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Dependence of Second-Harmonic Generation on the Position of the Focus
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The theory of second-harmonic generation (SHG) by focused laser beams is compared with experiment in

regard to the dependence of the power on the coherence length t l, =2x/(2k' —k2) g and position of the focus

in the crystal. The treatment neglects absorption and double refraction. The analytical behavior of SHG
as a function of focal position is examined by means of an asymptotic representation valid at all positions for
the nonmatching case. It is found that SHG should be strongly peaked when the focus is at either of the
crystal surfaces. When the coherence length is positive (2k&) k2) there is an oscillatory fine structure as the
focus is moved inside the crystal. There is no fine structure when the focus is moved outside the crystal,
or when the coherence length is negative (2k& (k2). Experiments using the He-Ne gas laser and crystals of
LiNbOI confirm the predictions of the theory. The coherence length in the LiNb03 could be controlled
through the temperature. Satisfactory quantitative agreement was obtained between theory and experiment.
A quantitative measurement gave the ratio d33/de~ ——6.0%1.0 for LiNbO» at 1.15 p, .

accurate measurements of the nonlinear optical prop-
erties of crystals by a variety of methods. Except for
dispersion these are the same constants that govern
optical parametric amplification, ""and SHG provides
the only practical method of measuring these constants
at the present time. From this point of view the prin-
cipal importance of optimization is not to give the
experimenter more power for his measurements, but
rather to provide him with a technique for establishing
a specific experimental condition. It may be expected
that the optimum SHG is stationary with respect to
small inhomogeneities in the crystal and other small
deviations from optimum conditions, and therefore
more reliable for quantitative measurements than non-
optimum SHG. Nevertheless, SHG measurements under
nonoptirnum and nonmatching conditions will continue
to be important because matching conditions can only
be achieved in relatively few crystals, and even in
those crystals only one (or a single linear combination)
of the nonlinear coefFicients is active under matching
conditions.

In this paper we shall describe the behavior of the
SHG by focused beams under nonmatching conditions
with no double refraction when the position of the
focus traverses the crystal. To include double refrac-
tion would entail considerable complication. It is sig-
nificant that detectable SHG can be produced by a
gas laser under nonmatching conditions, especially if
the beam is focused. In fact, a readily detectable SHG
has been observed under nonmatching conditions with
a 10-mtA' He-Ne laser operating in the Gaussian mode
at 1.15 p, when focused with a 3-cm focal length lens
into a number of piezoelectric crystals. These include
quartz, CdS, BaTi03, LiNb03, CuCl, and LiGaO~. The
SHG is very sensitive to the position of the focus, and
the maximum power is not generally produced with
the focus in the center of the crystal. The experiments
reported here were carried out in single crystals of

1. INTRODUCTION

HK properties of second-harmonic generation

(SHG) by focused laser beams have recently
been described in great detail by Kleinman, Ashkin,
and Boyd' (KAB). These authors have emphasized the
distribution of intensity in the SHG including the asym-

metry of the pattern, the sharp edge, and the 6ne
structure. They have also discussed the shift of the
pattern which can be produced by a slight change in

the index-matching conditions, and have drawn a dis-

tinction between nominal matching (the matching of

plane waves at the fundamental and harmonic fre-

quencies) and. optimum matching (the condition for
maximum SHG). Bjorkholm' has discussed the condi-

tions for optimum focusing of the laser beam without,
however, distinguishing between nominal and optimum
matching. Boyd and Kleinman' have considered the
optimization of SHG with respect to both focus and
matching conditions. Prior to this very recent work
considerations relevant to SHG by focused beams have
been presented by Maker et al. ,

4 McMahon and
Franklin, ' Francois and Siegman, ' and Boyd et al. v In
all of these treatments the focused laser beam has
been described as a Gaussian beam. '' The excellent
agreement between theory and experiment that has
been reported''~' indicates that SHG by Gaussian
beams is as well understood as SHG by unbounded

plane waves. ~" As a result it is now possible to make
'D. A. Kleinman, A. Ashkin, and G. D. Boyd, Phys. Rev.

