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A theoretical formula is derived for the free-induction decay of a system of identical particles of spin I.
The exponential terms containing noncommuting operators are expanded by the method used in the paper
by Lowe and Norberg. Only enough terms are kept to make the expansion rigorous through t .The resulting
formula is evaluated for a system of identical particles for which: {1)the spins form a simple cubic lattice,
a face-centered cubic lattice, and a body-centered cubic lattice; (2) there is pure magnetic dipole-dipole
interaction between the spins; {3)the applied magnetic 6eld is along the $100j, t 110j,and /1 11j axes of the
lattice; (4) I=), 1, ~s, and ~. The Fourier transforms of the free-induction decays are also plotted. The
computations show that the free-induction decay shape is remarkably insensitive to the value of I.

I. INTRODUCTION

~~NE of the fundamental problems in magnetic reso-
nance is the calculation of the shape of absorption

lines in solids. This shape, for a very general set of
conditions, is the Fourier transform of the relaxation
function F (/) that describes the decay of the component
of magnetization that is perpendicular to a steady mag-
netic 6eld 80. A general formula for F(t), commonly
called the free induction decay (fid), can be readily
derived, ' ' but even a very crude evaluation of the fid
is difIicult. For the case of a set of spins fixed in spatial
position, two attempts have been made to find a general
formula for the line shape without making an assump-
tion about the form of the relaxation function or a
restriction to a special case such as a system of only
two interacting spins. The first of these was by Lowe
and Norberg' (hereafter referred to as LN), and the
second of these was by Clough and McDonald' (here-
after referred to as CM). LN derived a general formula
for F(/) using an expansion technique that was valid
only for spins of angular momentum I=-', in units of h.
This formula was evaluated for a system of spins for
which (1) the spins formed a simple cubic lattice, (2)
there was pure magnetic dipole-dipole interaction be-
tween the spins, (3) the applied magnetic held was
along the L100), the L110], and the L111)axis of the
simple cubic lattice. CM also considered the case of
I= -', only and tried to develop a more general expansion
technique. Their formulas were evaluated only for a
system of spins for which (1) the spins formed a simple
cubic lattice, (2) there was pure magnetic dipole-dipole
interaction between the spins, (3) the applied magnetic
field was along the L100) axis of the simple cubic lattice.
The several different formulas of CM were all as com-
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plicated as those of LN and the best agreement between
these formulas and experimental results was about as
good as those of LX.

In this paper, we use the expansion technique of LX~

to find the relaxation function F(t) for the case where
I may take on any value, and there is dipole-dipole
interaction and exchange interaction between the spins.
The resulting formulas are evaluated for the cases in
which (1) the spins form a simple cubic lattice, a face-
centered cubic lattice and a body-centered cubic lattice,
(2) there is pure magnetic dipole-dipole interaction be-
tween the spins, (3) the applied magnetic field is along
the L100), L110),and L111)axes of the lattice, (4)I= -'„

1, -'„and ~.

where
ac= h(~+ p),

a=(1/2h)P .4,ii,"Ii„ (2)

P=(1/2k)Q B,i,I,,Ii„ (3)

B,i,= (3y'h'/2r, i') (1—3 cos'0 ~) (4)
~'f jk 38) Jc 2Jjk (3)

J,I, is the exchange integral between particles j and A.

r;I, is the distance between particles j and k. 9j& is the

' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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II. CALCULATION OF THE FREE-INDUCTION
DECAY SHAPE

As stated in the Introduction, the system, whose fid
shape we attempt to compute, is a set of E identical
particles fixed in space, Each particle has spin I and
magnetogyric ratio y. We assume that there is both
dipolar interaction and exchange interaction between
the spins. We also assume that this system is in a mag-
netic field B~ and that this field is large enough that
only the terms of the truncated interaction Hamiltonian
significantly influence the fid shape. 4 The truncated
interaction Hamiltonian X can be written as follows:
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l.o

.9
F(t)

where

X(t)= exp(int) exp( —i(n+ p)t) exp(ipt)

= P C„t"/n!
n~p

C„=B x(t)/Bt i, ,
Substituting Eq. (8) into Eq. (7) and combining terms

with the same powers of t that derive from X(t) yields

J I

2.2 2.4 2.6 2.8 3.0

t (units of x )
where

F(t)= P F„(t)t"/~!,
n=0

(1O)

3

FIG. 1. Free-induction decay shapes for spins in a simple cubic
lattice. The applied magnetic field is in the $100) direction and
I=-', and ~. The fid shapes for I=1 and I=) lie between the
I= -', and I= ~ fid shapes and are very close to the I= ~ fid shape.

