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The theory of second-harmonic generation (SHG) by focused laser beams is compared with experiment in
regard to the dependence of the power on the coherence length [/.=2m/(2k1—k2)] and position of the focus
in the crystal. The treatment neglects absorption and double refraction. The analytical behavior of SHG
as a function of focal position is examined by means of an asymptotic representation valid at all positions for
the nonmatching case. It is found that SHG should be strongly peaked when the focus is at either of the
crystal surfaces. When the coherence length is positive (221>%;) there is an oscillatory fine structure as the
focus is moved inside the crystal. There is no fine structure when the focus is moved outside the crystal,
or when the coherence length is negative (2k, <ks). Experiments using the He-Ne gas laser and crystals of
LiNbOj; confirm the predictions of the theory. The coherence length in the LiNbOj; could be controlled
through the temperature. Satisfactory quantitative agreement was obtained between theory and experiment.
A quantitative measurement gave the ratio dss/ds1=6.04-1.0 for LiNbO; at 1.15 p.

1. INTRODUCTION

HE properties of second-harmonic generation
(SHG) by focused laser beams have recently

been described in great detail by Kleinman, Ashkin,
and Boyd! (KAB). These authors have emphasized the
distribution of intensity in the SHG including the asym-
metry of the pattern, the sharp edge, and the fine
structure. They have also discussed the shift of the
pattern which can be produced by a slight change in
the index-matching conditions, and have drawn a dis-
tinction between nominal matching (the matching of
plane waves at the fundamental and harmonic fre-
quencies) and optimum matching (the condition for
maximum SHG). Bjorkholm? has discussed the condi-
tions for optimum focusing of the laser beam without,
however, distinguishing between nominal and optimum
matching. Boyd and Kleinman® have considered the
optimization of SHG with respect to both focus and
matching conditions. Prior to this very recent work
considerations relevant to SHG by focused beams have
been presented by Maker et al.,* McMahon and
Franklin,® Francois and Siegman,® and Boyd et al.” In
all of these treatments the focused laser beam has
been described as a Gaussian beam.®! The excellent
agreement between theory and experiment that has
been reported!257 indicates that SHG by Gaussian
beams is as well understood as SHG by unbounded
plane waves.*!! As a result it is now possible to make
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accurate measurements of the nonlinear optical prop-
erties of crystals by a variety of methods. Except for
dispersion these are the same constants that govern
optical parametric amplification,'®!? and SHG provides
the only practical method of measuring these constants
at the present time. From this point of view the prin-
cipal importance of optimization is not to give the
experimenter more power for his measurements, but
rather to provide him with a technique for establishing
a specific experimental condition. It may be expected
that the optimum SHG is stationary with respect to
small inhomogeneities in the crystal and other small
deviations from optimum conditions, and therefore
more reliable for quantitative measurements than non-
optimum SHG. Nevertheless, SHG measurements under
nonoptimum and nonmatching conditions will continue
to be important because matching conditions can only
be achieved in relatively few crystals, and even in
those crystals only one (or a single linear combination)
of the nonlinear coefficients is active under matching
conditions.

In this paper we shall describe the behavior of the
SHG by focused beams under nonmatching conditions
with no double refraction when the position of the
focus traverses the crystal. To include double refrac-
tion would entail considerable complication. It is sig-
nificant that detectable SHG can be produced by a
gas laser under nonmatching conditions, especially if
the beam is focused. In fact, a readily detectable SHG
has been observed under nonmatching conditions with
a 10-mW He-Ne laser operating in the Gaussian mode
at 1.15 x when focused with a 3-cm focal length lens
into a number of piezoelectric crystals. These include
quartz, CdS, BaTiO;, LiNbO3, CuCl, and LiGaO,. The
SHG is very sensitive to the position of the focus, and
the maximum power is not generally produced with
the focus in the center of the crystal. The experiments
reported here were carried out in single crystals of

2J. A. Giordmaine and R. C. Miller, Phys. Rev. Letters 14,
973 (1965).

