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We study the magnetic properties of type-II superconductivity having a large Pauli term. Firstly we
restrict ourselves to the case where the spin-orbit scattering is absent. In this case the transition changes
at low temperatures from second to first order for a=3u/7,2%> 1, where u, 7¢r, and v are the Bohr magneton,
the transport collision time, and the Fermi velocity, respectively. This involves a revised calculation of the
parameter «(¢), which appears in the expression for the magnetization. The calculation of k2 (£) in an earlier
paper on this subject by the author was incorrect, as was recently point out by de Gennes and co-workers.
Secondly, we extend the theory to include the effect of spin-orbit scattering, which may be important in the
materials usually considered. In particular, we obtain explicitly expressions for the parameters «;(f) and
x2(£) in the limit of short spin-orbital mean free path, where x; () = H.2 (£)/V2ZH. ({), and H.:(f), H.(t) are the
upper critical field and the thermodynamical critical field, respectively. It is shown that in this limit the
transition is always second order, independent of temperature.

I. INTRODUCTION

IN his classic paper, Abrikosov! showed that the mag-
netic properties of type-II superconductivity are
quite different from that of ordinary superconductivity
(now called type I). The magnetic field begins to pene-
trate into the bulk at the field H= H (the lower critical
field) and a mixed state appears in which the magnetic
flux threads the bulk in the form of quantized vortex
lines. Only at H.» (the upper critical field) is super-
conductivity finally suppressed. Abrikosov’s work, how-
ever, was based on the Ginzburg-Landau theory, which
is only valid in a narrow temperature region close to the
transition temperature.? Recent theoretical studies?
have mainly focused on a generalization of Abrikosov’s
theory to all temperatures.

In certain alloys or compound systems it is known
that Abrikosov’s expression! for H ./,

H.'=VkH., (1)

gives an enormously large value of H.s, since « is of the
order of 50-100. Here « is the Ginzburg-Landau param-
eter and H, is the thermodynamical critical field. In
such a situation it was suggested by several peoplet
that the Pauli susceptibility energy might play an im-
portant role in suppressing the superconducting state.
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The effect of the Pauli terms at finite temperature was
studied in detail by Sarma® and by Maki and Tsuneto.®
The generalized Ginzburg-Landau equations containing
the term due to the Pauli susceptibility have been given
by the author.” Unfortunately, the author’s original
theory® of type-II superconductivity contained some
serious algebraic errors, as Caroli, Cyrot, and de
Gennes® have recently noted. As a result, it is necessary
to revise certain calculations given in Ref. 7.

The purpose of the present paper is twofold. Firstly,
we present a corrected version of our theory of type-II
superconductivity having a large Pauli paramagnetism.
Secondly, we extend this theory to include the effect
of the spin-orbit scattering, which may be important in
some materials. The data!® on H ., accumulated recently
seem to indicate that the effect of the spin-orbit inter-
action is appreciable.

In the following we shall first discuss the effect of the
Pauli term in the absence of spin orbit scattering due
to impurities. The two parameters x;(f) and x.(f) are
defined by

Ho()=V2(H)H (1), (2)
—4dr(M,—M,)=(H.o—Ho)/ (220 —1)84  (3)

where M, and M, are the magnetization of the super-
conducting state and the normal state, respectively
(M0, due to Pauli paramagnetism). The corrected
calculation shows that transition changes from second
to first order if = H.,’/VZHp=21, where H.,' is the upper
critical field in the absence of the Pauli term and
Hp=A»7¢/V2u=18 400 T., the critical field due to the
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Pauli term alone. Experimentally, the predicted change
of the order of the transition has not been observed!®
even for superconductors having a comparatively
large a~1~5. This may be due to the presence of
strong spin-orbit scattering.

The generalization needed to include spin-orbit scat-
tering due to impurity atoms or to dislocations is carried
out in Secs. IIT and IV. When this scattering is strong,
we find that the transition is always second order. In
addition, the temperature dependence of xi(f) and k(t)
are calculated numerically.

II. GENERALIZED GINSBURG-LANDAU
EQUATIONS CONTAINING THE
PAULI TERM

In this section we would like to briefly recapitulate
our previous work on the magnetic properties of type-1I
superconductors having a large Pauli term. As discussed
in the introduction, the Pauli term becomes large
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generally in type-II superconductors having a large
parameter. This will serve to give the general back-
ground of the theory. The effect of the Pauli paramag-
netism as well as the diamagnetic current is described
by the following Hamiltonian

1
Je=—— | (1V+eAW (iV—eA)yd’r

2m

o / P (oHydr, (@)

where A, H, 4, and o are the vector potential, the mag-
netic field, the Bohr magneton and the Pauli spin
matrix, respectively.