F-(t)= 2
u! Tr(I, e xp(i Pt)C~ It, C~exp( —iPt) )— (11)

p C.'T (I*')

The first five coe@cients of the power series expansion
for X(t) are

angle betv een the vector r, I, connecting particles j and

k, and the applied magnetic field Bpk.

The formula for the fid shape, when transformed into
the reference frame rotating about the applied magnetic
field at a Larmor frequency of yBO/27r, is' 2

Co ——1, Cg=0, C2= [n,p) =X,
C3——i[(n—p),X),
C =»'+[(P- ),[,!))-[P,[P,!))

TrlI, exp(i3Ct/tt)I, exp( —iXt/tr))
I'(t) =

Tr (I,')

Tr( ) signifies that the trace of the operator in the
brackets is to be taken, and

The power series was cut ofI at t4 because of the tre-
mendous increase in labor required to evaluate any of

(6) the F„(t) for rt)4 Acorn. parison of theoretical and
experimental results will indicate the range of t for
v hich this procedure is valid.

For the case in which n=O, all C„=O except for Cp

v hich is equal to i. Then

N

I,=P I,,

The evaluation of Eq. (6) is hampered by the many
terms in the Hamiltonian X that do not commute. If
the exchange interaction terms are not particularly
large, all of the terms in K are of the same order of
magnitude, making a simple perturbation approach
di!%cult. It is easily shown that [n,I,)=0 for all values
of I. If P =0, then F (t) = 1 and the n term in the Hamil-
tonian cannot alone influence the fid shape. It is shown
in Appendix 8 that if n=O, then F(t) can be easily
evaluated exactly. A not unreasonable procedure, there-
fore, might be to evaluate F(t) exactly for the p term
of K and to treat the e term of 3C as a correction term.
This is the same technique used by I,N for I= ~, and
its only justification beyond that given above is the
good agreement between these results and the fid shape
of fluorine in CaF2.

With this procedure in mind, we will rewrite Eq. (6) as

Tr fI, exp(iPt)x'(t)I. x(t) exp( —iPt) )
F(t) =

TrI f,')

Equation (12) reduces to the result that LX found for
the case I=-', and +=0.

S.C.L.
QQ [loo j

/2
I

I = on

"9 -8 -7 -6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6 & 6 9
~(units of x ' )

FxG. 2. Absorption curves for spins in a simple cubicjlattice. The
applied magnetic field is in the L100) direction and I= —, and ~.
The absorption curves for I=1 and I=—', lie between the I=)
and I= ~ curves.

F(t) =F,(t).
The term Fo(t) is evaluated in Appendix (&) where it is
shown that

1 m sin((2I+ 1)8,gt/2tt)
Fo(t)=—2 II (12)

iV ~=i i (2I+1) sin(B, rt/2k)
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Evaluation of the F2, F3 and F4 terms is straightfonvard but tedious. The method of evaluation of a
typical term is shown in Appendix (A). Listed below is the four-term approximation of F(t), that is Fo(t)
+F~(t)t'/2!+Fi(t)t'/3!+Fi(t)ti/4!. The listed solution, Eqs. (13)—(16), is for a lattice in which all the nuclei

occupy equivalent sites.

F(t)= U(t) V(t),
—sin((2I+1) B,~t/2h)—

U(t) =II'
i (2I+1) sin(B, rt/2h)

V(t) =1+ (t2/2h')( P' A„„(8„,—8„,)Z,„(t)Z„,(t)+-,' P' A„.B„.X.„(t))
nWi

+(t'/3!h')(2' [(8p* 8-)A—"(Ap. 28p.)—+(8p- 8-)A—p'(A-p 8-p+—8-*)
nWi

A,.'(8—,„8.,)+—B.„A.,A;,]Z;„(t)G.„(t)+p'!L(8„B.;)(A—.„'+A.„A.;+2A.„B.,)
ngi

A„;A.,(8—.„B.;)+(8—„, 8„.)(3A—,.'+A;.A „.) B.„A.„A—;„]Z;,(t)H.„(t)

(14)

+P' A p'8 p$( ',I(I+1)—7-/10)Z p(t)+(D„„(t)) ' P m' sin(8 pmt/h)]