302



148

LiNbO; ¥ with propagation normal to the optic axis,
which eliminates double refraction." The matching con-
ditions could be controlled by means of the crystal
temperature.” The theory necessary for the interpreta-
tion of this type of experiment has been given by KAB
in terms of a function defined by a definite integral
[(7.13) of KAB]:

1 r¢ dr ]
H(O’,K,f,f)':‘—‘ / g—KTHioT (1)
2 J ¢ 14-ir

The harmonic power in the crystal P, is given by
[(8.44) of KAB]

Py= (4rK P2/b¢)e 21/—ea=D | H |2, )

where P; is the laser power in the crystal, & the far-
field diffraction half-angle of the laser beam, ! the
crystal length, f the location of the focus relative to
the incident surface, @y and a; the absorption coeffi-
cients for the fundamental and harmonic, respectively,
and K contains the nonlinear coefficient of the crystal.’
For the present case in LiNbOj this constant is'®

K= [3212(02/ (nc)3]d312 ) (3)

where w is the second-harmonic angular frequency, »
the refractive index, and ds; the appropriate nonlinear
coefficient in the second-order polarization

P=d-EE. 4

The parameters in the function H (o,k,{,¢) are defined
by
o=3bAk=7b/l., ©)

k=21ba=1b(c1—Las), (6)
S=@2/b)f, E=2/b6)(1—). (M

Here b is the confocal parameter® of the focus which is
related to the diffraction angle 8, and minimum spot
radius wy as follows

b=k1w0 =4/k1502. (8)

The neglect of double refraction is valid if I<<,, where
I, is the aperture length defined in Ref. 7. The depar-
ture from nominal matching is specified by

Ak=2k1—ks, )

where kj, k. are the propagation constants of plane
waves along the laser axis at the fundamental and
harmonic frequencies, respectively. The coherence
length has been defined®
l,.=2r/Ak, (10)
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which is the distance between successive maxima in
the harmonic intensity for SHG by a plane wave .
We allow /. to have either sign corresponding to the
sign of Ak.

2. EFFECT OF MISMATCH

A computer program has been developed along the
lines outlined in the Appendix of KAB for calculating
| H|2. It is useful, however, to have asymptotic approxi-
mations in convenient analytical form to describe the
important features of the function. It may easily be
shown that when {=¢ (focus in the center)

lim H(0,0,£,6)=¢0(a), (11)
£
where 6(c) is the step function
0(c)=1, ¢>0
=3, o=0. (12)
=0, ¢<0

We have set k=0 since for convenience we shall neglect
absorption. It was shown in KAB [Eq. (7.20)] that
for

&1, o1,

H (0,0,¢,£) for all values of ¢ can be written
H(U70’§.’£)
=¢9(c)—3[0(c)—0(—0)]

13)

1
+2—[Si(0§)+iCi(0§)+Si (@8)—iCi(e8)], (14)

where Si and Ci are the sine and cosine integral func-
tions. This gives a continuous representation across
the step in (11) at =0, and also shows that H con-
tains oscillatory structure. The structure is revealed
most clearly by the asymptotic form [(7.22) of KAB]]

I H(o-’())g‘)E) ] 2

1,1 1 cosc§
= 29(0)+—( —F—)—b(0)
4n?2\§2 g2 wof

cose{ coso(&+¢)
—e (o) + +---, (15)
wol 2mo%E
valid for large o¢ and o¢
£>1, o1, |ot|>1, |of|>1.  (16)

The behavior of |H (¢,0,££)|2 as a function of the
matching conditions measured by o is shown in Fig. 1
for £=9.5. A distinct asymmetry about nominal match-
ing ¢=0 is characteristic of SHG when £3>1. Since in
this example {=¢, the third and fourth terms of (15)
are equal and give rise to a simple fine structure
[—2e7 cosot]/mot in the region 0<o<6. Vertical
lines indicate the maxima of —cossf. For ¢>8 and
0<0 the fine structure is dominated by the last term
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Fic. 1. Second-harmonic power according to (2) as a function
of mismatch for parameters shown. Vertical lines at left mark
the maxima of —cose£. To show the detail a number of amplified
curves are shown.

of (15). The peaks due to this term first appear around
o~6 as small peaks between the main peaks; with
increasing o the small peaks increase while the larger
peaks decrease until they become equal around o~9,
and then all peaks decrease as required by the last
term of (15). The behavior illustrated in Fig. 1 may
be described in general as follows: (a) |H(0,0,,8)|?
rises very rapidly with o near ¢=0 and reaches a
maximum at

om=w/E, £<¢
~r/t, ¢<&.

