
I' I-I Y S I C A I. R E V I E SV VOI. UME i48, NUMBER AUGUS I l 96'

Effect of Pauli Paramagnetism on Magnetic Proyerties of
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Ke study the magnetic properties of type-II superconductivity having a large Pauli term. Firstly we
restrict ourselves to the case where the spin-orbit scattering is absent. In this case the transition changes
at low temperatures from second to first order for a =3p/vt, v'e& 1, where p, , 7-t„and v are the Bohr magneton,
the transport collision time, and the Fermi velocity, respectively. This involves a revised calculation of the
parameter ~2(t), which appears in the expression for the magnetization. The calculation of g2(t) in an earlier
paper on this subject by the author was incorrect, as was recently point out by de Gennes and co-workers.
Secondly, we extend the theory to include the effect of spin-orbit scattering, which may be important in the
materials usually considered. In particular, we obtain explicitly expressions for the parameters a&(t) and
~2(t) in the limit of short spin-orbital mean free path, where a1(t) =LI',2(t)/AH, (t), and H,2(t), H. (t) are the
upper critical field and the thermodynamical critical field, respectively. It is shown that in this limit the
transition is always second order, independent of temperature.

I. INTRODUCTION

"N his classic paper, Abrikosov' showed that the mag-
netic properties of type-II superconductivity are

quite di6erent from that of ordinary superconductivity
(now called type I). The magnetic Geld begins to pene-
trate into the bulk at the field H =H, q (the lower critical
Geld) and a mixed state appears in which the magnetic
faux threads the bulk in the form of quantized vortex
lines. Only at H, 2 (the upper critical field) is super-
conductivity finally suppressed. Abrikosov's work, how-
ever, was based on the Ginzburg-Landau theory, which
is only valid in a narrow temperature region close to the
transition temperature. ' Recent theoretical studies'
have mainly focused on a generalization of Abrikosov's
theory to all temperatures.

In certain alloys or compound systems it is known
that Abrikosov's expression' for H, 2',

H,2'= v2~H„

gives an enormously large value of H.2, since ~ is of the
order of 50—100. Here ~ is the Ginzburg-Landau param-
eter and H, is the thermodynamical critical Geld. In
such a situation it was suggested by several people4
that the Pauli susceptibility energy might play an im-
portant role in suppressing the superconducting state.
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Research, under Grant No. AF-AFOSR-610-64.
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4 B. S. Chandrasekhar, Appl. Phys. Letters 1, 7 (1962); A. M.
Clogston, Phys. Rev. Letters 9, 266 (1962); see also H. Suhl,
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The eGect of the Pauli terms at finite temperature was
studied in detail by Sarma5 and by Maki and Tsuneto. '
The generalized Ginzburg-Landau equations containing
the term due to the Pauli susceptibility have been given
by the author. ~ Unfortunately, the author's original
theory' of type-II superconductivity contained some
serious algebraic errors, as Caroli, Cyrot, and de
Gennes' have recently noted. As a result, it is necessary
to revise certain calculations given in Ref. 7.

The purpose of the present paper is twofold. Firstly,
we present a corrected version of our theory of type-II
superconductivity having a large Pauli paramagnetism.
Secondly, we extend this theory to include the e6ect
of the spin-orbit scattering, which may be important in
some materials. The data" on H, & accumulated recently
seem to indicate that the eGect of the spin-orbit inter-
action is appreciable.

In the following we shall Grst discuss the e6ect of the
Pauli term in the absence of spin orbit scattering due
to impurities. The two parameters a&(t) and aa(t) are
defined by

H, g(t) =u2~&(/)H, (t),
4s (M, M—„)= (H—,. Ho)/(2~g'(t) 1—)Pg (3)—

where M, and M„are the magnetization of the super-
conducting state and the normal state, respectively
(M„WO, due to Pauli paramagnetism). The corrected
calculation shows that transition changes from second
to Grst order if a =H,2'/vs~ —1, where H, 2' is the upper
critical field in the absence of the Pauli term and
H~=hoo/&2p=18400 T„ the critical field due to the

' G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).'K. Maki and T. Tsuneto, Progv. Theoret. Phys. {Kyoto) 31,
945 (1964).' K. Maki, Physics 1, 127 (1964).' K. Maki, Physics 1, 21 (1964).