+P' A.„B.,'H-;I(I+1)——,', )Z.„(t)—(D.„(t))-' P 2m' sin(B.„mt/h)]}

—(t'/4!h')( Q' ( 3A„pB„p(8—; 8„;)' A„—„'A„„B„—„+A„,B„;A„p' 3A„„B„„A—p +A,'A „B,p
nQi

+2A,„B,„A„pB;„2A„„B„„B„,—A;„2A„p'B„,Bi„—]G;„(t)G „(t)+Q' [12A 28;A pg+11A A „8 „

+2AinBinA np +4A np A piByi 9Ani AnpBip 4AinBinAipA pn 3A ny BniAiy+AnyBnpAipAni

3A iy A niBpn+4A ip Bipil in+ 68ni A niA ny+6A ni Bny +A niBniA npBny 6A in BnyBip 8A inBinBnyA ip

AnpBiipA aiBip+BpPA npA pi]Hap(t)Hip(t)+ P L3AnpBnp(Bni Byi) !!Aiii BiiiA pi 4A iii 8niA np
nWi

+Ani AnpBny 1|Ani BpiA pi+2AinBinAny 5AinBinAip 2Anp BipAip+AnpBnpAip +2Ani AnpBpi

+6A iiPA ipBiip+5AinBinA ipA pn+A pn BiiiAi p Amp 8 iApi +iAin BnpA piA pni+4A i ApiiiBiip

2AiyBipAynAni 4Aiy BiyAin 5Bin AinAip+2Bin Anp+3BniAniAnyBnp+4AniBniAipBiy

+2A n„'Bi„'—2A n pBn pB;pAip —4A n;BniA n pBip+4A niBniA ipB„„—4A n„'BniB pi

+2A „pB„„B„;A;p 3A „pB„pB;„A„;—+58;p'A „„A;„2A„;8p,A„,B—„„]H„„(t)G.,p(t) + 2 Q' 8 p'A p

XL35I2(I+1)'—(7/10)I(I+1)+((6/5)I(I+1)+(11/10))G„p(t)—5(D„„(t)) ' P mi cos(B„pmt/h)]
m —I

+-,' Q' A„„'8 pf(32/5)I2(I+1)' —(33/10)I(I+1)—((96/5)I(I+1)—(99/10))G „(t)]
n

+-', Q' A„Bp„'[( l8/)I5'(I+1)' —(17/10)I(I+1)—((24/5)I(I+1) ——,'s)G„p(t)

vrhere

+2(D„„(t)) ' P m' cos(B pmt/h)]}, (15)
m= —I

Z,„(t)=-', cot(B,„t/2h) (I+,') cot((I+-—', )(8;„t/h)-),
X,p(t) = —2I(I+1)+2 cot'(8;pt/2h) —3(I+2) cot((I+-', )(8;pt/h)) cot(B;pt/2h),
H,„(t)=,'I(I+1)+-,'X,,(t), G,,(t) = —',I(I+ 1)——',X;„(t), (16)
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and
sin((I+-', )(B;„t/ti))

D;„(t)=
sin(B;„t/2 t't)

The primes on the summation and product signs denote that the particle subscripts summed over are not to be
taken as equal to the particle subscripts not summed over.

This expression for F(t) yields second and fourth moments that agree with those of Van Vleck's. 4 When I is
set equal to —,', the above expression reduces to the expression found by I.N.

III. CALCULATION OF THE FREE-INDUCTION DECAY FOR PURE DIPOLAR INTERACTIONS
BETWEEN SPINS IN A LATTICE HAVING CUBIC SYMMETRY

For pure dipolar interactions between the spins of the system, A, &
————,B,&. Equation (15) for V(t) can be

reduced to

V(t) =1—t'(/6&') {(2-'B.A- (t))'—r.-' B- '(~- (t))'+l Z.' B-.'X"(t)}
+(t'/5«')(4I(I+1)Z-' B-.' 2, B;A,.(t) —5 2-' B-A-.(t) 2'' B','X'.(t)
+2-' B-.'t:5%(t)X- (t)+((6/5)I(I+1)—(39/10))~. (t) —lX..(t) cot(B-.t/2&)]}
—Lt4/((27)(4!)Ii')]i6P(I+1)'(Q ' B ')' —L16P(I+1)'-—(15/2)I(I+1)] Q„' B„~' (83/6)I(I+—1)
XQ.'B.,'Q, ' B;,'X,„(t)+(17/3)(Q 'B „'X „(t))-'(17/3)Q—' B „'(X „(t))'