(b) |H(o)|? is very small for ¢<0 and decays expo-
nentially as ¢=%* for ¢>0. (c) Superposed on the expo-
nential decay are two oscillatory contributions whose
periods depend on the position of the focus. (d) This
structure dependent upon the focus extends over the
range

an

0<o<ay, (18)

where the limit o, is that value of ¢>0 at which addi-
tional peaks first appear; from (15) we find that

o7t exp(oy) =2 (£)V2. (19)

(e) for ¢<0 and o>0; the structure becomes inde-
pendent of the position of the focus; the maxima occur
at

(20)

From (5), (7), and (10) this may be written as a con-
dition on the crystal length !

I=N|L].

|o|=2xN/(¢+¢) N=positive integer.

(21)

D. A. KLEINMAN AND R. C. MILLER

148

For comparison we recall® that the corresponding con-
dition for SHG by a plane wave %; would be
I=(N+9)l]. (22)

The difference between (21) and (22) is due to the
presence of a focus somewhere in the crystal.

3. EFFECT OF MOVING FOCUS

In this paper we are primarily interested in the
behavior of |H |2 as a function of {, the focal position,
when

Ei=y=21/b. (23)

Therefore it is convenient to replace (1) with the
slightly different notation

1 ¥ dr
Homg=— [ e o
wJ_¢ 14ir
If
2rH=R+il, (25)
then R and 7 satisfy the differential equations
OR ex$ PaliSax
—_—= [coset+¢ sing¢ ] ——————
a  1+¢* 1+ (y—¢)?
X [coso (y—¢)+ (v—¢) sina(yv—¢)],  (26)
ol ext e—x(v=0)
—= [¢ cose¢—sing{ [+———
o 147 1+ (y—¢)?
X[L(y—=%) coso(y—§)—sino (y—{)].  (27)

The integration of (26) and (27) can be started at
any value of ¢ at which R and 7 are known from a
previous integration over o. All numerical integrations
will ordinarily start at =0, k=0 where

R (0,0K,'Y) = tan"l (’Y— §')+tan‘1§‘ y
14

]1/2 (28)
4 (y=g2d

I1(0,05,7)= ln[

The integrations over ¢ and « have been described in
the Appendix of KAB. We shall neglect absorption

k=0 (29)

since this is the case of greatest interest. If the inte-
gration of (26), (27) is started at the middle of the
crystal =21y, one of the initial conditions is

1(0,0,37,v)=0. (30)

If |o| is sufficiently large an asymptotic expression can
be used for the starting value of R(s,0,37v,y). It is
particularly convenient to start at {=3y, I=0, R=0
if values of ¢ can be chosen at which |H |2~0 according
to (15).

The behavior of |H|? as a function of focal position
¢ can be obtained from the asymptotic approximation
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(15) providing the conditions (16) for the validity of
the approximation are satisfied. We see that |H|?
contains oscillatory terms varying as cose(y—{), and
cose{. We see further that this structure is present
only when ¢>0. As the focus is brought near the
incident surface (¢ decreases) the structure varying as
cosa?{ increases in amplitude as ¢, and a nonoscillatory
term increases as (2. This shows that SHG should
increase as the focus moves toward the surface when
|o| is large enough that (16) can be satisfied over a
sizable range of {. We can simplify the mathematical
description somewhat by considering only one surface,
the incident surface, and allowing the other surface to
recede to infinity; thus we consider the case

Y —> 0 y
|e|>1. (31)
Then (15) becomes
[H (0,0,,%) |2=¢"%0(c)+ (1/4n%%?)
—e%9(0) (cosat/ma¢), (32)
valid when
o1, ot >1. (33)

The distance between consecutive maxima in the SHG
as a function of focal position f is given by

oA =2, (39)
which by (5) and (7) is simply
Af=l.. (395)

Thus the coherence length can be determined directly
by a distance measurement by moving the focusing
lens. It should be noted that Af is the motion of the
focus in the crystal; it is related to the lens motion by

Af=nAf(air). (36)

Observation of the structure also gives the sign
(positive) of I,.