145, 338 (1966).' J. E. Bjorkholm, Phys. Rev. 142, 126 (1966}.' G. D. Boyd and D. A. Kleinman (to be published).
4 P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage,

Phys. Rev. Letters 8, 21 (1962).' D. H. McMahon and A. R. Franklin, Appl. Phys. Letters 6,
14 (1965).' G. E. Francois and A. E. Siegman, Phys. Rev. 139, A4 (1965).

7 G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman,
Phys. Rev. 137, A1305 (1965).' G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(1961).' D. A. Kleinman, Phys. Rev. 128, 1/61 (1962).

' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

"N. Bloembergen and P. S. Pershan, Phys. Rev. 128,
(1962).

606 "J.A. Giordmaine and R. C. Miller, Phys. Rev. Letters 14,
973 (1965).
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LiNb03" with propagation normal to the optic axis,
which eliminates double refraction. "The matching con-
ditions could be controlled by means of the crystal
temperature. '4 The theory necessary for the interpreta-
tion of this type of experiment has been given by KAB
in terms of a function dehned by a definite integral

I (7.13) of KAB]:

The harmonic power in the crystal P2 is given by
L(8.44) of KAB]

which is the distance between successive maxima in
the harmonic intensity for SHG by a plane wave ki.
Ke allow l, to have either sign corresponding to the
sign of Ak.

2. EFFECT OF MISMATCH

A computer program has been developed along the
lines outlined in the Appendix of EAB for calculating

I
H

I
'. It is useful, however, to have asymptotic approxi-

mations in convenient analytical form to describe the
important features of the function. It may easily be
shown that when f'= $ (focus in the center)

I' =(4vrKI' '/bp')e ' ' '" ~'IHI' (2) lim H(o,0,$,$) =e '8(a.),
where Pi is the laser power in the crystal, bo the far-
field diffraction half-angle of the laser beam, l the
crystal length, f the location of the focus relative to
the incident surface, nl and n~ the absorption coefFi-

cients for the fundamental and harmonic, respectively,
and K contains the nonlinear coefFicient of the crystal. '
For the present case in I iNb03 this constant is"

Q = L32~prep/(Ne) ]dp~

where co is the second-harmonic angular frequency, n
the refractive index, and d3~ the appropriate nonlinear
coefIicient in the second-order polarization

P= 8 EE. (4)

The parameters in the function H(&r, lr,f,]) are defined

by
o = ,'bhk=7rb/l-„

e= pbn= pb(aq —pop),

(5)

(6)

f'= (2/b) f, (= (2/b) (t—f) . (7)

Here 6 is the confocal parameter' of the focus which is
related to the diGraction angle 80 and minimum spot
radius wo as follows

b=kgwp'=4/kgbp'

The neglect of double refraction is valid if l((l„where
l, is the aperture length defined in Ref. 7. The depar-
ture from nominal matching is speci6ed by

ok=2k, —k„ (9)

where ki, k2 are the propagation constants of plane
waves along the laser axis at the fundamental and
harmonic frequencies, respectively. The coherence
length has been definecP

l.= 2n./Ak, (10)

"K. Nassau, H. J. Levinstein, and G. M. Loiacono, Appl.
Phys. Letters 6, 228 (1965); K. Nassau and H. J. Levinstein,
ibid. ?, 69 (1965)."R.C. Miller, G. D. Boyd, and A. Savage, Appl. Phys. Letters
6, 77 (1965)."G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A.
Savage, Appl. Phys. Letters 5, 234 (1964).

where 8(~) is the step function

8(&x) =1, o &0
o =0.

=0, fr&0
(12)

Ke have set a=0 since for convenience we shall neglect
absorption. It was shown in KAB LEq. (7.20)] that
for

j»1, f»1. (13)

H(rr, 0 i', f) for all values of a can be written

H((r, 0,$,$)
= —8(-)-!I8(-)-8(- )1

1
+—I:»(ei)+deci(~f)+»(ek) —ici(~t)], (14)

2'
where Si and Ci are the sine and cosine integral func-
tions. This gives a continuous representation across
the step in (11) at a =0, and also shows that H con-
tains oscillatory structure. The structure is revealed
most clearly by the asymptotic form L(7.22) of KAB]