—L(13/6)I(I+1)—(81/4)] g 'B „4X„„(t)+(51/2)P„'B„'X „(t) cot'(B„„t/2h)}. (17)

In evaluating Eq. (17) all summations have been
dropped which contain odd functions of B,~. The justifi-
cation for doing this is that B,~ is a function of t}} that
averages to zero when integrated over a sphere. There-
fore, a summation of an odd power of B;~ over a cubic
lattice will be small in comparison to a summation of
an even power of 8;f,.

Using Eqs. (13), (14), (16), and (17), free-induction
decay shapes have been evaluated for the following
combinations of situations: (1) simple cubic lattice,
body-centered cubic lattice, face-centered cubic lattice,
(2) the applied magnetic field is along the L100], L110],
and L111] axes of the lattice, (3) I=-'„1, —,', and ~.
The free induction decay for infinite I is found by letting
I~~ and ti —+ 0 in Eqs. (14) and (17) in such a wa&
that bI remains finite. In the next section, this limiting
case is shown to be equivalent to the results obtained

for a set of magnetic dipoles with angular momentum
that obeys the classical equations of motion.

In the numerical evaluation of Eqs. (14) and (17),
the various terms are left intact for near neighbors. For
more distant neighbors, these terms are expanded in a
power series of t, the terms having the same powers of t
are combined so that lattice sums can be used. The
number of nearest neighbors considered exactly are 80
for the simple cubic lattice, 168 for the body-centered
cubic lattice, and 200 for the face-centered cubic lattice.
The free-induction decays are evaluated as functions of
t in units of x, where

x= 2d'/3p'ht I(I+1)]"".,
and a' is the lattice parameter of the cubic unit cell.

F(t), S.C.L.
Bo ti&o]

S.C. L

Bofll
g=/2I

J =ca)

0 ~I I I I I I I I I I

-.I-
t(units of x)".2—

Fzo. 3. Free-induction decay shapes for spins in a simple cubic
lattice. The applied magnetic Geld is in the t 110j direction andI=) and ~. The Gd shapes for I=1 and I=) lie between theI= -', and I~ ~ fid shapes and are very close to the I= ~ fid shape.

I 2 3 4

cu(units of x ')

FIG. 4. Absorption curves for spins in a simple cubic lattice. The
applied magnetic field is in the L110j direction and I= ~~ and ~.
The absorption curves for I=1 and I=$ lie between the I= ~~ andI= ~ curves and are very close to the I= ~ curve.
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I.O

.7

.2

I= /2
I

J=oo
FIG. 5. Free-induction decay

shapes for spins in a simple
cubic lattice. The applied mag-
netic field is in the L111jdirec-
tion and I=-,' and ~. The fid
shapes for I=1 and I=-,' lie
between the I=-', and I= ~
6d shapes.

.2 4 .6 .S I.O I.2 1.4 I.6 I.S 2.0 2.2 24

t(units of x)

S.C, L.
Bo [ I I l ] g=oe

-2 0 I 2 3 4

(units of x ')

Fzo. 6. Absorption curves for spins in a simple cubic lattice.
The applied magnetic 6eld is in the $111j direction and I= &

and ~ . The I= 1 and I=+ absorption curves lies between theI=-', and I= co curves.

I.O

F(t),

Therefore, d is equal to the distance between nearest
neighbors in the simple cubic lattice, and to 2/V3 times
the distance between nearest neighbors in the body-

centered cubic lattice, and to W2 times the distance
between nearest neighbors in the face-centered cubic
lattice. The numerical evaluation of the free induction
decays F(t) and their Fourier transforms G(~) (the
absorption curves) were carried out on an IBM 7090
computer. The results are plotted in Figs. 1 to 18.

Some of the absorption curves have small regions
over which they are slightly negative. The curve in
these regions must be wrong since the absorption curve
is a positive quantity. Ke think this result is due to
smu/l errors in the free-induction decay shape. When
G(co) is small for small cu, small errors in the free-induc-
tion decay shape have a large effect on the value of G (co)
because G(&u) is small for small co due to the almost
exact cancelation of J F(I) cosco/dl for only one or two
oscillations of cosset in the region where F(I) is large.
In Figs. 2, 4, 6, 8, 10, 12, 14, 16, and 18 the light
horizontal line is the G(co)=0 coordinate. The dark
horizontal line is the G(co)= —0.01 coordinate for
Figs. 2, 4, 6, g, 10, and 12, and the G(s&) = —0.005 line
for Figs. 14, 16, and 18. The numerical tables on which
Figs. 1 to 18 are based can be obtained by writing to
the authors.