In order to discuss the interesting behavior as { — 0
we must obtain a better approximation than (32). It
can easily be shown that R and I in (25) can be repre-
sented by the integrals (x=0)

¢ sing{-tsinz¢
R(U)())g-fY) = e—a’/ dg—————e¢? ’ (37)
—c0 Z
¢ cosg{—coszf
I(c,0,f,y)=¢"° / dg—e7, (38)
—0 2

where £=vy—¢{ according to (23). We introduce the
representation

(es— 1)/z=/ ef=dg, (39)

SECOND-HARMONIC GENERATION

and write (37) in the form (exact)

¢ singé 0 sing{
R=e“’/ dz —I—e"’/ dz

2 4

¢ singf 1 ‘
+e° / dz +e° / dap / dzeP? sinzé
—0 4 0 —0o0

+e ] ds / dzef? singy.  (40)
0 —o0

The integral over z now gives
efe

/ dz P sing{ =
— g5t

and a similar term in ¢ which vanishes as ¢ — «. The
first term of (40) becomes

¢ sing¢
e / dz ;—) we9(c).
o P —00

(Bsinet—¢ cosal),  (41)

(42)

The second and third terms can be written

2

°  singf T
e—"/ dz =e_”|:5 sgn(¢)+Si (Uf)] ,  43)

where sgn(¢)=0(¢)—0(—¢) is the sign of {. Thus (40)
becomes (exact)

R(a,o,r,oo>=e—«[wo(o>+’2—’ sgn(O)+Si <a;>:|

+S(0,¢) sinat—C(o,¢) cosa, (44)
where S and C are the functions
! B
S(eg)=c / dp———ee, (45)
o B
! e
Clo)=e / B, (16)
o B¢

In the same way we obtain the representation (exact)

1(0'707;100 ) =¢ Ci (U§)+S(‘T,§-) cosa{
+C(o,¢) sinet. (47)

Since these representations are exact they are continu-
ous functions of {; the discontinuity in sgn({) is can-
celed by a discontinuity in C(s,{), and the logarithmic
singularity in Ci(s,{) is cancelled by a logarithmic
singularity in S(s,{) at {=0. It may be noted that
(44) is not continuous in ¢ at c=0 because we have
taken the limit £— « in (42), but we shall not be
interested in the case o=0.

To evaluate the functions in (45) and (46) we assume
|o[>>1 so that ef7 is more rapidly varying than the
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F16. 2. Second-harmonic power as a function of focal position.
The crystal surfaces are at {=0 and ¢=19, with all curves
symmetric about the midpoint {=9.5.

other factor in the integral. We may then integrate by
parts to obtain

NSRS L BN
e ey

¢ 2 e’
Clog)= +--0, (49)

o1+ U+E? of

neglecting terms falling off with o faster than o~
Using (48), (49), and the asymptotic forms

T cosz  Sing
Si(2)~= sgn(s) ————+- -+,
2 z 22
(50)
sinz cosz
CI(Z)N—‘——+ -

2 2
we obtain the approximations
R(0,0,¢,0)

~2me 00 )+

L = ] inof
T Sino
c(14¢%) o (14+8%)°

e 2¢
—[ + ]c05<r§+---, (51)
o(14¢%) (1472

1 (1—-¢3)
I(Uy0,§,°°)=[ + ]COSag‘
a(1+¢)  2(1+¢2)?

2
+[ { } :|sinas“+---, (52)
o(1+5?)  o* (142
valid when |o{|>1. Although we have derived this
result assuming {70, we notice that the terms of
order ¢! and {2 that are present in (48), (49), and
(50) have cancelled out of (51) and (52). These ap-
proximations are in fact well-behaved as { — 0 except

AND R. C.
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Fi1c. 3. Same as Fig. 2 except o =2.

for the discontinuity in the first term of (51). This
discontinuity is of order e~ and therefore quite tolera-
ble in the region of interest |o|>>1.

It now follows that the SHG is proportional to
[H(0,0,8,%0)]?

=—————+e2()0(¢)
4r22(14-¢2)

e (@)8()
xo (142

neglecting terms of order ¢—* and smaller. The second
term will ordinarily be very small if ¢>>1, but we retain
it in order to maintain the correct behavior as { — «.
This is our final analytical result, valid (except for a
tiny discontinuity at {=0) for arbitrary positive or
negative { when |o|>>1. We see that no structure is
expected when { <0 corresponding to the focus outside
of the crystal. It is obvious that an identical discussion
could be given of a large crystal with the focus ap-
proaching the exit surface and £ replacing ¢ in (53).

(¢ cose¢—sing¢{)+---  (53)

9 x107?

F16. 4. Same as Fig. 2 except ¢ =3.15.
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x102

F1G. 5. Same as Fig. 2 except ¢ = —3.15. Notice absence of
structure as compared with Fig. 4.