9 C. Caroli, M. Cyrot, and P. G. de Gennes, Solid State Com-
mun. 4, 17 {1966).' T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140
(1963); Y. B. Kim, C. F. Hemstead, and A. R. Strnad, ibid.
139, A1163 (1965); Y. Shapira and L. J. Neuringer, ibid. 140,
A1638 (1965); R. R. Hake, Phys. Rev. Letters 22, 865 (1965).
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Pauli term alone. Experimentally, the predicted change
of the order of the transition has not been observed"
even for superconductors having a comparatively
large 0.~1 5. This may be due to the presence of
strong spin-orbit scattering.

The generalization needed to include spin-orbit scat-
tering due to impurity atoms or to dislocations is carried
out in Secs. III and IV. %hen this scattering is strong,
we 6nd that the transition is always second order. In
addition, the temperature dependence of xi(&) and x (i)
are calculated numerically.

II. GENERALIZED GINSBURG-LANDAU
EQUATIONS CONTAINING THE

PAULI TERM

In this section we would like to briefly recapitulate
our previous work on the magnetic properties of type-II
superconductors having a large Pauli term. As discussed
in the introduction, the Pauli term becomes large

generally in type-II superconductors having a large I(

parameter. This will serve to give the general back-
ground of the theory. The eGect of the Pauli paramag-
netism as well as the diamagnetic current is described

by the following Hamiltonian

1
aC = —— (iV +eA) Pi'(i V eA—)Pd'r

2nl

+p

P&(oH)cedar,

(4)

where A, H, p, and e are the vector potential, the mag-
netic field, the Bohr magneton and the Pauli spin
matrix, respectively.

Since we are interested in the properties of super-
conductors in 6elds 8 slightly smaller than the upper
critical field, we expect that the order parameter A(r)
is still small. In the absence of impurity scattering we
obtain by expanding Gor'kov's equation in powers of 6,'

Ai(r)= lg~RQ —', Tr G '(r', r)G „(r',r)Di(r') d'r' —lglTQ isTr G '(s, r)
n n

XG (s,l)G '(m, l)G „'(m,s)At(s)h(1)ht(m) d's d'I dam,

where G '(r, r') is the Green's function of an electron in a normal metal:

d3
G„'(r,r') =exp ie e'&" "'(ice' p(aH) —&)-', —

(2ir)'

and )=P-'/2m —p. Here we have taken account of the magnetic field by a change of phase (that is, in the classical
approximation).

On the other hand, the current is given by

j,s(r) = (~, &, +2—eiA(r))T P -', Tr
2&i n

G„'(r,s)G „(I,s)G„'(I,r')A(s)hi(l)d'sd'I

iV, xpT P -', Tr—eG„(r,s)G '(I, s)G (l,r')A(s)ht(I)d'sd'l, (7)

where the 6rst term is due to diamagnetic current and the second term is due to the diGerence between the para-
magnetic current associated with the electron spins in the normal and the superconducting state.

The effect of the impurity scattering can be taken into account by the standard renormalization procedures. In
the absence of the spin-orbit scattering, mixing between the spin-up state and spin-down state does not occur, and
the necessary renormalization is given by the replacement

COn by COn = (drsg~ ~ arid Dq bg Aq = 'Qt„. @AD ~

where

&„=(I+I/2rl~l),

s„,= (1—(1/2rlid, ~)(1——,'rr„v'q'} '
(8)

Here r, 7&„and v are the collision lifetime, the transport lifetime of electron, and the Fermi velocity, respectively.
Thus in the present case, we arrive at

T 1 Q
ln +Ref —+ —P(~) LV(r)

Tg0 2 2&T

1 ipH v t,v' 4

+ Re P n+ —',,+ + ((p —p )'+ (p —p )"-) g X„; ' Dt(1)h(2)h'(3) '. . . , ,=0, (9)8(ir T) .=o 2z.T 48vr T
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an(.l

j,(r)= —— (iV i iV—2+4eA(r)) Re{g g X„; '}&t(1)&(2)~» „
4mmT n~0 i~1

VX[1m{P g X; '}~A(r)~ ], (10)
2%Plv T n=0 i=1

where

Q, = 6irzzv'(iv; 2e(—1)'—A)'+ipH(i),
11

p;=i V; 2e—( 1)—'A (i), X„,=rt+ I+Q,/2rrT.