G (ru)

.6

.5
B.C.C.

EIo [Ioo

j I I

.0 2.2 24 2.6 28

t {units of x, )
I

-Io-9 -8 "7 -6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6 7 8 9 IO

u(units of x ')

Fro. 7. Free-induction decay shapes for spins in a body-centered
cubic lattice. The applied magnetic 6eld is in the L100j direction
and I=-,', 1, and ~. The I=) 6d shape lies between the I=i
and I= ~ 6d shapes.

FIG. 8. Absorption curves for spins in a body-centered cubic
lattice. The applied magnetic 6eld is in the L100j direction and
I=-,' and ~. The I=1 and I=) absorption curves lie between
the I=-', and I= ~ absorption curves and are very close to theI= ~ curve.
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I.O

F(t)
B.C.C.

8o [ IIO ]

Fro. 9. Free-induction decay
shapes for spins in a body-centered
cubic lattice. The applied magnetic
Geld is in the t 110) direction and
I='; and o0. The I=1 and I=2
fid shapes lie between the I=-', and
I= ~ fid shapes and are very close
to the I= ~ fid shape.

.3

I I J

.I .2,3 4,5,6,7 ~~ I.4 I.5 I.6 I.7 1.8 I.9 2.0

t (units of x )

IV. THE FREE-INDUCTION DECAY
SHAPE FOR INFINITE I

As mentioned in the previous section, the formula for
the free induction decay shape for infinite I was ob-
tained by taking the limits for Eqs. (14) and (17) for
I~~ and A —+ 0 such that IEI remained finite. For this
limit, angular momentum behaves classically. In order
to see if there v ould be some simplification in the line
shape calculations for classical angular momentum,
formulas for line shapes were computed using classical
theory. Several different techniques were attempted and
they all produced answers identical to the above dis-
cussed limiting case without introducing any new
physical insight into the problem.

The simplest of these techniques involved the re-
placing of commutators by Poisson brackets. Regardless
of whether the I.N expansion or the moment expansion
is used for the function F(t) the results assume the form
of a series of terms each of which consists of appropriate
spatial variables multiplied by the trace of a commuta-
tor containing angular-momentum operators. The corre-

sponding classical solution for the free-induction deca&

v as obtained by replacing all these commutators with
Poisson brackets, and by replacing the traces over a
complete set of angular-momentum states by a classical
average over all directions of the angular-momentum
vector. As previously stated, these results are identical
to the limiting case of I~~ and A —+ 0.

V. DISCUSSION

I.O

.9
F(t) B.C.C.

o [I I I ]

The most significant feature of the theoretical curves
for the computed free-induction decax s in Figs. 1, 3, 5,
7, 9, 11, 13, 15, and 17 is the relativeh. small dependence

B.c.c. ———I o /p

I ~ ~ l~ J

I8 20

I 1 I I I I ~ T I r-IO-8 "8 -7 -6 —5 —4 —3 -2 —
I 0 I 2 3 4 5 6 7 8 8 IO

ru(unlt6 Of X ')

t (units of x )

Fm. 10. Absorption curves for spins in a body-centered cubic
lattice. The applied magnetic Geld is in the I 110j direction andI= ~2 and ~. The I=1 and I=q absorption curves lie between
the I=~2 and I= ~ absorption curves and are very close to theI= ~ curve.

FIG. 11. Free-induction decay shapes for spins in a body-
centered cubic lattice. The applied magnetic Geld is in the I iiig
direction and I=(, 1, and ~. The I=28 fid shape lies between the
I=1 and I= ~ fid shapes.
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G {cu)

B.C. C.
Bo [ I Il

4

FIG, 12. Absorption curves for spins
in a body-centered cubic lattice. The
applied magnetic field is in the f111]
direction and I=-', and ~. The I=1
and I=-', absorption curves lie close
to the I= ~ curve.

