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We present here the calculation of the ultrasonic attenuation coefficient of the transverse waves in the
gapless superconductors, such as type-II superconductors in a high magnetic field. Particular attention
is paid to the electromagnetic absorption term, which is important in the present case, and the result ob-
tained is a simple generalization of that due to Kadanoff and Falko. We discuss ultrasonic attenuation in
type-II superconductors, as well as in a superconducting surface sheath in a field above He,.

1. INTRODUCTION

LTRASONIC-attenuation experiments have been
successfully conducted in the study of the
electronic properties of metals in the superconducting
state. It is quite interesting to study the attenuation in
gapless region where a rather rigorous calculation is
feasible, though there are few experiments' on super-
conductors in the gapless region. (We are concerned
here with the gapless superconductors as discussed by
Kadanoff and Falko? as well as one in type-II super-
conductors in a high-field region.)

The absorption of the ultrasound in type-II super-
conductors has been previously studied by Caroli and
Matricon® and by Cooper et al.* The former authors con-
fine themselves to the field region Ha<H<KH,. and
treat the absorption due to each vortex line semi-
quantitatively, while the latter authors consider the
attenuation of longitudinal wave near the transition
temperature. In both treatments the assumption of in-
finite electronic mean free path (I —) is implicit.

In the present paper we restrict ourselves to the dirty
limit where the electronic mean free path is short. The
method we shall employ here is a simple application of
that used successfully for the calculation of the elec-
tromagnetic conductivity’ and the thermal con-
ductivity® of the type-II superconductors in the high-
field region.

As is well known, the attenuation of the transverse
wave is decomposed into two mechanisms’: the elec-
tromagnetic absorption which is screened out rapidly
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in the superconducting region because of the sudden
appearance of the Meissner effect, and the collision-drag
effect associated with the stress tensor which gives rise
to a slowly varying residual absorption.

In the work of Kadanoff and Falko? the electromag-
netic absorption has been discarded. However, in the
gapless region where the Meissner screening current is
still small, the electromagnetic absorption is by no
means less important than the collision drag effect, it is
necessary to construct a theory, which allows us to in-
clude the effect of the Meissner current in a simple way.
In the next section, the theory is formulated in terms of
a retarded Green’s function where the effect of Meissner
screening is introduced into the formalism by an analogy
with the random-phase approximation applied in the
problem of Coulomb screening.? The retarded Green’s
functions involved are evaluated by using the tech-
niques of a thermal Green’s function in Sec. 3. We ob-
tain the following expression for the attenuation co-
efficient of the transverse wave in the small-frequency
limit:

[1—]—A<r)'2< W)~ (ko) et
a7 2(27rT)2p 2TP 2TP)) |84

+(- g(qz>)[1+ (IA—)—‘:Hﬁp))T, 0

where ¢/(z) and ¢'/(z) are tri-gamma and tetra-gamma

functions, p=a/2rT with o the depairing energy

(=710 /3eH c2 and =0.59/37r,v%H 3 for the Abrikosov

solution and surface sheath, respectively), and g, , and

I are the wave vector of the sound, the frequency of the

sound, and the electronic mean free path, respectively.
Here g(z) is given by

g(z)=3%2"*{—2+(2°+1) arctanz} . (2)

Equation (1) reduces to 1 in the limit A(r) — 0, as it
should. The first term in Eq. (1) may be called the
collision-drag term which is equivalent to the one ob-
tained by Kadanoff and Falko for superconductors con-
taining magnetic impurities.

In Sec. 4 we discuss the application of the above re-
sults for type-II superconductors in the gapless region as
well as in the superconducting surface sheath.
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2. ATTENUATION COEFFICIENT OF
TRANSVERSE WAVE

Following Tsuneto® we shall describe the interaction
between the imposed sound wave and the conduction
electrons in metal by the Hamiltonian (in the moving
system with sound wave)

.K’1=/(1’3r¢(r,/){fwmj(r,/)—i‘:(r,/)-q} , (3)

where the current operator, stress-tensor operator, and
displacement field are given as

ji(l’,l’) = Z {((V_ V’)i,’vv2im)¢f(r,:l)¢(r>[)} ’ (4)

spin

(V—V"), (V—V’

LRI

() =2
spin 1 2im
and
$(r,)= g(q,w)ers et (6)
respectively.