Since we are interested in the properties of super-
conductors in fields H slightly smaller than the upper
critical field, we expect that the order parameter A(r)
is still small. In the absence of impurity scattering we
obtain by expanding Gor’kov’s equation in powers of A,7

Af(r)=1]glR> 1 Tr/Gw”(r’,r)G_w”(r’,r)AT(r’) =g T % Tr/.//Gw"(s,r)

XG_'(8,1)G.7(m)G_.°(m,s) AT (s)A(D) AT (m) d3s d31 d3m, (5)

where G,°(r,r’) is the Green’s function of an electron in a normal metal:

r’ d p
Gw"(r,r’)=exp{ie/ A (l)dl}/
: (2m)

3

= (o) = 8, (6)
™

and &= p*/2m—pu. Here we have taken account of the magnetic field by a change of phase (that is, in the classical

approximation).
On the other hand, the current is given by

1
$.(1) = (V= Vo 260 (D)T T § Tr{ / f wa'(r,s)G.xa,s)G,x(l,r')A(s)Afa)dasdsz}
mi n

r=r’

—iv.Xul X2 % Tr{//ch"(r,s)G_J(l,s)Gw“(l,r’)A(s)A'(l)d3sd3l , (D

where the first term is due to diamagnetic current and the second term is due to the difference between the para-
magnetic current associated with the electron spins in the normal and the superconducting state.

The effect of the impurity scattering can be taken into account by the standard renormalization procedures. In
the absence of the spin-orbit scattering, mixing between the spin-up state and spin-down state does not occur, and
the necessary renormalization is given by the replacement?

wn DY @Gn=wane, and A, by A,=n,,4,,
where
77w=(1+1/271w|)>
and
Mog={1—(1/27|w|)(1—77,0%2} 1. (8)

Here 7, 7, and v are the collision lifetime, the transport lifetime of electron, and the Fermi velocity, respectively.

Thus in the present case, we arrive at

T 1 0
{1n—+Re¢(—+—)—¢(%>!A*(r>
T.0 2 2T J

8(xT)? 2T 48xT

n=0

o iuH 10l 4
Re[z[n+%—+———+ (<p1—pa>2+<pg—p4>ﬂ)]nXM—I}A*a)A(z)A*(s)g1=2=3=,=o, ©)
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and
. eT"
o=~ (zvl—zv2+4eA<r>) Re(3 1T XuJANDAR) [1cemr
4rmT n=0 i=1 N
—vxCm(E 11 X7 40)17], (10
27rmv n=0 i=1
where Using the expressions for H2(f), we have
Q,'= %Ttr'I)Z(ivi— 26(— 1)'A)2+ Z[J.H(i) ’
. . (11) km? 1—2a?
pi=1V,—2e(—1)'4A(1), Xn=n+14+Q;/2xT. xl(t)=——-(1+a‘—’)‘”2<1—%7212 )
1/2 2

Here Re, Im indicate the real and the imaginary part of 2(14(3)) 1te
the function in the bracket, ¢(z) is the digamma func- X 1— 202
tion, and NV is the density of electrons. =1. 20—( 1—1.05— ,z) ,

We note that the term [ (p1—ps)?+ (p:—ps)2] in Eq. (1+a?)t2 1+a?
(9) was missing in the author’s original discussion,? as ¢
was recently pointed out by Caroli, Cryot, and de or L1, (17)
Gennes.® Their calculations indicate that the tempera- 28¢(3) 31¢(5)
ture dependence of the ks(f) parameter is almost identi- =K|:1+( (1—a?)— )0]
cal to that of «1(¢) in the dirty superconductors without ! 98¢%(3)
the Pauli term. In our original (incorrect) calculation, ,
the temperature dependence of s(f) was quite different =«(1+(0.119-0.3462%)6), for (1. (18)
from «1(f). The correction of this error removes one of We h ¢ .
the major conflicts between experiment and theory. e have made use of the expressions

