice
constant at 100'K. Since Tz((Tz at 100'K, Eq. (5) may
be employed to obtain

T~——1.3 sec.

The angular dependence exhibited by the transition
probabilities vanishes when the probabilities are added
in Eq. (5). Thus, when a spin temperature can be
assumed, the theory predicts an isotropic relaxation
time for a fcc single crystal. The same result has been
found previously for other crystals exhibiting cubic
symmetry. '4

"A. C. Hollis Hallet, in G. A. Cook, Argon, Hebe and the
Rare Gases (Interscience Publishers, Inc. , Nem York, 1961),
Vol. 1, Chap. IX.

Application of the theory of quadrupole relaxation
via the Raman process to the case of Xe"' in solid
xenon yields two principal results which may be
compared with experiment. Comparison of the predicted
magnitude of Tj with experiment provides a test of the
overlap —van der AVaals model used to calculate the
strength of the time-dependent electric-field gradients.
The temperature dependence of the data may be
compared with Eq. (32) to determine whether the
Raman process is, in fact, responsible for relaxation
and to obtain information about the Debye temperature
of solid xenon.

1 e
W„=——J"(Zzpzp) .

12 A
(33)

The spectral functions J"(&p ) are the Fourier trans-
forms of the time-correlation functions of the random
electric-field gradients,

g. (&) =«-.(&)1'.(&+r)& (34)

The transition probabilities are maximum when the
correlation time r is approximately 1/zpp or 1/2&up for
transitions of Am= &1 or Am= ~2, respectively.

Detailed calculation of the correlation functions for
gradients produced by diffusing defects (vacancies and

~ A. Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, England, 1961).

2. Quadrupole Relaxationvia Rand. om Atomic Motions

In rare-gas solids at temperatures near the melting
points and in the liquids, random time-dependent
electric-field gradients produced by self-di6usion and
diffusion of crystalline defects provide a potential
relaxation mechanism for quadrupolar nuclei. " Hy
applying the usual methods of time-dependent perturba-
tion theory to the case of a randomly varying quad-
rupole interaction'" it can be seen easily that the
transition probabilities are
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impurities) in a rare-gas solid is dificult because of
limited knowledge of the spatial dependence of the
gradients produced by such defects. In the liquid, on
the other hand, one might assume that the gradients
arise from exchange and van der Kaals interactions
between neighboring xenon atoms. In this case, how-

ever, the calculation of correlation functions is hindered

by the lack of an adequate model for the microscopic
atomic motions.

If one makes the assumption of an exponential
correlation function

(35)

the spectral functions can be obtained immediately:
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2T
J'( o) =(V (0) V, (0))

1+4)0 T
(36)

I'IG. 1. Spin-lattice relaxation times of Xe'" in solid xenon.
The solid line represents the temperature dependence of Eq. (32)
normalized to the data at 77'K.

j'(2a)0) =(V 2(0) V2(0))-
1+Mo'&'

In this simple case, the quadrupolar spectral functions
are similar to those for dipolar relaxation due to random
atomic motion. For translational diffusion one would

expect the correlation time 7 to be proportional and, if
~07«1, the relaxation time to be inversely proportional
to the coefIIcient of self-diffusion. "

B. Experimental Results and Interpretation

1. Spin Lattice Re-laxation in Solid Xenon

Spin-lattice relaxation was observed in solid xenon
from 9'K to the melting point (161'K). Throughout
this temperature range the nuclear magnetization
recovered to equilibrium with simple exponential time
dependence and a single T~ could be assigned. The
observation of single exponential recovery at the
higher temperatures where Eq. (5) is not valid (Tr = Tm)

can be understood in terms of the probabilities (30)
evaluated for a polycrystalline sample. ~ If o.' is averaged
over all possible orientations of the crystal axes with
respect to the magnetic field, it turns out that

Wi= W2= W.

On the basis of Eq. (3) therefore, one would expect
exponential recovery to equilibrium with a single time
constant 1/2W.

The observed values of TI are plotted in Fig. 1. The
relaxation time increases monotonically with decreasing
temperature from a value of about 200 msec at the
melting point to 390 sec at 9'K. These values are orders
of magnitude shorter than the corresponding Xe"'
relaxation times indicating that quadrupole interactions
are responsible for relaxation. Data were not taken at

"N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).