IH (,o,i-, g) I

1 1 1 cosa/= e
—"8(p)+ —+——e

—8(o.)
4~2~2 f 2 $2 ~op

cos&ri coso ($+1 )—e '8(o) + + . , (15)
2p.(rPi'g

valid for large &rf and e$

(16)

The behavior of IH(e, 0,$,$) I' as a function of the
matching conditions measured by o- is shown in Fig. i
for j=9.5. A distinct asymmetry about nominal match-
ing a=0 is characteristic of SHG when $»1. Since in
this example f'= j, the third and fourth terms of (15)
are equal and give rise to a simple fine structure
L
—2e ' coso(]/gros in the region 0(a(6. Vertical

lines indicate the maxima of —coso.(. For a&8 and
|7&0 the fine structure is dominated by the last term
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Y = 19

r=0

For comparison we recall' that the corresponding con-

dition for SHG by a plane wave k& would be

l= (s+-,')
i
l. i . (22)

0.4 The difference between (21) and (22) is due to the
presence of a focus somewhere in the crystal.

x)0

3. EFFECT OF MOVING FOCUS

In this paper we are primarily interested in the
behavior of ~H ~2 as a function of f', the focal position,
when

&+t =&=»lb

Therefore it is convenient to replace (1) with the
slightly different notation

(24)

2~a= R+iI (25)
FIG. i. Second-harmonic power according to (2) as a function

of mismatch for parameters shown. Vertical lines at left mark
the maxima of —cong. Yo show the detail a number of ampli6ed
curves are shown.

of (15).The peaks due to this term first appear around
fT 6 as small peaks between the main peaks; with
increasing 0. the small peaks increase while the larger
peaks decrease until they become equal around 0- 9,
and then all peaks decrease as required by the last
term of (15). The behavior illustrated in Fig. 1 may
be described in general as follows: (a) iH(o, 0$,$)~2
rises very rapidly with 0 near o.=0 and reaches a
maximum at

tr =2r/$,

=x/f, f&~.
(17)

E=1ll' fl,
/
. (21)

(b) IH(0) ~2 is very small for e.&0 and decays expo-
nentially as e ' for 0)0. (c) Superposed on the expo-
nential decay are two oscillatory contributions whose
periods depend on the position of the focus. (d) This
structure dependent upon the focus extends over the
range

0&0'&cry,

where the limit o~ is that value of o-&0 at which addi-
tional peaks first appear; from (15) we find that

or
—' exp(og) =22r(8)'12. (19)

(e) for o&0 and 0)~y the structure becomes inde-
pendent of the position of the focus; the maxima occur
at

~
a

i
= 22rlV/((+f) X=pOSitiVe integer. (20)

From (5), (7), and (10) this may be written as a con-
dition on the crystal length /

I (0,0,f',y) = ln
1+f2 —1/2

-1+(v—0)'-

(2g)

The integrations over a. and ~ have been described in
the Appendix of KAB. Ke shall neglect absorption

(29)

since this is the case of greatest interest. If the inte-
gration of (26), (27) is started at the middle of the
crystal f=-2y, one of the initial conditions is

I(e,0,-22',y) —=0.
If ~e

~
is sufficiently large an asymptotic expression can

be used for the starting value of E(0,0,22',y). It is
particularly convenient to start at P=—', p, I=0, R=0
if values of o can be chosen at which

t
H ~2=0 according

to (15).
The behavior of

~ H
~' as a function of focal position

g can be obtained from the asymptotic approximation

then R and I satisfy the di6erential equations

8R e"& ~
—«(y—f)

[cosoi+ 1 sino t']—
8$ 1+@ 1+(~ t.)'-

&&[«» (7 i)+(7—f)»n —(7—f)j (26)
e«t' ~-«(y—t')

[f cosaf sinef—j+
1+0' 1+(v-f)'

X [(y—l ) cosa (y t') s—ino(y— f') $
. —(27).