The main dependence of SHG on { is given by the
first term of (53). The maximum power is obtained
with {=0 which gives

| H | max?=1/47%2, (54)
and (2) becomes (no absorption)
Pa(max) =4rK P2/4m8,0%, (55)

which can be used to determine the nonlinear coefficient
K from quantitative measurements of P, and P;.

We now consider some representative machine cal-
culations which illustrate the effects to be expected,
and provide a check on the analytical approximation
(53). We shall plot |H(s,0,{,7)|? as a function of ¢ for

various values of ¢ and
v=19.0. (56)

In order to check the validity of considering an infinite
crystal in (53) we present one calculation with y= 1000,
which may be considered infinity. We begin with small
values of ¢ in Fig. 2 where (53) would not be expected
to hold. In the nominal maiching case ¢=0 there is
very little dependence on { until the focus leaves the

4r- x 1073

F16. 6. Comparison of finite crystal with infinite crystal when
o =4. Infinite crystal is represented by vy =1000. Dotted curve is
not symmetric about midpoint of finite crystal.
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F16. 7. Same as Fig. 2 except ¢ =6.27.

crystal (£<0). The optimum maiching case o=0.25
corresponds to the peak of Fig. 1; in this case SHG
peaks gradually in the center of the crystal as one
might intuitively expect. When o=1 there are three
peaks of nearly equal width and height; since |H|? is
symmetric about ¢{=9.5 only the region ¢<9.5 is
shown. In Fig. 3, =2, there are six peaks with the
peaks near the surface (f~1, {~18) considerably
stronger than the rest but still appearing to be part
of the same structure. Figure 4, ¢=3.15, shows the
surface peak much larger and wider so that it no longer
appears to be part of the same structure as the other
peaks. Also note the absence of structure in the region
{ <0 where the focus is outside the crystal. The vertical
lines indicate the positions of the maxima of —cose¢
in this and the following figures. Figure 5, o= —3.15,

3~x10™*

4 1 1 1 1 1 1
-3 -2 -1 o 1 2 3 4

-
o
~
®
©

F16. 8. Same as Fig. 2 except ¢=9.98. Notice that oscillatory
structure is now very weak as shown by amplified curve.
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REML 2CTOR REFLECTOR Y KG-3
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T16. 9. Schematic layout of experiment.

shows the complete absence of oscillatory structure
which theory predicts for o< 0. Figure 6, c=4, shows
a comparison of the curves for the finite crystal y=19
and the infinite crystal (y=1000). The difference is
primarily in the phase of the oscillation at the midpoint
¢=9.5 which must be a maximum or minimum in the
finite crystal. Figure 7, ¢=6.27, shows the further
emergence of the large surface peak and the diminution
of the amplitude of the oscillatory structure. The peak
height 10.6)X10~* is in fair agreement with 6.4X10~*
predicted by (54). Finally Fig. 8, ¢=9.98, shows the
oscillations barely visible and the surface peak sym-
metrical about {=0. For larger ¢ the curve retains
this shape, which is in excellent agreement with the
first term of (53). The peak 3.0X 10~ is in good agree-
ment with the value 2.5X10~* given by (54). A cal-
culation at ¢=22.27 gave the same shape with a peak
5.2X107% in excellent agreement with the predicted 5.1
X 1075, Thus the approximate theory (53) is confirmed.

V. EXPERIMENTAL APPARATUS

Experiments designed to illustrate the various phe-
nomena discussed in the preceding sections have been
performed using a 1.0798-u He-Ne Gaussian laser beam
focused into a crystal of lithium metaniobate, LiNbOj.

SECOND HARMONIC POWER
(ARBITRARY UNITS)

[o] 0.1 0.2 0.3 0.4 0.5
LENS POSITION (CM)

F16. 10. Second-harmonic power as recorded on an X-Y re-
corder as the focusing lens is moved by a mechanical drive. The
{)ocus is at the crystal faces at the positions indicated by vertical

ars.

The apparatus is indicated schematically in Fig. 9. The
dc-excited laser has Brewster windows and a half-
nonconfocal resonator geometry with the output, ap-
proximately 1 mW, emerging from the flat mirror. A
simple iris placed near the curved mirror end of the
laser cavity is adjusted so that the laser operates in
the Gaussian mode. The laser resonator consists of a
3-m-radius-of-curvature mirror separated from the flat
output mirror by 150 cm, while the lens is 130 cm
beyond the output mirror. This geometry gives a beam
radius equal to 0.0951 cm at the lens and a far-field
diffraction angle equal to 4.79X10~* rad.” The lens has
a focal length of 2.0 cm so that the confocal parameter
b for the beam focused into a medium of index =
equals #X3.05X 10~2 cm. The far-field diffraction angle
8o of the focused beam is 4.72X1072/n rad. For the
present case, n=2.23 at 1.08 y&,'5 so 4 and 8§, become
0.068 cm and 2.1X 1072 rad, respectively.