We should also mention that in the fields with which _ ey 1
we are concerned, the paramagnetic current in the Hot)=Bw@mpo/m) 1 2(1=3y%?), for 1K1, (19)

normal state is not negligible and the total current is
given by
3(0)=3.(r)— BNp?/2mv*) VX H(r). (12)
Using Eq. (9) the upper critical field is given as a
solution of a transcendental equation,’

r 1 ruv?eH.o Tﬂch
In——+Re¢<—+ )—‘p(%):o_ (13)
c0 2 6T 2T
The asymptotic solutions are
3h00 1—a?
Ha) =1+t 1=l ),
2et4,0 1+a?
for <1, (14)
12T, 1 28¢(3)
= .9(1_,9( (1— az)))
TeTyv? 2 =
for 11, (15)

where §=1—1, t=T/T, and y=1.78. The parameter
a is defined by

a=3u/er,*=VIH ' (0)/H.p,

where H.,'(0) is the upper critical field at =0 in the
absence of the Pauli term and H.p= Ag/V2p.

It is convenient to introduce in this connection a new
parameter «;1(f), which is defined by

Hoo(t)=V2r:(1)H (1) (16)

=H.(0)v(8/75(3))'26

(2], e o, o

3m (21rm >” 2
K= < .
27F2ET“- PUE
Following Abrikosov!® we can calculate the free
energy of the mixed state, with the result

1 (H2—B)?
Fy—F,= ——[32+———~————]
8 Qxa2(1) — 1)Ba+1

and?

(21)

(22)

where B=(H(r))sy is the magnetic induction and
B4=1.16. k(¢) is given by

I YONG
w0=(Z25) e, @
where
g<p>=Re{ > <1+ia)~———} e
= g ity
w 1
fl(p)=Re{ 5 ————} , (25)
= (it )’

and p= (74,0%/67T)eH (14 ic).
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For some limiting cases we note
—_ 1/2 — 2 4
_ Kk (1—a?) { -—%72(1 14a%+d )52)
204632 14+e \ 1—at

Kz([)

(1—a2)1/2/ (1—14a2+a?)
=1.20« —2.10— 32)
+a? \ 1—aot
for 1K1, (26)
B ‘1+<56r(3) (1—a?) 45¢(4) )0]
" o T n(3)
=x(14(0.106—0.692a2)6), for (~1. 27

We remark that x2(f)>0 for <1 and «o(f) vanishes at
a=1 at T=0°K, which indicates that the transition is
first order for «>1 at low temperature. Incidentally,
[8H .2(t)/3t]| t=0 becomes negative for <1, implying
that H(f) is a monotonic function of temperature as
long as the transition is of the second order. This con-
trasts sharply with the previous incorrect results of the
author.”

No experimental evidence has been found for this
change of order of the transition, which probably indi-
cates the importance of spin-orbital scattering neglected
so far.

The magnetization as well as the jump of the specific
heat at the transition are given by

—daM = (Ho—Ho)/1.16(2k2()—1),  (28)

and

AC,=£;(%?)2 / 116Qe2()—1).  (29)

Here M is the difference of the magnetization in the
superconducting and the normal state.

III. EFFECT OF SPIN-ORBITAL SCATTERING

It is well known that spin-orbital scattering plays
a crucial role in the phenomena which involve the
Pauli terms such as the Knight shift in supercon-
ductivity and the coexistence of ferromagnetism and
superconductivity.

In the preceding section we noticed that there are ex-
perimental indications that spin-orbital scattering might
also be important in the magnetic properties of high-
field superconductors. We shall consider here the effect
of spin-orbital scattering due to impurity atoms and/or
dislocations on the upper critical field as well as the
magnetization of type-II superconductors having a large
Pauli term. The impurity-averaging technique necessary

§o+>:>

Fic. 1. The self-consistent equations for the renormalized
vertex [see Eg. (33)1. Note that the renormalized vertex has two
components A, and A_.
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A B c
| 2 | 2 | 2
Fic. 2. The function :
F.(gs) is given by the sum PR SR + i
of the contributions from i
the above diagrams. 4 3 a 3 . S

for present study has already been discussed in great
detail by Abrikosov and Gor’kov.!! We assume that the
interaction between a conduction electron and an im-
purity atom is given by a potential

Vp,p")=Vi(lp—p'|)+iVeo(1/pe®)[pXp']-0, (30)

where p and p’ are momenta of incoming and outgoing
electrons, respectively. The second term gives rise to
spin-orbital scattering.