I I ~ ~ ~ ~

-IO -9 -8 -7 -6 -5 -4 -3 -2 -I I 2 3 4 5 6 T 8 9 IO

&u {units of x ')

8('/) = Q (—1)"(M2 /Mo)t2"
n=P

(18)

of the shape of the calculated free-induction decays upon
the spin value I for a given crystal symmetry and the
direction of the applied magnetic field. These results
are somewhat unexpected since the free-induction decay
shapes for just two interacting particles is strongly
dependent upon the spin value I.

The relative insensitivity of the calculated free in-
duction decay shape upon the value of I can be ex-

plained in the following way. The free-induction decay
shape F(t) can be expressed in terms of the moments
of the absorption line" by the relationship

tain traces of products like' I;P I~„'I~ ', which when
evaluated are proportional to (I(I+1))".Thus, to a
first approximation one may write

where $ is independent of I and depends only upon
spatial variables and y. Therefore, the plot of F(t) ver-
sus t, where t is taken in units of x= 2d'/3yh'(I (I+1))'",
is quite insensitive to the value of I.

This analysis may be pushed a little bit further. By
expanding Eq. (13) for F (/) in powers of t, we find for
pure dipolar interaction between spins, that

where M&„ is the 2nth moment of the absorption line.
M2„contains terms which involve 2, 3, 4, , n+1
particles. For the case of pure dipolar interaction be-
tween the particles, it is conjectured that terms in-

volving interactions between n+1 particles constitute
the largest part of the 2nth moment. ' These terms con-

M4/Mo= {3(P'iBqk~)2 (1/3~V) 2 Bj/ (Bji Bu)2

——,
' Q'i B,i,4L8+(3/2I(I+1)) j}(I(I+1)/3h')' (20)

The most important terms for determining the shape
of F (t) for small t are M2 and M ~. The M2 term is propor-
tional to I(I+1) and the only term in M4 that is not

I.O

F(t), F.C.C.
Bo [I 0 0]

G (au)

.20

.5

F.
Bo

.2 .3 .4
I I

.9 I 0

t (units of x )

I I I I

-I4 -I2-10-8 -6 -4 -2 0 2 4 6 8 IO 12 14

w(units of x ')

FIG. 13.Free-induction decay shapes for spins in a face-centered
cubic lattice. The applied magnetic Geld is in the t 100j direction
and I=~~ and ~. The I=1 and I=) fid shapes lie between theI= $ and I= ~ Gd shapes and are very close to the I= ~ fid shape,

FIG. 14. Absorption curves for spins in a face-centered cubic
lattice. The applied magnetic Geld is in the L100j direction andI= $ and ~.The I= 1 and I=$ absorption curves lie between theI= $ and I= ~ absorption curves and are close to the I= ~ curve.

' R. Bersohn and T. P. Das, Phys. Rev. 130, 98 (1963).
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FIG. 15. Free-induction decay
shapes for spins in a face-centered
cubic lattice. The applied magnetic
field is in the $110) direction and
I=). 1, and ~.TheI=) fidshape
lies between the I=1 and I= ~
fid shapes.
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FIG. 16. Absorption curves for spins
in a face-centered cubic lattice. The
applied magnetic field is in the $110$
direction and I=~2 1, and ~. The
absorption curve for I=$ lies between
the I=i and I= ~ curves.
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FrG. 18. Absorption curves for spins in a face-centered cubic
lattice. The applied magnetic field is in the $111)direction andI= ~i and ~.The absorption curves for I=1 and I=-,' lie,'between
the I= $ and I= co absorption curves.

3-

Frc. 17. Free-induction decay shapes for spins in a face-centered
cubic lattice. The applied magnetic field is in the L111jdirection
and I= q and oo. The fid shapes for I=1 and I=~ lie between
the I= ~i and I= oo fid shapes and are close to the I= ~ fid shape. ~= (Za' &Is')'/(ZI' &,a'), (21)

proportional to (I(I+1))I is gq' B,qI. Terms with the
form (P~' &,qI)' make the most important contribution
to the fourth moment. Therefore, 0., where
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TABLE I. I isting of the crystal symmetry and applied magnetic
Geld direction in order of increasing dependence of the free-
induction decay shape upon I. In the third column is the corre-
sponding value of 0 = (2 B,P )~/ Z 8;,4.