(12)j(r) =j,(r)—(3$tz'/2mvm) V XH(r) .

Using Eq. (9) the upper critical field is given as a
solution of a transcendental equation, '

Here Re, Im indicate the real and the imaginary part of
the function in the bracket, P(s) is the digamma func-
tion, and E is the density of electrons.

We note that the term [(yi—yz)'+(p2 —p4)'] in Eq.
(9) was missing in the author's original discussion, ' as
was recently pointed out by Caroli, Cryot, and de
Gennes. ' Their calculations indicate that the tempera-
ture dependence of the «2(t) parameter is almost identi-
cal to that of «i(t) in the dirty superconductors without
the Pauli term. In our original (incorrect) calculation,
the temperature dependence of «2(t) was quite different
from «i(t). The correction of this error removes one of
the major convicts between experiment and theory.

We should also mention that in the 6elds with which
we are concerned, the paramagnetic current in the
normal state is not negligible and the total current is
given by

Using the expressions for H,~(t), we have

IC 1 2(x= 1.20-- 1—1.05--
(1+n') '" 1+n'

for t«1, (17)

28{(3) 31{(5)
1+ (1—n') — 8

x' 98$'(3)

=«(1+(0.119—0.346n~) tt), for l~1.

We have made use of the expressions

H, (t) = Aoo(2rrtPO/zr)'"(1 ——,'y't'), for t«1,
= H.(o)7(8/7{ (3))"'tt

(18)

(19)

and

1 31{.(5)
X 1——— 8, for t 1, (20)

2 98{2(3)

KZ' tt' 1—2o.'
«i(t) = (1+n'-) 't'~ 1—-'&'t'

2(14$(3))'" 4 1+n'

T 1 7't,V eH, 2 7 pH, 2
ln -- +Re/ —+ + —f(-,') =0. (13)

Tco 2 6m T 2~T

3m 2' m

7{(3)
2x'e7.„P0' (21)

The asymptotic solutions are

3~00 Q
H„(t)= (1+n') "' 1—-'p't'

2eTtgv 1+&

for t«1, (14)

0 1—8 —— 1—n'

Following Abrikosov' ' we can calculate the free
energy of the mixed state, with the result

1
— (H, 2

—8)'
F,—F„=——B2+-

Sir (2«2'(t) —1)it~+1
(22)

where 8= (H(r)),„ is the magnetic induction and
P&=1.16. «2(t) is given by

for t & 1, (15)

where 0=1 t, t= T/T, o and —y=1.78. The parameter
o, is defined by

n=3p/er„v2= v2H, ''(0)/H, p,
where H, z'(0) is the upper critical field at t=0 in the
absence of the Pauli term and H, r =Boo/42p.

It is convenient to introduce in this connection a new
parameter «i(t), which is defined by

where

3m fi(p) ) "'
«, (t) = —

~
(er vg(pzz))

'
8zrtV 2

1
g(p)=Re g(1+in)

(m+2+ p)'

fi(p) = Re P"=' (~+l+p)'

(23)

(24)

H„(t) =v2«, (t)H, (t). (16) and p= (rzzv'/6zrT)eH„(1+in).
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For some limiting cases we note

(1—n') "' (1—14n'+ct')
Ko(t) = ——1—37' /2

2(14|(3))'" 1+n' 1—n4

Fzo. 2. The function
$„(q;) is given by the sum
of the contributions from
the above diagrams. 4 3 4 3 4 3

(]—n') 't'( (1—14n'+n )
=1.20K

I
1—2.10

1+no I, 1—n4

for t«1, (26)

r56f (3) 4&t (4) )
=K 1+I (1—n')—

~c 7~'f (3)&

=K(1+(0 l06. . 0 —692.n') 8), fOr t 1. (27)

and

—4v M = (H.o
—Ho)/1 16(2Ko'(t) —1),

1 (aH, 2
'

gC, =—
I

1.16(2Kp (t) —1).
4vk ar

(28)

(29)

Here M is the difference of the magnetization in the
superconducting and the normal state.

III. EFFECT OF SPIN-ORBITAI. SCATTERING

It is well known that spin-orbital scattering plays
a crucial role in the phenomena which involve the
Pauli terms such as the Knight shift in supercon-
ductivity and the coexistence of ferromagnetism and
superconductivity.