The effect of impurity scattering on the conduction
electrons is taken into account by the following re-
normalizations.® First, the frequency w in Green’s func-
tions should be replaced by @=wn, where 7, is already
given in Eq. (8). Here 1/7 is given by

1/r=1/114+1/7e0, (31)
where
1 nmpo
—= fdﬂl Vi(0) (2,
T1 27['2
and
1 ‘}’Lmﬁo
—_——— /dﬂ| Veo(0) | 2 sin20, (32)
Teo 22

n being the density of impurity atoms. Secondly, we
need to consider the vertex renormalization. Solving
the integral equation for the superconducting order
parameter (which is shown diagrammatically in Fig. 1),

Ziq =A+ Qrag) 11— 1rrav?qt) At q
+ (3reds) M1 —37760%2)AF,, (33)

where &y=do+ipH, |oy|=|d|xiuH, and Aq is the
Fourier transform of the order parameter, we have

5:l:q= ﬂd:quq ) (34)
where
(wn=til)(wFil+a+b)
Ntwg™= y
(wta)y—b*+17)

(35)

1 77402 1

I=pyH, o¢=—-=+ q? and b=—-0.
Tao 6 3780

In the derivation of Eq. (33), we have assumed rA<<1,
(the dirty limit) and'? 7/7,,<<1 where A is the B.C.S.
order parameter at 7=0°K. Using the above results it
is not difficult to write down the generalized Ginzburg-

A. A. Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor.
Fiz. 42, 1088 (1962) [English transl.: Soviet Phys.—JETP 15,
752 (1962)].

12 This condition is discussed in great detail in a recent report by
N. R. Werthamer, E. Helfand and P. C. Hohenberg, where they

obtained independently the equation equivalent to Eq. (41); Phys.
Rev. 147, 295 (1966). a q. (41); Phys
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i E Garrmerr) G VR R (EPmec MOU) BT PO
{lnTcg+|:2< +<b2_12)1/2)‘/’( +p > (bt— 19172 P+

1 o
2 Fun(g)AT(1)A(2)AY(3) | 122=3-r=0, (36)
8(rT)? aso

and
el AW Re 3= (el >2JN(1)A(2)|
.8 = — 3 —1 4 - =2=r
)= = iVl )[ en=0<(w+a)2—b2+12 =
3\u s/ w—il+atd \? |
x| m E(S ) Jiaoi s 6
2amv?T n=0\ (w+a)2— b2+ 12 J
where and
pe=(1/20T)(ax£ (0>~ 19, (38) = [/ nti—il'+a'+b \?
. b)=R
In Eq. (32) we have set® f1(o,0) e[:./_;,o [((n+%+d/)2—b'2+1’2>
a=1/3r+377u0%H s, (39)

since we are interested in the type-II superconductivity
in a magnetic field close to H.

The function F,(q;) in Eq. (36) is obtained from the
diagrams given in Fig. 2. After a somewhat lengthy
calculation we have (see Appendix A)

w—il+a+b \3
s@<qi>=<2wT>3[Re(zw————+a)2_ Mp)
(wta+d)2+412
[t a)— o 17

Here a is also given by Eq. (39).

The above set of equations completely determines the
magnetic properties of the system provided A(r) is
small.

The upper critical field is obtained from

et T 1+ ’ )¢(‘+ )
nTco'2|_< I AR

+(1_(§;—;ﬁ>¢(%+p+)}—¢(%)=o (41)

—2I% } . (40)

where b, I, and py have been already defined, and a is
given by Eq. (39).
The free-energy difference is expressed as

1 (..~ B)*
P‘s'_Fnz—‘{B?-*_———_—} ) (42)
8rl  (2k2(t)—1)Bat1

where
ka(8) = (3m f1(p,b) /8w N)/*(e7ervg(0,0)) 1.
Here g(p,b) and fi(p,b) are given by
nty—il'+a'+b \2
) } , (44)
(n+3+a)2—b24-1"2

(43)

g(p,0)= Re[ }E (1+ia)<

n=0

(nt3+a 8+

2177 ]} . (45)
C(n+3+a')2—b" 24127

where
a'=(1/2nT){3ruv%H 2+1/37} ,
¥'=1/6mr,T and I'=pH /27T,

We note that in the limit 1/77,7<1, the above ex-
pressions reduce to those given in Sec. II.