Crystal
symmetry

scl
fcc
fcc
bcc
scl
bcc
scl
fcc
bcc

Direction of applied
magnetic Geld

piilj
t'100j
t 110j
$110|
$1001
L100j
I 110)
I 1111

19.1
14.8
14.4
13.0
89
63

44
4, 1

should be a good indicator of whether or not F(t) is
sensitive to the spin value I for small t, and possibly
for large t,. Using this same argument, it can be seen
from Eq. (20) that the largest change in line shape for
a change in I should come when I is changed from ~ to 1.

Figures 1, 3, 5, 7, 9, 11, 13, 15, 17 aH show that the
difference between the free induction decay shapes for
I= —', and I= 1 is much greater than between I= 1 and
I= ~ . Listed in Table I are the crystal symmetry and
direction of applied magnetic field for the computed

free induction decay shapes. The ranking is from the
least spin-dependent (at the top) to the most spin-
dependent (at the bottom) free-induction decay shape
as determined by visual inspection. The third column
of the table lists the corresponding values of cr which
are in a monotonically decreasing sequence; therefore
the smaller the dependence of F(t) upon I, the larger
the value of (T.

All the calculated free-induction decay curves exhibit
a beat structure, some to such an extent that the corre-
sponding calculated absorption curve is double-peaked.
For the symmetries and field directions where the ab-
sorption curve is double peaked, the peaking is more
pronounced for large I than for I= ~. This is contrary
to the results obtained for two particle systems and
emphasizes the importance of the many particle inter-
action in line shape calculations.

Up to the present time there has not been published
a detailed line-shape measurement or a free-induction
decay measurement for a spin system in which I=-', and
the lattice is not simple cubic, or in which I&-, . The
measurements for I& -', will be complicated by the quad-
rupole moment of the nucleus unless the crysta, l is
extremely strain free.

APPENDIX A: EVALUATION OF Tr{O O„O; exp( —Qt) I,, exp(igt))

Let 0;, 0.„,and 0, be operators for the diRerent particles j, m, and e. The three operators are not necessarily
the same. Let

C ='rrfO O„O, exp( —(it/2k)g BBiIB,Iie)I, , exp((it/2h)P BBilB,Iie)) .
kgl kgl

All the terms in the exponents in Eq. (A1) commute with each other, and

exp((it/2A) Q BBiIB,Ii.)= p exp((it/-26)BBiIB.,Ii,) .
kgl

(A2)

Equation (A1) may be simplified by applying Eq. (A2) and passing all the exponential operators that do not contain
an I,, operator through the I; operator and cancelling them with the corresponding terms having the same
exponent of opposite sign. Then

itI, ,
O'=T 0 0 0;e. p X'B;,1„1;e.p X'B„T„,)6

Treating the exponential operator, operating on I;, as a simple rotation operator

C =Tr{O O„O,LI,, cos((t/A)pB' B,BIk,)+I, sin((t/A)QB' B;BIB,)]) .

(A3)

(A4)

All the traces in this paper can be reduced to this form. Two characteristic examples for the specific evaluation
of 4 are given below.

For 0 =O„=unit operator and O, =I,,
alp= Tr{I,,' cos((t/A)QB' B,&IB,)+I;,I,B sin((t/A)p»' B, I B))B

=Tr, {I,,') Tr, 'fcos((t/A)QB' B,BIB,)) .
(AS)

The second term in Eq. (AS) drops out because Tr{I,Z,„)=0. Tr, { ) represents a trace only over the wave
functions for the jth particle. Tr, '{ ) represents a trace over all wave functions for all the particles except j.Thus.

ztB; kIkz —
~.tB;kIk,

Tr1{I,.') Tr, ' g' exp +II' exp
k Ig lc b

, t' itBjkIk. —itB,kIk,
=2 Tr, {I,,')~ Q'Tr exp +g'TrB exp

h k l (A6)
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Using the result that
Try{It*'}=2 p'=I(I+1)(2I+1)/3}

1

Trp{exp(itB, &I&,lh) }= g exp(it pB,&/h) =sin((2I+1)8,&t/2h)/sin(8, &t/2h), (AS)

Eq. (A6) reduces to sin((2 I+1)8,pt/2 h)
C = (I(I+1)(2I+1)/3)+'—

sin(8, pt/2h)
(A9)

For 0 =I „', O„=unit operator and 0,=I;,
4 =Tr{I„,PLI,,P cos((t/h)g, . B,,Ip,)+I,.I,„sin((t/h)g, B,,I„)]}