The integration of (26) and (27) can be started at
any value of f at which R and I are known from a
previous integration over o-. All numerical integrations
will ordinarily start at a =0, ~=0 where

R(0,0,l,y) = tan —'(y —f)+tan —'f'
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(15) providing the conditions (16) for the validity of
the approximation are satisfied. We see that IHI'
contains oscillatory terms varying as c os a(y f—), and
cosaf. We see further that this structure is present
only when ~)0. As the focus is brought near the
incident surface (f' decreases) the structure varying as
cosof increases in amplitude as Q', and a nonoscillatory
term increases as Q'. This shows that SHG should
increase as the focus nmves toward the surface when

Ia I
is large enough that (16) can be satisfied over a

sizable range of f. We can simplify the mathematical
description somewhat by considering only one surface,
the incident surface, and allowing the other surface to
recede to in6nity; thus we consider the case

and write (37) in the form (exact)

sins' ' sins''
R=e ds +e ds

Qo IS —00

sing/
ds +e ' dP

s 0

1

+e ' dP

dzee* sins)

dsee* sins'. (40)

(41)

The integral over s now gives

e&

ds ee' sinzf = (P sinai" —f cosof),
p'+p

Then (15) becomes

I a(a,Ol, ~)
I

o=e-o 8(a)y (1/4~oat o)

—e
—'8(a) (cosa''/s. af'), (32)

sins(
e~ ds (42).- se- 8(a.).

~oo

(31)
and a similar term in $ which vanishes s,s $-+ oa. The
first term of (40) becomes

valid when

The distance between consecutive maxima in the SHG
as a function of focal position f is given by

The second and third terms can be written

sinsg x
e—~ ds = e ' —sgn(l')+Si(al ), (43)

2

o.Af = 2x,

which by (5) and (7) is simply

Df=l. . (35) R(a,0,1', ao) =e ' s8(a)+—sgn(f')+Si(af)
2

(34) where sgn(f') =8(f') —8(—f') is the sign of f Thus . (40)
becomes (exact)

Thus the coherence length can be determined directly
by a distance measurement by moving the focusing
lens. It should be noted that hf is the motion of the
focus in the crystal; it is related to the lens motion by

hf=nAf(air). (36)

I(a.,0,l,y) = e—~
cosset cosz$—

cB gZ (38)

where (=y—f' according to (23). We introduce the
representation

(e*—1)/s= e~'dp, (39)

Observation of the structure also gives the sign
(positive) of 1,.

In order to discuss the interesting behavior as 1 ~ 0
we must obtain a better approximation than (32). It
can easily be shown that R and I in (25) can be repre-
sented by the integrals (s=0)

sinz f+sins(
R(a,0,f,y) = e dz e',

—00

+S(o,l) sino& —C(a, f') cosa&, (44)

where S and C are the functions

$(a f) =e dP ee,
P2+ f2

(45)

C(a, f') =e- dP ee .
o p'+p

(46)

Since these representations are exact they are continu-
ous functions of f; the discontinuity in sgn(l') is can-
celed by a discontinuity in C(a,f), and the logarithmic
singularity in Ci(a, f) is cancelled by a logarithmic
singularity in S(a,f') at &=0. It may be noted that
(44) is not continuous in a at a =0 because we have
taken the limit $~ ao in (42), but we shall not be
interested in the case a=0.

To evaluate the functions in (45) and (46) we assume
IaI))1 so that ee is more rapidly varying than the

In the same way we obtain the representation (exact)

I(a,0,f,~)=e—' Ci( fa) +S( ,a)lcosaf

+C(a,f') sinai. (47)
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0.8—
T=19 cr =0.25

4-X10

I
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I I I I I I I I-3 -2 -1 0 1 2 3 4 5 8 7 8 9

Pro. 3. Same as Fig. 2 except 0.=2.
Pro. 2. Second-harmonic power as a function of focal position.

The crystal surfaces are at &=0 and &=19, with all curves
symmetric about the midpoint g =9.5.

It now follows that the SHG is proportional to
(1—P) e-.