»The spin phase-memory times will be discussed in a sub-
sequent paper.

temperatures below 9'K because of the difIiculty of
maintaining stable sample temperatures for periods of
several TI's. At 4.2'K, paramagnetic impurities were
probably responsible for the observed spin-lattice
relaxation since at this temperature, the Xe"' relaxation
time was shorter than the XeI3'TI. At all other tempera-
tures measured the Xe"'TI was shorter than that for
Xe"'. For the purest samples used, the Xe"' relaxation
time at 4.2'K was greater than 1 h.

The solid line in Fig. 1 represents the temperature
dependence predicted by the theory for quadrupole
relaxation via the two-phonon Raman process. The
theoretical curve has been normalized to the data at
77'K and the Debye temperature of solid xenon has
been taken to be 55'K. The implicit temperature
dependence resulting from variation of the strength of
the quadrupole interaction with thermal expansion of
the lattice has been neglected. It was found by numer-
ical evaluation of the various parameters that the
temperature dependence of Eq. (20) is contained in
Eq. (30) to within roughly the accuracy of the data.

It can be seen from Fig. 1 that the temperature
dependence of the data agrees well with the prediction
except in the vicinity of the melting point. At temper-
atures above the Debye temperature 1/T& varies
approximately as T' while at low temperatures, the
departure from T' dependence is predicted very
well by the Van Kranendonk function. The normal-
ized low-temperature data have been divided by T*'
and plotted in Fig. 2 for direct comparison with
the Van Kranendonk function E(T"). In spite of the
increased scatter of the data, it is evident that the
Van Kranendonk function accurately describes the
temperature dependence of TI down to T*=0.16.

Above 100'K, the data vary somewhat more rapidly
with temperature than the theory predicts for a Debye
temperature of 55'K. The discrepancy can be seen in
Fig. 3 where the solid line corresponds to 1/T~ ~ T' and
the solid points are the "clean" sample TI data. This



NUCLEAR QUADRUPOLE RELAXATION OF Xe'8'

T~ ——1.3 sec. (theor y)

In view of the approximations of the model, agreement
between theory and experiment is quite good.

The fact that the quadrupole-phonon interaction
apparently accounts for spin-lattice relaxation in
"clean" solid xenon at temperatures near the melting
point indicates that the quadrupolar interaction with
time-dependent electric-6eld gradients produced by
diffusing vacancies is not an effective relaxation process.
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FIG. 2. The Van Kranendonk function E(&). The data are
normalized to Eq. (32) at 77'K and divided by P+ to obtain
E(P")

33 J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24,
1405 (1963).

failure of Eq. (32) to predict the correct temperature
dependence may be a consequence of the failure of the
Debye approximation to represent the true phonon
spectrum of the solid. The inherent error of the Debye
spectrum is often described by a temperature-dependent
Debye temperature. Packard and Swenson~ have
obtained the temperature dependence of 0 at zero
pressure from experimental values of the heat capacity
of solid xenon. If these results are used to determine T*,
the predicted temperature dependence (indicated by
the broken line of Fig. 3) is in excellent agreement with
the data. This agreement is particularly interesting in
that the 0 obtained from heat-capacity measurements
results from a different average over the phonon
spectrum than that which occurs in the theory of
quadrupole relaxation.

The observed magnitude of Tj at 100'K is

T~——0.70&0.05 sec, (experiment)

which is to be compared with the theoretical value
obtained in the previous section by considering the
effects of exchange and Van der Waals interactions,

1000
Xe'~ SPIN-LATTICE RELAXATION TIME IN SOLID AND LIQUID XENON

o heavily doped sample ~ "clean" samples
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Fro. 3. Spin-lattice relaxation times of Xe"' in liquid and solid
xenon. The solid line through the liquid data is a least-squares
fit to an exponential temperature dependence. The solid line on
the right-hand portion of the graph represents Eq. (32) with
8=55'K normalized to the data at 77'K. The broken line
represents Eq. (32) normalized to 77'K with O{T) as given by
Packard and Swenson in Ref. 33.