In the preceding section we noticed that there are ex-
perimental indications that spin-orbital scattering might
also be important in the magnetic properties of high-
field superconductors. We shall consider here the eHect
of spin-orbital scattering due to impurity atoms and/or
dislocations on the upper critical field as well as the
magnetization of type-II superconductors having a large
Pauli term. The impurity-averaging technique necessary

FIG. 1. The self-consistent equations for the renormalized
vertex Lsee Eq. (33)j.Note that the renormalized vertex has two
components Z+ and 5 .

leyte remark that K&(t)) 0 for n-'& 1 and Ko(t) vanishes at
0, =1 at T=O K, which indicates that the transition is
first order for a&1 at low temperature. Incidentally,
LclH, &(t)/ctt)I, p becomes negative for n&1, implying
that H, o(t) is a monotonic function of temperature as
long as the transition is of the second order. This con-

trasts sharply with the previous incorrect results of the
author. ~

No experimental evidence has been found for this
change of order of the transition, which probably indi-

cates the importance of spin-orbital scattering neglected
so far.

The magnetization as well as the jump of the specific
heat at the transition are given by

1 nmpp
dQI V„(8) I

o sin'9,
iso 27/

(32)

n being the density of impurity atoms. Secondly, we
need to consider the vertex renormalization. Solving
the integral equation for the superconducting order
parameter (which is shown diagrammatically in Fig. 1),

Z~, =A,+(2rco~) '(1—-'rpr„vq')I& p

+ (3r,.co~) '(1 err„v'q') Z—W p, (33)

where co+=oo~itcH, Ico~I = IcoI &itcH, and 4p is the
Fourier transform of the order parameter, we have

(34)
where

(cort&iI) (cd&iI+a+ b)

((co+a) ' b'+I')—

I=IJH, a=
1 V sf e2

+ q' and b=
3r„ 6 3T"

In the derivation of Eq. (33), we have assumed rt4«&1,
(the dirty limit) and" r/r„«1 where hpp is the B.C.S.
order parameter at T=O'K. Using the above results it
is not diS.cult to write down the generalized Ginzburg-

"A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor.
Fiz. 42, 1088 (1962) LEnglish transl. : Soviet Phys. —JETP 15,
752 (1962)j."This condition is discussed in great detail in a recent report by
N. R. %'erthamer, E.Helfand and P. C. Hohenberg, where they
obtained independently the equation equivalent to Eq. (41);Phys.
Rev. 147, 295 (1966).

for present study has already been discussed in great
detail by Abrikosov and Gor'kov. "We assume that the
interaction between a conduction electron and an im-

purity atom is given by a potential

V(p, p') = V (I p—p'I)+iV, (1/po')I pXp'j cr, (30)

where p and y' are momenta of incoming and outgoing
electrons, respectively. The second term gives rise to
spin-orbital scattering.

The e6ect of impurity scattering on the conduction
electrons is taken into account by the following re-
normalizations. ' First, the frequency ao in Green's func-
tions should be replaced by co=cog„where p„ is already
given in Eq. (8). Here 1/r is given by

1/r =1/rg+1/r. ..
where

1 nmpp
dnI V,(e)Io,

2'
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Landau equations

T 1 b 1 b
+ — 1+- k(z+p-)+- 1—— — 4(5+p+) —k(o) ~"(r)

T,o 2 (bo—Io)z&z 2 (bo —Io)izo

1
+ Q &..(q;)6'(1)D(2)&'(3) j g=o=o=, =O, (36)

8(zrT)' ~-o

1.(r) =—crt, l' oo i 1+ —a+ b
(iV i i~z+—4eA(r)) Re Q ~'(1)~(2)li=z=.

4mmT ~-o (oi+a)' b'+—Ioj
3', ~ co—iI+a+b

vX Im P l~(r)l', (37)
2vznvzT n-o ((a+a)z —bz+Io

where

p~=(1/2 T)( ~(b' —I')'"). (38)

In Eq. (32) we have set. '

a = 1/3r„+.o r r„v'eH, z, (39)

since we are interested in the type-II superconductivity
in a magnetic field close to H, 2.