The LiNbOj; single-domain high-optical-quality crys-
tal'® is 0.637 cm long and has plane-parallel opposite
faces which contain the z axis—the optic axis (LiNbO;
is a negative uniaxial crystal, point group 3m). The

4
-15 -10 -0.5 [ 0.5 1.0 1.5 2.0
10T T T T T T T T
8
[+ 4
& 1
z 7+
o
8
o o
gs !
b3 |
4
< 4}
o
z 31
S
g oL xtoo
(7]
1 x10 :
o ! Y /! | | !

1
104 102 100 98 96 94
TEMPERATURE (°C)

i08 106

F1e. 11. Measured harmonic power as a function of crystal
temperature. The o scale at the top was calculated from inde-
pendent data obtained using unfocused beams. The vertical
bars mark the positions of minima for an unfocused beam. Be-
cause of the phase shift of 180° associated with the focus these
bars fall at the maxima for the focused beam. This corresponds
;‘q t}ie case {=£=9.4 and therefore should agree closely with
Cig. 1.
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Fi1G. 12. Measured harmonic power as a function of focal
position with same power scale as Fig. 11.

axis of the focused beam is then normal to the optic
axis thereby giving rise to SHG without double refrac-
tion.” The SHG is via the nonlinear coefficient ds; and
thus requires that the fundamental and harmonic rays
be ordinary and extraordinary, respectively.!® The mis-
match Ak=2k1—kos=w(n®—n2:°)/c and varies with the
temperature of the crystal through the temperature-
dependent refractive indices* In fact, from Ref. 14
d(n°—n2°)/dT~—6X1075 °C~! and since n,%—n.° is
about 0.004 at room temperature,'® the mismatch can
be easily varied via the crystal temperature from
Ak>>m/l through Ak=0 to —AE>>r/l. The crystal is
mounted in a large silver block with electrical heaters
thus providing a means of varying Ak thermally. The
temperature of the silver block is controlled to about
+0.05°C.

The lens can be moved at various preselected speeds
with respect to the sample by means of a mechanical
drive. While the lens is being moved, the second
harmonic output is recorded on an X-V recorder.
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F16. 14. (a) Measured harmonic power on scale of Fig. 11. (b)
Theoretical fit to (a) using ¢=2.25 and adding enough of the
first term of (53) to give the correct peak height. The contribu-
tion of |H(2.25,0,¢,19) |2 is shown dashed.

Phase-sensitive detection is used for the second har-
monic. A typical plot obtained at room temperature
is reproduced in Fig. 10. For this case, where o> 10,
two large second harmonic peaks are obtained and
found to coincide exactly with the crystal surfaces.
The experimental data in Fig. 10 are seen to be in
qualitative agreement with the theoretical plot shown
in Fig. 8. Plots of this sort have been obtained as a
function of crystal temperature as will be described.

5. EXPERIMENTAL RESULTS

The data in Fig. 11 show the second harmonic in-
tensity as a function of temperature with the lens
focused in the center of the sample. (The center of the
sample is easily located with the aid of a second-har-
monic intensity versus lens position plot like that
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F16. 15. Measured harmonic power on scale of Fig. 11.

shown in Fig. 10.) Unfocused beam studies with the
same crystal described above show that Ak=0 at
T=T,=102.75°C=+0.13°C,' and other unfocused beam
datal? give dAk/dT=—7.35 cm™ °C~! in the vicinity
of Ty. These data for the unfocused situation were then
used to calculate o=Akbd/2 as a function of tempera-
ture. The o scale at the top of the figure was obtained
in this manner. The calculated value of {=¢ for the
experimental situation is 9.4 so that these results can
be compared with Fig. 1.

It is evident that the experimental data exhibit all
the qualitative features given by the theory. The
short vertical lines shown in Fig. 11 for ¢<0 are the
positions of the second harmonic minima calculated
for the plane-wave case from unfocused beam data.l’
As noted in (21) and (22), and shown in Fig. 1, these
lines should mark intensity maexima in the case of a
focused beam. It is seen that in agreement with theory,
the experimental maxima in Fig. 11 for ¢ <0 do occur
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F16. 16. Measured harmonic power on scale of Fig. 11.