On the other hand, diffusing impurities can be an
important mechanism. Data taken in samples having
an impurity (air) concentration of 10 ' to 10 3 demon-
strate a striking decrease in TI at temperatures near the
melting point. These data are represented by the open
circles in Fig. 3. Since the Xe"'T~ values were still at
least an order of magnitude shorter than the Xe"'
relaxation times in the same samples, it can be con-
cluded that dipolar interactions with paramagnetic
oxygen are not effective and that the observed effect
must arise from quadrupole relaxation via diffusing
impurities. Unfortunately, the impurity concentration
was not known accurately enough to permit a meaning-
ful estimate of the magnitude of the gradients produced
by the impurity molecules.

2. Spin Lattice Re-laxation in Liquid Xenon

Spin-lattice relaxation times for Xe"' in liquid xenon
were measured from the melting point to 250'K. A
pressure of 30 atm was applied to the sample to extend
the liquid range to the higher temperature. No pressure-
dependent eHects on the nuclear-relaxation process
were observed. Recovery of the magnetization appeared
to be governed by a single exponential so that unique
T~ values could be determined. These data are plotted
against 1/T in Fig. 3 and exhibit the following principal
features: (1) T& values in the liquid. appear to be
independent of impurity content (including helium
from the pressure medium); (2) the value of T, decreases
by about a factor of 5 when the sample melts; (3) the
temperature dependence of T~ appears to be exponential
with the form

T& ~ exp( E~/RT). —(37)

E& is an "activation energy" for the thermal motion
producing relaxation. A least-squares fit of the data
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Xe~3~ SPIN-LATTICE RELAXATION RATE vs DENSITY
been measured by Yen and Norberg using spin-echo
techniques in an applied magnetic-field gradient, and

by Naghizadeh and Rice" by radioactive tracer
techniques. These measurements yield
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Tt ~ exp(-640/
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ED = 1400&150 cal/mole (Yen and Norberg),

ED = 1210 cal/mole (Naghizadeh and Rice) .

The "activation energy" inferred from quadrupole
relaxation of Xe"' is approximately half the average
of these two results. The discrepancy is well outside
experimental error and clearly indicates that Xe"'
relaxation in the liquid cannot be adequately explained

by a simple diffusion model.

FIG. 4. Spin-lattice relaxation rate 1/T& of Xe13' in liquid
xenon. The broken line represents a least-squares fit to an expo-
nential temperature dependence. The solid line represents the
data of Brinkmann, Brun, and Staub (Ref. 34).

to the temperature dependence (37) yields

Eg ——640&30 cal/mole.

For relaxation behavior described by a single expo-
nential, the simple diffusion model then predicts

where DD is the diffusion constant and I'D is the activa-
tion energy for self-diffusion. The activation energy has

~ D. Brinkmann, E. Brun, and H. H. Staub, Helv. Phys. Acta
35, 431 (1962).

The relaxation rate 1/T& is plotted as a function of
density in Fig. 4 using the liquid density data tabulated
by Hollis Hallet. "The broken line represents the least-
squares fit to exponential temperature dependence
Also shown in Fig. 4 are the data of Brinkman, arun,
and Staub" for Xe"' relaxation in gaseous xenon at
25'C. These data show that in the gas, the relaxation
rate is proportional to the density. If the present Xe"'
data are extrapolated to lower values of the density
it appears that the results are in good agreement with
the high-density-gas data.

The fact that the data appear to exhibit exponential
temperature dependence would suggest that spin-
lattice relaxation is caused by atomic diffusion. On the
basis of a simple diffusion modep' of the liquid, one
would expect correlation functions of the form (36) in
which the correlation time 7. is proportional to the
coeKcient of self-diffusion. If this model is assumed,
then it can be determined from the diffusion data of
Yen and Norberg' that the condition of extreme
narrowing, M()7((1, holds for Xe"' in liquid xenon. This
conclusion is supported by the fact that T& is equa, l to
T2. In the extreme narrowing limit, the transition
probabilities are, from Eq. (36),

IV. CHEMICAL SHIFTS

Investigations of the nuclear-magnetic resonance of
Xe"' have disclosed the existence of density-dependent
shifts of the resonance frequency in all three phases of
xenon. Streever and Carr' and Hunt and Carr' have
shown by pulsed NMR measurements that the local
field in gaseous and liquid xenon increases linearly
with increasing density at constant applied field.
Later work by Yen and Norberg' on Xe"' showed that
the local field increases linearly with density even more
rapidly in solid xenon. These measurements indicate
that as the density of xenon atoms increases, the atomic
electrons become less effective in shielding the nucleus
from the external field. The data show, for example,
that the diamagnetic shielding parameter of the liquid
is about 3 jo smaller than that of an isolated atom.