The function P (q,) in Eq. (36) is obtained from the
diagrams given in Fig. 2. After a somewhat lengthy
calculation we have (see Appendix A)

~—iIja+b
F (q,)=(2v.T)' Re-

(oi+a) '—b'+ I'
(oi+a+ b) '+I'—2J'b (4O)

[(~+a)z b2+ 2I)4

Here a is also given by Eq. (39).
The above set of equations completely determines the

magnetic properties of the system provided A(r) is
small.

The upper critical field is obtained from

T 1- b+- 1+ lk(o+ p-)
T 2 (bo Io) izoj

b
+ 1— 2+p+ —

2 =0 41
(b2 I2) 1lz

and

a'= (1/2zrT) f or„v'eH, o+ 1/3z „),
b'= 1/6vr„T and I. '= tzH, o/2zrT

(46)

We note that in the limit 1/zrr„T«1, the above ex-
pressions reduce to those given in Sec. II.

IV. STRONG SPIN-ORBITAL-SCATTERING LIMIT

Using the expressions in the preceding section, we can
discuss quite generally the magnetic properties of super-
conducting alloys having a large Pauli term. However,
in the following we shall restrict our consideration to the
short spin-orbital mean-free-path limit (r,Aoo((1),
where the expressions involved simplify remarkably.

The upper critical field is given by (in the above-
mentioned limit)

»t+4 (l+P)—4 (') =o,
where t= T/T„and

p= (1/2zrT)(orz, v eH, z+sr«(tzH, o) ).

(47)

(48)

n+-,' —jI'+ 0,'+b'
fi(p, b)=«Z

n+-'+ a' '—b"+I"
(n+ ,'+a'+b-')'+I"—21'zb'-, (45)

[(n+ i+a )o b 2+I 2)4

where

where b, I, and p~ have been already defined, and u is
given by Eq. (39).

The free-energy difference is expressed as

1 (II,z—8)'
F,—F„=——8'+

Szr (2xo'(t) —1)Pg+1

Equation (48) may be solved for H,o(t), with the result

H 2(t) = (3Iioo/r&, v'e)P 'zb(t), (49)
where

(42) ~(t) =4vt3'tp/[I+(I+4~t3'tp)' '), (»)
P = (3p/rz s'e)(3r, Aoo)'z' and y = 1.78. (51)

(43) Alternatively, we can express H,o(t) in terms of H, o'

(the upper critical field in the absence of the Pauli
term) by

where
xo(t) =(3znfi(p, b)/8v1I)"'(erz, vg(pb)) '

Here g(p, b) and fi(p, b) are given by

2H.o'(t)
H„(t) = (52)1+[1+(12r„ /rtz, „e)Hv, o'(t)) 'z'

n+ ~~ —iI'+ a'+b'
g(p, b)=Re P(1+in)l — —,(44)

5 (zz+ ', +a')' b"+I"-—
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2 2 t

//, (t) = 1——
2(14//3))'~'1+()+P ) I 3 /)+)) ) i )

ce

=(1+4(t))E-~ (»+I+p)'2
1—1.05

1+(1+P')"'= 1.20K and

3r..(tLH. g)
'

Oo

(53) f (»b)= ~, +,+ 47rT (»+-', +p) 4

The asymptotic forms of //&(t)=H, &(t)/NP, (t) in the The expressions for g(p, b) and f&(p,b) simplify to
present case are given by

9Tsop 00

g/~))=()+ &. (0 Z
r& w'e -o (»+ ,'+-p)'

(55)

2gf (3) 31'(5) 27
=K 1— ps lg

~4 9gf~(3) ~~ i

=g(1+(0.119—0.361P )e), for t~1.

~J
=o l (»+-,'+p)' 4''t (»+-,'+ p)'

(54) respectively.

Substituting the above expressions in Eq. (43) we can calculate //&(t). The asymptotic forms of //s(t) are given by

KZ'

xg(t) =
2(1% (3))"'

(2+2(l +P2) )/2y1P2 4~2t2 l 2+2(1+P2) )/2 1P2 & (P2/(1+P2) 1/2)jj )/2

(1+P')"'0+(1+P')"')(1—v'P't'/3(1+P'))

56 45$(4) 4y
=K 1+ —f'(3)— p' &——

7~'f (3)

=K(1+(0.106—0.722P')0), for t~1 .