16 The value of T, has been found to vary by more than 100°C
from one LiNbO; boule to another for reasons which are at
present not understood.

17 R. C. Miller (unpublished data).
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Fi1G. 17. Measured harmonic power on scale of Fig. 11.

at the positions of the short vertical lines. The failure
of the experimental minima for <0 to go to zero as
predicted by the theory is believed to be due to small
temperature gradients in the crystal and a small back-
ground second harmonic arising from the 1.15-u He-Ne
laser line also present in the focused beam. The con-
tribution of the 1.15-u second harmonic is of the order
of 0.19, of the maximum 1.08-x harmonic shown in
Fig. 11. Therefore, only for <0 and 23 will the 1.15-u
contribution be significant when the focus is in the
center of the crystal. Although the presence of the
1.15-p line in the laser beam makes a detailed quantita-
tive comparison between theory and experiment some-
what uncertain for the two ¢ regions mentioned above,
it can be taken into account in a simple and satis-
factory way.

Figures 12 through 21 show the second harmonic
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intensity as a function of lens position for various
representative temperatures in the vicinity of To. In
each case the figures include the temperature, the cal-
culated value of o, the positions of the faces of the
crystal, and an intensity scale the same as that in
Fig. 11. For ¢=3.74, 2.76, and —1.35, the intensity
scales have been adjusted for the focus in the center
of the crystal to compensate for the 1.15-u second
harmonic contribution; however, no attempt has been
made to subtract this contribution as a background.
With the scales adjusted in this manner, the intensities
for the focus in the center of the crystal can be com-
pared with Fig. 11, and after a change of scale, with
Fig. 1.

The comparison with Fig. 1 shows that the experi-
mental intensities observed with the focus in the
center of the crystal are in good agreement with the
theory.

Figure 14(b) shows a theoretical plot considered to
be in excellent agreement with the experimental data
of Fig. 14(a). The theoretical plot includes contribu-
tions from both the 1.08-u (¢=2.14) and the 1.15-u
(¢~ 50) harmonics. The dashed curve shows the 1.08-u
harmonic calculated for ¢=2.25, while the solid curve
shows the sum of the above contribution and a “uni-
versal curve” (valid for ¢>10) of the form given by
the first term of Eq. (53) to represent the 1.15-u har-
monic contribution. The shape of the universal curve
is independent of ¢. The relative magnitudes of the
two harmonics and the value of ¢ for the 1.08-u line
were varied to obtain the theoretical fit shown. The
1.15-p harmonic is only significant for the beam focused
away from the center of the crystal. While other values
of ¢ for the 1.08-u line slightly different from 2.25 do
not, in general, result in such good agreement between
theory and experiment, a theoretical plot with ¢=2.40
and a suitable contribution from the universal curve
also appears to give a satisfactory fit. However, when
the uncertainties in Ty and dAk/dT are taken into
account, the value of ¢=2.14 calculated from the un-
focused beam datal? is considered to be in agreement
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with ¢=2.24, but not with ¢=2.40. Hence the “theo-
retical fit” with ¢=2.40 has been rejected.

In the theoretical section it has been shown that the
coherence length /. can be obtained from the data when
oscillations in the intensity with lens position occur.
However, inspection of the theoretical plots shows that
the period of the oscillation is not exactly equal to I.
when there are few minima (Fig. 2) or when the ampli-
tudes of the minima vary significantly with distance
(Fig. 4). Both of these effects can give an /. determined
from the curve too small by about 109,. Calculation
of I.’s from the experimental data yields values roughly
59, smaller than those deduced from the temperature
dependence of Ak. This result is not surprising in view
of the comments above and the 59, or so uncertainty
in Ak(T). It should be noted that in agreement with
theory, no intensity oscillations with lens position are
observed for ¢ <0.

The small-intensity peaks observed with the lens
focused near the front of the crystal for small positive
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values of ¢ are not understood. Other data not shown
also in some cases exhibit a similar peak with the
focus near the back of the crystal.