It was the purpose of the present work to extend
resonance shift measurements to Xe"' for two principal
reasons. First, the short quadrupolar relaxation times
of Xe"' eliminated the need to introduce paramagnetic
impurities to obtain workable relaxation times. The
possibility of erroneous results due to the presence of
such impurities was therefore greatly reduced. Second,
if the shifts are produced by density-dependent mod-
ification of the diamagnetic shielding, the observed
changes of the local field should be the same for either
isotope. Xe"' measurements thus provide a means for
verifying that the shift is, in fact, an electronic pheno-
menon or "chemical" shift.

Xe"' resonance shifts were measured in solid and
liquid xenon from 4.2 to 250'K. The measurements
yielded shifts of the external resonant field relative to
the resonant field at a reference temperature chosen
arbitrarily to be 130'K. The data are plotted as a
function of density in Fig. 5 using the molar volume
data of Packard and Swenson" for the solid and the
liquid-density data tabulated by Hollis Hallet" for
conversion from temperature to density. The broken
and solid lines in Fig. 5 represent least-squares fits to
linear density dependences for the liquid and solid,

"J.Naghizadeh and S. A. Rice, J. Chem. Phys. 36, 2710 (1962).
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respectively. The slopes are

liquid:

solid:

1 B(AH) = (5.1&0.5)X 10 T (amaga, t)—'
Hp Bp

1 T7 (AH) = (18;2&1.1)X10 ' (amagat) '.
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Xe RESONANCE SHIFTS

Ho = 8600 G

The dotted line in Fig. 5 represents the Xe"' resonance
shift in solid xenon measured by Yen and Norberg:

1 B(DH) = 20.4X 10-' (amagat) —I.
Hp cjp

It is clear that the density dependence of the shielding
is essentially the same for both isotopes.

A striking feature of these data is the change of the
density dependence of the shift at the melting point.
The ratio of solid slope to liquid slope is 3.6. This ratio
is in marked contrast to recent results of Brinkmann
and Carr "who have found nearly the same average
density dependence in the solid as in the liquid:

1 8(AH)
liquid: —— =5.66)&10 ~

IIo ~p

1 a(~H)
solid: ——— = (5.10X10 P)

Ho t9p —(7.42X10 ')p (ama, ga, t)—'.

The shift at the melting point found by Brinkmann and
Carr at 7100 G is (when adjusted to our field)

(AB) „=0.42&0.04 G (Brinkmann and Carr)

and is in good agreement with our observed Xe"'
melting point shift:

(AH) „„=0.37a0.10 G.

The source of the discrepancy between the present
solid data and those of Yen and Xorberg on the one
hand, and the results of Brinkmann and Carr on the
other, remains unknown. The possibility of systematic
calibration errors seems remote since several means of
checking the calibration were available. The agreement
of the Xe"' liquid data with those of Brinl mann and
Carr supports this conclusion. Furthermore, since three
fixed points for thermometry calibrations were available
in the solid range (He boiling point, Ns boiling point,
Xe boiling point), large errors in temperature measure-
ment seem quite unlikely. The remaining possible
source for the discrepancy is then the condition of the
solid xenon samples themselves.

Xe"' shift measurements were made with both
"clean" samples and air-doped samples showing large
impurity relaxation effects. No dependence of the

liquid
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FIG. 5. Relative Xe"' shifts in liquid and solid xenon. AII is
the change in external resonant 6eld relative to the resonant
field at 130'K.

shift on impurity content was observed. Similarly,
Brinkmann and Carr have searched for impurity
effects in their measurements and have found none.