(46)

IV. STRONG SPIN-ORBITAL-SCATTERING LIMIT

Using the expressions in the preceding section, we can
discuss quite generally the magnetic properties of super-
conducting alloys having a large Pauli term. However,
in the following we shall restrict our consideration to the
short spin-orbital mean-free-path limit (rsA0<K1),
where the expressions involved simplify remarkably.

The upper critical field is given by (in the above-
mentioned limit)

Ini+¢y(3+p)—¥(3)=0, (47)
where t=T/T,, and
pP= (I/ZWT) (%Ttrv2eHc2+%Tso(uch)2) . (48)

Equation (48) may be solved for H(2), with the result

Hea(t) = (3A00/ Tue2%)B%9(?) , (49)

where
¢(8) =4vB%p/[1+ (1+4vB%p) /7], (50)
B=(3u/7uv%)(37:0400) /2, and y=1.78. (51)

Alternatively, we can express He(f) in terms of H.,,'
(the upper critical field in the absence of the Pauli
term) by

HcZ/
HC2(t) = : (t)

14 (14 (127002 rov®e) Ho (1) ]2

(52)



148

The asymptotic forms of ki(f)=Hcs(t)/VZH(f) in the
present case are given by

K2 2 / 2 1?
Kl(t) = 1—— )
208E) 1A+ 3 (1447

2 12
= 1.20K—“‘“‘———<1— 1.05—————) R
14 (1482112 (1482172
for L1, (53)
28¢(3) 31¢(5) 2y
S
mt 08¢2(3) w2
=x(14-(0.119—0.36182)60), for i=~1. (54)
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The expressions for g(p,d) and fi(p,d) simplify to

9_7'sol‘2 had 1
g(p,b>=(1+ chu))z

T n=0 (n+3+p)*
=(+HeE)E ——, (53)
n=0 (n+3+p)*
and
( b) i ':;"'so(lir[IM)2 1 }
1 'n=o{<n+%+p>3 4T (nt3+o)t
@ 1 $*(1) 1
=Z{ } (56)
n=ol(nt-3+p)* 4v8% (n+i+0)*
respectively.

Substituting the above expressions in Eq. (43) we can calculate ko(f). The asymptotic forms of «»(¢) are given by

kr? {24 2(1487)1 2387 — Ay P [ 2+ 2(14-67) 12— 32— 5 (B%/ (14-6%) V2 ]} 12

Kz(t)

T 20143

56 150(4) 4y
=~[1+(—§(3)— -—52)0]
t Tr2t(3) w2

=x(1+(0.106—0.7228%)6), for

~1.

The temperature dependence of «1(#) and k2(f) has been

numerically calculated and the results are presented in

Figs. 3 and 4. We see from the above expressions that

k2(f) never vanishes and conclude that in the present

limit (750A00<<1) the transition is always of second order,

since in the material of interest, « is always larger than 1.
We further note that the relation

12 k2(0)/x1(0) = 2+2(1+8%) 2 +389"2/
21+pHY221/2v3  (89)

holds. k(0) is generally smaller than «,(0) if there is an

appreciable effect of the Pauli term independently of

the value of 74Ap. For example, in the other limit
Tsoloo>1, we have

k2(0)/k1(0) = ((1—a?)/ (14-a®)*">.

We note also that in the present limit the tunneling

(60)

Fi1c. 3. Numerical | | B:0 -
results for the tem- B=0.5
perature dependence |, . ; . I

of x/x for g2=0, K At~ 6 8
05,1, 15,2, 2.5, 3. F 0 s

See Eq. (51) for the O0°F %3.0 )
definition of g2. 08 =25 30

(1+62)12(14 (14621 —v*B%%/3(14-8%)

Q4201489124167

K (1—-02), for k1, (57)
(1+61)V2(1+ (148217
(58)
density of state is given by!?
N(rw)=N(0)A—3|A@) [T~ w?)/(@*+T%)), (61)

where T',=2xTp(f) and p(f) is given by Eq. (42). The
normalization of |A(r)|?2 is given by?8

eT c2 0
* Dy =— ———(g(p,0)) 1,
(180 o= o G, ()

where ¢ is the conductivity in the normal state.