To demonstrate the usefulness of the focused beam
technique for determining nonlinear coefficients under
nonphase-matched conditions, the ratio of dss/ds1 for
LiNDbO; has been obtained with the 1.15-u He-Ne line.
Prior to the present measurement, the ratio was known
only for the 1.06-u pulsed Nd laser in which case
d33/ds1 was reported to be 9.043.0.1% In the present
experiment, the second-harmonic intensity versus lens
position was determined for the second harmonic due
to each of the two coefficients. The only significant
difference in the experimental arrangement between
the two measurements was that imposed by the polari-
zation requirements of the SHG process. In particular,
for d3 the fundamental and harmonic are ordinary
and extraordinary waves, respectively, while for dss
both waves are extraordinary waves. Since the laser
polarization was not changed, these polarization re-
quirements necessitated a rotation of the sample by
90° about the beam axis in going from ds; to dss. From
Egs. (3), (8), (10), and (55), one finds

(P1)ssdss(le) 33]2
(P1)sds1(lc) s

which can then be used to determine dj3/ds1. The co-
herence lengths are determined from the known in-
dices.' It is found that d3;/ds1=6.041.0 for the 1.15-u
line which is to be preferred to the previous measure-
ment. On a scale where d3=1.00 for KH,POy, da1
=10.6+1.0,'% so that ds3s=64416 on this scale. It is
unfortunate that the second-order nonlinear optical
processes are such that this large coefficient cannot be
phase-matched.

This method for determining nonlinear coefficients
has some advantages over other techniques.*8 Several
of these advantages are: it is fast, it can be used with
a small sample, it requires only one moderately good
surface on the sample, and it is not restricted to phase-
matchable materials. One disadvantage is that this
technique requires knowledge of the coherence length.
Therefore other independent measurements will usually
be necessary to determine /. since it cannot be obtained
from a second-harmonic-intensity—versus-lens-position
plot for /,<&<b which will usually be the case.

(P2 max)a/ (Ps max>31=[ 57)

6. SUMMARY

The effects of moving the position of the focus in
SHG have been described theoretically and observed
experimentally. The effects depend greatly upon the
coherence length, and are particularly interesting when
the mismatch parameter o defined by (5) lies in the

% J. Ducuing and N. Bloembergen, Phys. Rev. Letters 10,
474 (1963).

9 A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters 11, 14 (1963).
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range 1 <o <10. This range is illustrated in Figs. 2-4,
6-8. When ¢<0 or ¢>10 the fine structure sensitive
to the coherence length is absent or very weak as
shown in Figs. 5 and 8. With the focus at the center of
the crystal the dependence of SHG on mismatch is
shown in Fig. 1. These curves were calculated by high-
speed computer directly from (1) and (2) derived pre-
viously.! As an aid in understanding the dependence
on focal position a new asymptotic approximation not
previously given has been developed for the non-
matching case |o|>>1. This approximation (53) is well
behaved at all positions of the focus and accounts
satisfactorily for the peak of intensity at the surface
and the fine structure. The neglect of double refraction
and absorption is valid if the crystal length is less
than the aperture length? and less than the absorption
length for the laser or the harmonic.

Experiments are reported using a crystal of LINbO;
and a He-Ne gas laser. The crystal was oriented to
eliminate double refraction, and the coherence length
could be controlled through the crystal temperature.
The SHG as a function of temperature with the focus
in the center of the crystal is given in Fig. 11, which
is in satisfactory agreement with the calculated Fig. 1.
The dependence on focal position for various values
of ¢ is shown in Figs. 12-21. The same (arbitrary)
power scale is used in Figs. 11-21. The peaking at the
surfaces, the fine structure, and the absence of fine
structure for 0 <0 and ¢>10 are found in qualitative
agreement with theory. A satisfactory quantitative
comparison with theory for the case ¢=2.14 is shown
in Figs. 14(a) and 14(b). To obtain agreement an
appropriate amount of the first term of (53) represent-
ing the harmonic of the 1.15-u laser line was added to
the calculated curve for ¢=2.25. Extra lines can easily
be taken into account in this manner if they have
|e|>10, since then the shape of the curve is a uni-
versal function independent of ¢ and given by the
first term of (53). Finally the 1.15-u laser line having
o~ 50 was used to measure the ratio ds3/d31 for LINbO;
by observing the peaks at the surface produced by the
extraordinary and ordinary components of the laser
beam.

We conclude that the theory of SHG in regard to
the dependence on coherence length and position of
the focus is in satisfactory agreement with experiment.
Focused beams under nonmatching conditions are con-
venient for quantitative measurements of nonlinear
optical coefficients providing the coherence length is
known.
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