The attenuation coefficient for the transverse wave is
expressed in terms of the retarded Green’s function,®?

al= RC{ (w2/iwpion1's)<[h1 T)hITJ>(q)w)} ) (7)
where
" (1,0) = (g/ ) T2a(t,) —mja(r,1). ©)

Here we take the direction of ¢ as the z axis. The re-
tarded product is defined as usual by

<[A,B]>(q,w)=% /_ ar / &

Xexpliw({—1')—iq- (r—r')]
X{LA@),B(r',)]). (9)

We note here that the above product should be taken
on the system where the Hamiltonian contains the
current-current interaction term (see Appendix)

e

Although, in the usual situation, this term gives rise
only to a relativistic correction to the Coulomb inter-
action, in the present case, because of the small mo-
mentum, this term ¢ is no longer negligible. We can in-
clude this effect using a similar procedure to the one

@i /)

(10)
[r—r'|

8 T. Tsuneto, Phys. Rev. 121, 402 (1961).
® T. Tsuneto, Rutgers, the State University, 1964 (unpublished).
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used by Kadanoff and Falko in the problem of Coulomb
screening. We arrive at the results

<[A }B]>(q7w) = ([‘1 )B:]y(q,w)
X([ 1,71 (qw)dmre’ ([ 7, B]) (q,»)
1—dre*q*[f. 7)) (q)

where (---) indicates the average over the fictitious
system without current-current interaction. In the
derivation of the above equation we have assumed

<[A JJ)'(‘];‘O) =0 )
([B,j:]) (aw)=0,

Thus we can rewrite Eq. (7) in terms of expectation
values in the fictitious system as

, (11)

for i=%x. (12)

9

__“___[<[/,,T 7" ()

prl Il

a’=Re

N Sl:fll7"_]'[]>/(q,w)4W32q*2<[]._z,/lIT:|>/(q,w)}I 13)

1—47F82(]"2<[jzyjr:|>/(q;w) I .

In the limit of small frequency (w<KAo) the above equa-
tion reduces to

2

u:rae] <<[T::,nz]>’(q,w)

I'wpinnTs
Loz =) (@@)?|
-—), (19

Ciericd) (@) > |

where we made use of Eq. (8) and

(720, 7= D(0,0) = [ Jzy T2 )@ w) . (15)

3. CALCULATION OF RETARDED PRODUCTS

Following the usual convention we shall calculate the
above retarded products by analytical continuation of
thermal products. Furthermore, since we are interested
here in the gapless region we expand thermal products
in powers of A(r). Since the calculation is a simple repeti-
tion of the one used in the case of electromagnetic con-

™ A Iy "
I A .
Fic. 1. The diagrams - A B n
which give rise to the con-
tribution of the terms of
order |A|2 A
3
Iy
cf'
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ductivity,® we leave out the details and we have

<[sz,sz]>'((1,%
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where g(lg) is defined in Eq. (2) and v=p/m, o' =w—w, and &= p?/2m—p.
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Here we introduce the effect of impurity scattering by renormalizations’® w — d=wna, Ag—> Ai=140q [A, is
the Fourier transform of A(r)] where

no=(1+1/27]w|), 19)

Nqw={1—(1/27]&|)(1—j77u2%¢)}?, (20)
and 7, 7 are the collision lifetime and the transport lifetime of electrons. Furthermore, we set 74v°¢*/6=a by

making use of the relation’®
(T0%g%/6)A(r) =aA(r). (21)

The parameter p=a/27T, and ¥(z), ¥'(z) are the di-gamma and tri-gamma functions. We also note here that all
three of the diagrams given in Fig. 1 contribute to ([72,722]) and {[jz,j]), while only A and B contribute to
(Cra2,420)-

After putting w, — iw we substitute the above expressions for the products in Eq. (14) and we obtain the general
expressions for the attenuation coefficient at arbitrary frequency.

In the following we shall confine ourselves to the case of low-frequency limit (w<#Te), which is the usual
situation met in experiments. In this limit, Egs. (16), (17), and (18) reduce to (we have already performed analytical

and

continuation)

([7as 721 (g:0) = (po*/379) (@) (1 — g(g1)ico{1— (| A() |/ 2Q2x )N~ G +p) =¥ (3 +0))}

([T22,j=)(gw) = — (po*/3mg) (1 —g(g)))w,

G G+o)+3¢ G+ a)——

(22)
(23)

12/A 2
|46)) ¢'<%+p>}. (24)

1w w1

[A(r)]*
2, J2))(g:0) = (po*/37q) (qD)g(gh)iw{ 1—
(Li=i=dgw)=(po g(q 2o T):
Finally we get the attenuation coefficient for the transverse wave
po ( [A(r)|?
al= (1—g(gNi1—
Pion?s 8 e 1 2(27FT)2

The first term in the bracket may be interpreted as the
collision drag term previously calculated by Kadanoff
and Falko? while the second term drops off rapidly in
the superconducting region because of the sudden
appearance of the Meissner effect. It is easily seen that
the above expression gives a correct result for the normal
state in the limit A(r) — 0.