&~BjkIkz &IBjkIkz=-', Tr, {I;,'}Tr, ' I,'~ g' exp +g' exp
0 k A. )

( ltBj mImz itB jmIms 'LIBykIkz= —' Tr, {I,,'}
~

Tr I ' exp +exp )
g' Trp exp

A A, I «(jm) $E

Since I,= p(I~+I ),
Tr {(I,'exp(it8, I„,/h)}=-', Tr„,{(1„+'+I+I„+I I ++I ') exp(itB, I,/h)}

Tr„{(I„+I +I I +) exp(itB, I„,/h)}

(A10)

=-,' P (I(I+1)—p') exp(itB, p/h)

}(}+1}s p}}+1}8;,t'/2b} l 0 ' d' 'i}};„)+- — —P exp
2 sin(B, pt!2h) 2 Bjm dt2 e=—~ (g

sin((2I+1)B,pt/2h) cos'(B,pt/2h) (2I+1) cos((2I+1)B,pt/2h) cos(B,pt/2h)
. (A11)

4 sin'(B, kt/2h) 4 sin'(8 ktl2h)

Using the results of Eqs. (A7), (AS), and (A11), 4 reduces to

I(I+1)(2I+1)( B,,pt Bjkt (2I+1)8,&t ) sin((2I+ 1)8!pt/2h)4)=-
i

cot' —(2I+1) cot cot III' . . (A»)
2h 2h i & sin(B, pt/2h)

APPENDIX (8): CALCULATION OF Fp(t)

Using the result Cp ——1, the formula for Fp(t) from Eq. (11) reduces to

Tr{I, exp(igt)I, exp( —iPt) }
Fp(t) =

Tr{I, }
X,N

p Tr{I,, exp((r't/2h) g Bi, I}.I,)Ip exp(( —it/2h) p B}„I„I„)}

Q Tr{I,,Ip, }
(81)

The only nonzero traces in Eq. (B1) are those where j=h. Since all the operators in the exponential commute,
this expression reduces to

p Tr{I;.exp((it/h)I, , Q ' 8, I„)I,, exp(( —it/h)I, , p, ' B,,I, )}j=1
Fp(t)=

N

Q TrI{,,'}
j=l
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Using the results of Appendix A, Eq. (B2) reduces to

sinL(2I+ 1)B,))'/2h]
F,()))= Q —'I(I+1)(2I+1)II' ('I(I-+1)(2I+1)(2I+1).' 'X) '

j=1 sin(B, ),t/2 h)

1 ~ sin((2I+1) B,),t/2h)=, err'
X = (21+)) sin());4/2k))
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The influence of the presence of nonmagnetic impurities upon the anisotropy of the superconducting
energy-gap parameter is considered. Using a factorable BCS-like model for the eRective electron-electron
matrix element, V»'= (1+ai,)V(1+a„'),within the context of an earlier theory by Markowitz and Kada-
noR, it is shown that when impurities are present the wave-vector-dependent gap parameter 6„is replaced
by a complex, wave-vector- and energy-dependent gap parameter A(p, co) =2;(co)+a~ 6 (co). The behavior
of 6;(~) and bo(~) is extensively examined as a function of impurity concentration; it is found, for ex-
ample, that the magnitude of the anisotropic part 6 {cv) of the gap parameter tends to zero in the limit of
large impurity concentration. A model calculation, assuming a rectangular shape for the anisotropy dis-
tribution function P(a), illustrates the behavior for small and moderate impurity concentrations. The
behavior for large impurity concentrations is found to depend, to lowest order, only upon the mean-squared
anisotropy {a'). The behavior of the eRective density of states is also examined; it is shown to become
isotropic as the impurity concentration increases. The precise shape of the effective density of states for
energies near the gap is obtained for the large-impurity-concentration limit. Experimental manifestations
of the reduction of the anisotropy by impurity scattering are briefly discussed.

I. INTRODUCTION

~HE presence of impurities in a superconductor has
an interesting influence upon the e6ects of

anisotropy of the superconducting energy gap. An
important result of the addition of ordinary non-
magnetic chemical or physical impurities is the reduc-
tion —or "washing out" of the anisotropy of the
energy gap. Such a reduction of the anisotropy has been
observed in specific heat, '—' nuclear spin-lattice relaxa-
tion, 4 tunneling, ' infrared absorption, ' and surface re-
sistance experiments. Similarly, the observed initial
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decrease in the transition temperature as small amounts
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