(2+2(1/P2))/2+1P2))/'&—1.20K (1—QP) for t«1, (57)
(1+P') '"(1+(1+P') '")

(5S)

The temperature dependence of //~(t) and x~(t) has been
numerically calculated and the results are presented in
Figs. 3 and 4. We see from the above expressions that
xq(t) never vanishes and conclude that in the present
limit (r„hoo((1) the transition is always of second order,
since in the material of interest, K is always larger than 1.

We further note that the relation

1 & //~(0)/„&(0) = (2+2(1+P~) '/'+ ~P~)» '/
2(i+P')'"&1/2v3 (59)

holds. x&(0) is generally smaller than x&(0) if there is an
appreciable eGect of the Pauli term independently of
the value of v„b,pp. For example, in the other limit
7.„b,pp&)1, we have

density of state is given by"

$(r,co) =X(0)(1—P &(r) l
'(I', '—ra')/(~'+ I', ')') (61)

where F,=2+Tp(t) and p(t) is given by Eq. (42). The
normalization of

l h(r) l

' is given by'

eT H, 2
—Hp

(l ~(r)
l

')-=— (g(p»)) ', (62)
o (2//g'(t) —1)P.g

where 0 is the conductivity in the normal state.

x~(0)///~(0) = ((1—~~)/(1+~~))'/~ (60)

We note also that in the present limit the tunneling

t2

FIG. 4. Numerical
results for the tem-
perature dependence
of gg/» for P~ =0,
0.5, 1, 1.5, 2, 2.5, 3.

Fro. 3. Numerical
results for the tem-
perature dependence
of ~1/~ for p'=0,
0.5, 1, 1.5, 2, 2.5, 3.
See Eq. (51) for the
de6nition of p~.

IO

0.8

2 .4
P =l. Q

2.0
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"P. G. de Gennes, Physik Kondensierten Materie 3, 79 (19~).
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V. CONCLUDING REMAM 8
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THE CALCULATION OF F (q,APPENDIX A: THE

f Fi . 2 (we denote it as A) is given byThe contribution from t
'

ghe dia ram A o ig.
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Summing up the above contributions we hnally have

2mpo 4 1 re~
A+a~C= P (g &~„.) ~~+ ((q,—qq) + (qq —q.) )

2qrq + c-c (2cq~) 4 24

2
(U+qcU+qqUpq'Wpqc+U+qcapqqapqmn+qc) & (A4)

37." (2~+)'(2~-)'

and the 5: (q,) are given as
F (q;) = (rr'/rrcpp)(rrT)'$A+I3+C]. (A5)

APPENDIX 3: THE KNIGHT SHIFT IN TYPE-II SUPERCONDUCTORS

The current due to the spin paramagnetism of electrons in the superconducting state [the second term in Eq.
(37)] can be rewritten as

j,(r) ~„; = VX(M, (r)—M„(r))„;. (&1)

where M, ~,~; (r) and M (r)(=E(0)p H) are the magnetization due to spin polarization of the electrons in the
superconducting and normal state, respectively.

Making use of Eq. (37) we have

rrT ~
// co+cI+a+b

M, (r) ~.„;„=M 1——
~

&(r)
~

' Im P~I ~ E(co+a)q—bq+Iq

Tl~(
)lb (-,'+p )

4(b2 —I2) c/& 4TT ( (b2—I2) c/&)

b
1— '

—,'+p+ + —,'+p — —,'+p+, B2
(b2 I2) 1/2 j b2 I2

where

p+= La~(b' —I')'"]+
2~T

a = rc,c/'eII„2/6+ 1/3r.„b= 1/3r„, and I=pII.

Here ct/(z) and P'(s) are the usual digamma and trigamma functions.
We note that the shift in the nuclear-magnetic-resonance frequency (the Knight shift) is proportional to

bc0=4vrpM, ~.p,„(r).

(a3)

(B4)

In principle, by measurement of the Knight shift in type-II superconductors, we can separate the total magnetiza-
tion into the term due to the diamagnetic current and that due to the spin susceptibility.

In the limit I +0, we have fro—m Eq. (B2)

X,(r) co 1
=1—~T~Z(r) ('P

Xn q (ce.+a+b)(ce.+a b)'—
2~a(r) ~2 1

c4'(2+p)+ L4(2+p) 4(2+p+2p )]-
(TT)Rp, 2p,

(85)

where p. =2/(3qrr. ,T) The above exp. ression is equivalent to the spin susceptibility in superconducting thin films in
a parallel magnetic 6eld. "
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