We note here that in an inhomogeneous supercon-
ductor where A(r) is not constant there is a term which
scatters the sound wave of momentum q to q'=q-+k,
where k is the characteristic momentum of Abrikosov’s
structure. However, it is shown that such a term is only
a small correction of the order of 7T¢. Thus we con-
clude that in the field region close to the upper critical
field in the dirty limit, the measurement of the trans-
verse sound attenuation does not give the detailed con-
figuration of Abrikosov’s structure but the amplitude
of A(r).

4., ULTRASOUND ATTENUATION IN SUPER-
CONDUCTORS IN HIGH FIELDS

In this section we shall discuss the attenuation of the
sound wave in type-II superconductors in a high-field

10 K, Maki, Physics 1, 21 (1964). [Note that the temperature
dependence of «»(¢) is in error. The corrected x.(!) behaves almost
identically to i (¢); see C. Caroli, M. Cyrot, and P. G. de Gennes,
Solid State Commun. 4, 17 (1966).]

xT

1 A 2 2——1
vty )+ 0] (o '¢'(%+p>)] | e

region (Ho<H ., where H, is the external field) and in
the superconducting surface sheath where in both cases
the order parameter is small.

(a) Abrikosov’s state in a gapless region. We shall con-
sider the situation where the attenuation coefficient is
measured through a bulk type-II superconductor in a
gapless region. In this case the experimentally measura-
ble attenuation coefficient is

[ (AWM

o /anT=| 1 _1 /_21’_ _ //%
/ oo = e e

1
" 1—g(qh), (26
<1+(1/¢‘,2)((| A() |2/ T/ (b +p))2>( g(gh)), (26)

where (4 )sv means a space average of 4.
In the present situation the above average is safely
replaced by

([A@)[*)av

a,T/a,T= I:l —
202xT)?

(p—lw'<%+p>—w"<%+p>)]g<ql>

+(1—g(qz)>[1+wi(QA—(f)Tl—2>4“¢'(%+p>)2]_l, (27)

2
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where p=r,1%H 2/6rT, and (| A(r)|2av is given'® by

el (He—H,)
— W G+e) 7,
o (2 ()—1)8

B8=1.16 and o= 7¢2N/m the conductivity of the metal
in the normal state.

Making use of Eq. (28), we can further simplify the
second term in Eq. (27) as

i A(r) l Day= (28)

aal =(1- g(ql))[ 252( fg;%@ﬁ )T

=(1 —g(ql))[l—}-;E(-ig)z]~l )

where M is the magnetization.

(b) Superconducting surface sheath. Another inter-
esting application of Eq. (25) is to the superconducting
surface sheath region of Saint-James and de Gennes.
In order to simplify the situation, we consider the film
of thickness d [> (£0)!/2] is in a parallel field larger than
H . Both edges of this film remain still in the supercon-
ducting state. In this case if we measure the attenuation
coefficient through the film, then Eq. (26) is applicable.
We set here p=0.597v%H 3/6nT, where H.s is the
critical field of Saint-James and de Gennes and the nor-
malization of (|A(r)|2)a can be obtained from the
general Ginzburg-Landau equation!® as

2 T el
(AM@[Hav=" (| ————
d N1.18¢H .3 o

(Hc3_ )
X
(2x22(1)—3.12)

(29)

W'G+et, (30)

where we made use of the result due to Abrikosov!! on
the normalization of a surface sheath.

In the present situation we cannot approximate the
second term in Eq. (26) by a more simple average and it
requires a detailed knowledge of the function A(r) all
over the space to evaluate this term.

T T T T

1(z)

0.6
F1G. 2. Plot of f(z).

0.2 -

KAZUMI

MAKI 148

If H, the external field is close to H 3, we can approxi-
mate A(r) by a Gaussian function,!*!? and we can
estimate the field dependence of the second term:

raCrva) T,

2 0.59eHc3d/2
= — [ dx(1+432%%*)"!

0.59¢H .3d
2
=1- f (=), (31)
0.59¢H .3d
where
f(z)= / dx(z72="+1)1, (32)
and '
\/ZET (Hca— H())
| W] 69
we (2x22(1)—3.12)

f(2) is numerically calculated and drawn in Fig. 2.