The Xe"' measurements were made in a nylon sample
container. Since the volume of the chamber decreased
by only about 2% when cooled from 160 to 4.2'K while
the xenon sample contracted about 10/~, there should
have been no compression of the samples at low
temperatures. On the other hand, the possibility remains
that additional xenon could condense into the chaInber
at low temperatures so that as the sample warmed up,
the greater expansion coefficient of the xenon would
produce compression of the samples. To prevent this,
the experiments were performed with the sample
chamber only about 4 full to provide volume for thermal
expansion. The absence of hysteresis in the shifts as
the sample was cooled below the reference temperature
and then rewarmed indicates that effects due to
compression of the sample during warmup were small.

An approximate value of the absolute local field
shift relative to the isolated atom wa, s obtained by
fitting the Xe'" liquid data to the Xe"' liquid absolute
shift data of Hunt and Carr. The result is shown in
Fig. 6; the solid line represents the least-squares fit of
Hunt and Carr. The data indicate that the local field
in the solid at O'K is increased relative to the isolated
atom (i.e., gas at zero density) at 8600 G by

(AH) p
——3.3&0.1 G.

Adrian" has applied the general theory of chemical
shifts to the case of xenon atoms undergoing binary

"D.Brinkmann and H. Y. Carr (private communication). "F. J. Adrian, Phys. Rev. 136, A980 (1964).
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A complete theory of the shift in the solid must
include the effects of the lattice vibrations. Adrian" has
recently computed the temperature dependence of
the solid shift, taking into account both thermal
expansion and lattice vibrations, and obtains a value
for b(DH)/bT which is in somewhat better agreement
with the present Xe'" results than with the data of
Brinkmann and Carr. However, the approximations of
the theory are such that this agreement cannot be
regarded as convincing evidence in favor of the one set
of experimental results over the other.
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FIG. 6. Absolute Xe13' local field shifts in liquid and solid xenon.
The liquid data have been normalized to the solid line representing
the data of Hunt and Carr (Ref. 2).

128@,p'
(r ')5„(S..'+S..')Ho.

(hE)
(40)

In Eq. (40), pp is the Bohr magneton, (hE) is the average
energy of the atomic excited states, and the overlap
integrals are defined by Eq. (24). If the numerical values
of (4E), (r ')z„, and (S„'+S 2) used by Adrian are
employed, the absolute shift at O'K in a field of 8600 G
predicted by Eq. (40) is

(B'AV) 0
——2.0 G.

This result is in fair agreement with the experimental
value, (~)0=3.3&0.1 G. The ratio (~)0(experi-
ment)/(~)0(theory) for the solid (about 1.7) is to
be compared with the corresponding ratio (about 1.5)
comparing Adrian's theory with the gas data of Hunt
and Carr. This correspondence suggests that the
errors in the theory result from certain approximations
which are used in both calculations, i.e., the "average
energy approximation. "

collisions in the gas. He has considered the eGects of
both exchange and van der Waals interactions in
deforming the electron clouds during collisions and found
that the exchange interaction makes the dominant
contribution. If Adrian's expression for the shif t
produced by a single neighbor is summed over the
twelve nearest neighbors in the fcc lattice, the shift of
the local field in the solid (relative to the isolated atom)
is found to be

V. CONCLUSIONS

It may be concluded from the observed temperature
dependence of the Xe"'Tj that spin-lattice relaxation in
"clean" solid xenon samples arises from the two-
phonon Raman process. Furthermore, the agreement
of experiment and. theory for the magnitude of Tj at
100'K is good evidence for the general validity of the
Van Kranendonk theory and indicates that the overlap
model with van der Waals interactions provides a
realistic description of the electronic configuration in
solid xenon. The latter conclusion is supported by the
fair success of the same model when applied to the
calculation of the absolute chemical shift at O'K. In the
case of the chemical shift, however, the approximations
used in the theory and the conflicting experimental
results with regard to the temperature dependence make
it difFicult to draw more definite conclusions at this
time.

The observation of quadrupole relaxation indicates
that large time-dependent electric field gradients are
experienced by nuclei in liquid xenon. These gradients
presumably result from the same deformations of the
atomic charge distributions that lead to the chemical
shifts in the liquid. The failure of the simple dift'usion
model to account for the temperature dependence of
Ti suggests that more sophisticated models of the
structure and thermal motions of the liquid are required.
There clearly exists a need for detailed calculations of
quadrupole relaxation and chemical shifts in monatomic
liquids using various models of the liquid state.
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