5'( fa)= + + + (48) l&(a 01' ")I'
a(1+1') a'(1+I')' a'f'

for the discontinuity in the first term of (51). This
discontinuity is of order e ' and therefore quite tolera-
ble in the region of interest a. ))1.

other factor in the integral. We may then integrate by
parts to obtain

2f e
~(~,f) = + ——+ (49)

(1+t') -'(1+V)' .l-

—30neglecting terms falling o6 with r faster than
Using (48), (49), and the asymptotic forms

+ "8(.-)e(l.)
4x'o'(1+ f')

e 'II(a)II(f)
(t' cosot sin&re—)+ (53)

~~(1+i')

Si (s)——sgn (z)—
2

coss sins
+ t ~ ~

7

32

sins cosa
Ci(s)-

3 s2
+ 0 ~ ~

we obtain the approximations

R(o,0,f', ~)
(1-f')—

= 2~e—0(a)8Q')+ +
--(1+i') "(1+V)

sino/

(50)

neglecting terms of order 0 ' and smaller. The second
term will ordinarily be very small if o-))1, but we retain
it in order to maintain the correct behavior as g ~ ~.
This is our final analytical result, valid (except for a
tiny discontinuity at t =0) for arbitrary positive or
negative f when Ial))1. We see that no structure is
expected when t (0 corresponding to the focus outside
of the crystal. It is obvious that an identical discussion
could be given of a large crystal with the focus ap-
proaching the exit surface and $ replacing f in (53).

9-X10 3

I(a,0,1,~)=

+- cosa&+, (51)
--(1+i') "(1+V)'-

(1—V)+
— (1+t') '(1+V)'-

+ +- sinof+ ~, (52)
--(1+i') "(1+i')'-

valid when Iaf I
)1.Although we have derived this

result assuming &&0, we notice that the terms of
order |' and Q~ that are present in (48), (49), and
(50) have cancelled out of (51) and (52). These ap-
proximations are in fact well-behaved as f —+ 0 except

I I I I I I I I f I"4 -3 -2 —1 0 1 2 3 4 5 6 7 8 9

Pro. 4. Same as Fig. 2 except o =3.15.
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Fio. 9. Schematic layout of experiment.

shows the complete absence of oscillatory structure
which theory predicts for o-& 0. Figure 6, 0=4, shows
a comparison of the curves for the finite crystal y=19
and the infinite crystal (y=1000). The difference is
primarily in the phase of the oscillation at the midpoint
/=9.5 which must be a maximum or minimum in the
finite crystal. Figure 7, 0.=6.27, shows the further
emergence of the large surface peak and the diminution
of the amplitude of the oscillatory structure. The peak
height 10.6)&10 ' is in fa,ir agreement with 6.4X10 '
predicted by (54). Finally Fig. 8, &r=9.98, shows the
oscillations barely visible and the surface peak sym-
metrical about /=0. For larger o- the curve retains
this shape, which is in excellent agreement with the
first term of (53). The peak 3.0X10 4 is in good agree-
ment. with the value 2.5X10 4 given by (54). A cal-
culation at o =22.27 gave the same shape with a. peak
5.2&10 ' in excellent agreement with the predicted 5.1
X10—'. Thus the approximate theory (53) is confirmed.

V. EXPERIMENTAL APPARATUS

Experiments designed to illustrate the various phe-
nomena discussed in the preceding sections ha, ve been
performed using a 1.0798-p, He-Ne Gaussian laser beam
focused into a crystal of lithium metaniobate, LiXb03.

—1.5
10

CT
—1 0 —0.5 0 0.5

I

1.0 1.5 2.0
I

The apparatus is indicated schematically in Fig. 9. The
dc-excited laser has Brewster windows and a half-
nonconfocal resonator geometry with the output, ap-
proximately 1 mW, emerging from the Rat mirror. A
simple iris placed near the curved mirror end of the
laser cavity is adjusted so that the laser operates in
the Gaussian mode. The laser resonator consists of a
3-m-radius-of-curvature mirror separated from the Qat
output mirror by 150 cm, while the lens is 130 cm
beyond the output mirror. This geometry gives a beam
radius equal to 0.0951 cm at the lens and a far-field
diA'raction angle equal to 4.79&10—' rad. ' The lens has
a focal length of 2.0 cm so that the confocal parameter
b for the beam focused into a medium of index n
equa, ls n&(3.05X10 ' cm. The far-field di6raction angle
8o of the focused beam is 4.72X10 '/n rad. For the
present case, n=2.23 at 1.08 IM, ," so b and 50 become
0.068 cm and 2.1&10 ' rad, respectively.