12
s £:0 .
10 7 6 8
F16. 4. Numerical B =0
results for the tem- 097 2 7
perature dependence F10
of xo/x for B2=0, 08 15 -
05,1, 15,225, 3.
07 5 =
B =20
06F B2 .
— B%:3.0
05

1 P. G. de Gennes, Physik Kondensierten Materie 3, 79 (1964).
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V. CONCLUDING REMARKS

We have discussed how spin-orbital scattering
strongly modifies the effect of the Pauli term on the
magnetic properties of high field superconductors. We
have also established in these general situations that we
can describe the magnetic properties of the system in
terms of Abrikosov’s theory, except that we have to
introduce two parameters: k1(f) and x2(f). We have shown
that in the situation where the Pauli term is important,
the relation k(f) <k1(f) generally holds.

It is not difficult to calculate various transport
coefficients in the gapless region (or A(r)<KwT.o).
Especially in the limit J,/£<1 (where & is the BCS
coherence length), expressions for the transport co-

KAZUMI
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efficients such as electromagnetic conductivity' and
thermal conductivity!® are similar to those for type-I
superconductors with paramagnetic impurities. (Only
the normalization of (|A|2) is different in the present
case.)'®

We might point out that the spin contribution to the
magnetization can be measured separately from the
Knight shift in these specimens. This is discussed in
Appendix B.
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APPENDIX A: THE CALCULATION OF F,(q.)

The contribution from the diagram A of Fig. 2 (we denote it as 4) is given by

&1 1

1 1

A= 1
Z/ (27)3\1% T T

tw:,:— E—v

M+qs 'u;qa)
(qitq2) G —E—v-qq

1 1 1
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while the contributions from B and C are given as
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14 K. Maki, Phys. Rev. 141, 331 (1966).

. m( —1(3702)(q1*+ Q2+ qa?+-q2—
80 Wi .

qx-m—qz-qs)):l . (A3)

16 C. Caroli and M. Cyrot, Physnk Kondensierten Materie 4, 285 (1965).
16 The general proof proceeds in a similar fashion as given in K. Maki and P. Fulde, Phys. Rev. 140, A1586 (1965).
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Summing up the above contributions we finally have

14 B4+C=22 5 [T man) [ 2 () >2)]
A4B+C=—— , —((@— -
+ B+ - :\;’(i=11’iq‘ 2o0)" w4 ” 41—9q3)%+ (92— qs4
2
_3Tso(77:tq177iqz"kpqs7h:q4+ﬂ;tqn’?;qz’]q:qsﬂﬂ:«)m ) (A4)
and the F,(g;) are given as
Fu(q)= (x*/mpo)(«T)*LA+B+C]. (A3)

APPENDIX B: THE KNIGHT SHIFT IN TYPE-II SUPERCONDUCTORS

The current due to the spin paramagnetism of electrons in the superconducting state [the second term in Eq.
(37)] can be rewritten as
]a(r)lspin=vx(Ma(r)_Mn(r))spin (B1)

where M ,|spin(r) and M ,(r)(=N(0)u2H) are the magnetization due to spin polarization of the electrons in the
superconducting and normal state, respectively.
Making use of Eq. (37) we have

w7 = wtil+a+d \?

Ms(r)|snin=Mn[1"‘——|A(l‘)l2|:1m Z(—-——-) i”
1 » \(w+a)2—b2+12
«T|A(D)|?

1 b
-1 [ (-+ Y a+e)
ar—12)v2lar7l (b2— 212

—(1—(—b;fpﬁ)sb’(%ntm)}b—:—;w(%%—p_)—¢(%+p+)J]] , (B)

where

1
pam——Tazt (b= 1%)2],
= 0T

, (B3)
a=r1yv%H2/64+1/370, b=1/374, and I=uH.

Here ¥/(2) and ¢/(z) are the usual digamma and trigamma functions.
We note that the shift in the nuclear-magnetic-resonance frequency (the Knight shift) is proportional to

dw=4ruM,|spin(r). (B4)

In principle, by measurement of the Knight shift in type-II superconductors, we can separate the total magnetiza-
tion into the term due to the diamagnetic current and that due to the spin susceptibility.
In the limit 7 — 0, we have from Eq. (B2)

Xo(1) =
=1-7T|A(M|* X
X, n (wata+b)(w,+a—b)?
2|A(x)|? 1
=1- W GE+e)+—¥G+e)—¥G+o+30.)]} (B3)
(*T)%. 2p.

where p.=2/(3775,T). The above expression is equivalent to the spin susceptibility in superconducting thin films in
a parallel magnetic field."”

7 P. Fulde and K. Maki, Phys. Rev. 139, A788 (1965); A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965) [English transl.:
Soviet Phys.—JETP 21, 153 (1965)].