5. CONCLUDING REMARKS

In the section above we have calculated the attenua-
tion coefficient of the transverse wave in gapless super-
conductors. It is shown that the measurement of the
attenuation of the transverse wave serves not only to
determine the critical field (H.; and/or H ), but also to
find the amplitude of A(r) in the gapless region.
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APPENDIX

We shall discuss here how to incorporate the effect of
current-current interaction which is important in the
present problem. There is a close similarity between the
present problem and the problem of Coulomb screening
which is discussed by Kadanoff and Falko.?

The current-current interaction is described by a

Hamiltonian
J( t)J(r t)
/ / drdsy

where j(r) is the current operator.

1A, A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 47, 720 (1964)
(English transl.: Soviet Phys.—JETP 20, 480 (1965)]; see also
M. J. Zuckerman, Phys. Letters 13, 277 (1964)

12 M. Tinkham, report at the Conference on Type-II Super-
conductivity, Cleveland Ohio, 1964 (unpublished).
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In the spirit of the random-phase approximation we
can set up the equations for the retarded correlation
function?

TRANSVERSE ULTRASONIC ATTENUATION
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and the fictitious system, respectively. We assumed
here that ({4,7:])=0 ([B,ji])=0 for iz for sim-
plicity. Solving the above equations we have

([4,B])(q,w)=([4,B]) (q,w)+{[4,]=]) (aw) o B ([J=J=1) (@) (Ad)
X4182T2<[jzaB]>(Q7w) , (A1) ([j,,],])(q,w) - 1—41r62q'2([j1,j2])’(q,w) ’
{{j=B)(gw)= <[]',,B:|>'(q,w)+([j,,j:,:])'(qw) ([j,,B])'(q,w) )
Xarerq X[ j,B])(qw), (A2) {[jsB))(qw)= —— , (A3)
d 1—dmre’q X[ 2,7:1)"(q,@)
i Dlaar=ing- 00 e
Jmje)(@w)={Lj=j:1) (e )
X {14+4me*q [ 2,7 )(qw)}, (A3) ([4,B])(qw)= ([4,B]) (g,»)
where (---) and (---)’ are the retarded products over ([4,5=0 @it (LB (@) . (A6)
the real system (containing current-current interaction) 1—4req %[ f.,521) (qw)
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The nature of the local-equilibrium approximation employed in our previous work is examined with the
use of the correlation-function expression for the general frequency-dependent transport coefficient for
systems described by master equations. The transport coefficient is found to be a nondecreasing function of
frequency which in the high-frequency limit reduces to the transport coefficient calculated in the local-
equilibrium approximation. Thus the local-equilibrium approximation provides an upper bound to the
zero-frequency transport coefficient. For the case of spin diffusion, combined with the result of our previous
work, this limit implies that the diffusion constant must vanish at least as fast as the inverse of the magnetic

susceptibility near the Curie point, which establishes the existence of the critical slowing down for our

model of spin diffusion.

1. INTRODUCTION

N our earlier work of the same title,! we have studied
the diffusion constant near the critical point for
time-dependent Ising models which are described by
appropriate master equations. The sole approximation
in that treatment of the model system is that at each
instant of time the reduced probability distribution
function for spin configurations is replaced by its value
in local thermal equilibrium with given inhomogeneous
average spin density at that time. Within the limitation
of this approximation, the dynamics of the problem is
completely separated from the complicated statistics of
the Ising spin problem. Thus it is natural to investigate
the validity of this approximation, which is our main
concern in this paper.

* A portion of this work was supported by the National Science
Foundation.
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Harwell, Didcot, England. Permanent address (after November
1966) : Department of Physics, Kyushu University, Fukuoka,
Japan.

1 K. Kawasaki, Phys. Rev. 145, 224 (1966). Hereafter referred
to as I. Equations in I are cited, for instance, as T (2.11).

Since the question raised here is not restricted to the
diffusion process, we shall treat the more general
problem of transport coefficients for systems described
by master equations, restricting ourselves to cases in
which only one macroscopic variable is involved in the
transport process. The main result of this investigation
is that the transport coefficient calculated in the local
equilibrium approximation provides a rigorous upper
bound to the true transport coefficient. For the case
of spin diffusion, combined with the result of I, the
existence of critical slowing down is thus rigorously
established for the model of I.

Our argument proceeds with the use of the correlation
function expression for the transport coefficient, which
in turn is expressed in terms of the transition probability
appearing in the master equation (Sec. 1). Then
we obtain a spectral representation of the general
frequency-dependent transport coefficient by making
use of eigenfunctions of the symmetrized master
equation. The transport coefficient is then found to be
a nondecreasing function of frequency; we identify the
high-frequency limit of this transport coefficient with