The LiNb03 single-doma, in high-optical-quality crys-
tal" is 0.637 cm long and has plane-parallel opposite
faces which contain the s axis—the optic axis (LiNbO~
is a negative uniaxial crystal, point group 3m). The

~ N0 I-
Q.

o& 8
Z &-

4
o
co 2

0 I

0.1
I

0,40 0.2 0.3 0.5
LENS POSITION (CM )

FIG. 10. Second-harmonic power as recorded on an X-V re-
corder as the focusing lens is moved by a mechanical drive. The
focus is at the crystal faces at the positions indicated by vertical
bars.
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Fxc. 11. ~. Measured harmonic power as a function of crystal
temperature. The 0 scale at the top was calculated from inde-
pendent data obtained using unfocused beams. The vertical
bars mark the positions of minima for an unfocused beam. Be-
cause of the phase shift of 180' associated with the f th

ars a at the maxima for the focused beam. This corresponds
to the case p = g =9.4 and therefore should agree closely with

~ ~
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values of 0 are not understood. Other data not shown
also in some cases exhibit a similar peak with the
focus near the back of the crystal.

To demonstrate the usefulness of the focused beam
technique for determining nonlinear coefIicients under
nonphase-matched conditions, the ratio of di&/d&i for
I iNb03 has been obtained with the 1.15-p He-Ne line.
Prior to the present measurement, the ratio was known
only for the 1.06-p pulsed Nd laser in which case
dpi/dpi was reported to be 9.0+3.0." In the present
experiment, the second-harmonic intensity versus lens
position was determined for the second harmonic due
to each of the two coefFicients. The only signi6cant
difference in the experimental arrangement between
the two measurements was that imposed by the polari-
zation requirements of the SHG process. In particular,
for d» the fundamental and harmonic are ordinary
and extraordinary waves, respectively, while for d33

both w'aves are extraordinary waves. Since the laser
polarization was not changed, these polarization re-
quirements necessitated a rotation of the sample by
90' about the beam axis in going from da~ to d33. From
Eqs. (3), (8), (10), and (55), one 6nds

(~i) wdu(1. )s3 '
(Pg lnaX)ii/(P2 lllaX)pi =

-(Pi)iidii(l )ii-

which can then be used to determine d&i/dpi. The co-
herence lengths are determined from the known in-
dices."It is found that dpi/dpi=6. 0&1.0 for the 1.15-p
line which is to be preferred to the previous measure-
ment. On a scale where d36=—1.00 for KH2PO4, dsy
=10.6&1.0, '~ so that d33 ——64&16 on this scale. It is
unfortunate that the second-order nonlinear optical
processes are such that this large coefficient cannot be
phase-matched.

This method for determining nonlinear coeKcients
has some advantages over other techniques. ""Several
of these advantages are: it is fast, it can be used with
a small sample, it requires only one moderately good
surface on the sample, and it is not restricted to phase-
matchable materials. One disadvantage is that this
technique requires knowledge of the coherence length.
Therefore other independent measurements will usually
be necessary to determine l, since it cannot be obtained
from a second-harmonic-intensity —versus —lens-position
plot for l,«b which will usually be the case.

6. SUMMARY

The effects of moving the position of the focus in
SHG have been described theoretically and observed
experimentally. The sects depend greatly upon the
coherence length, and are particularly interesting when
the mismatch parameter 0 defined by (5) lies in the
"J. Ducuing and N. Bloembergen, Phys. Rev. Letters 10,

474 (i').
'9 A. Ashkin, G. D. Boyd, and J, WiI. Dziedzjc, Phys. Rev.

Letters 11, 14 {1963).

range 1&o.&10. This range is illustrated in Figs. 2—4,
6—8. %hen 0.&0 or o-&10 the hne structure sensitive
to the coherence length is absent or very weak as
shown in Figs. 5 and 8. Kith the focus at the center of
the crystal the dependence of SHG on mismatch is
shown in Fig. 1.These curves were calculated by high-
speed computer directly from (1) and (2) derived pre-
viously. ' As an aid in understanding the dependence
on focal position a new asymptotic approximation not
previously given has been developed for the non-
matching case ~0.~))1.This approximation (53) is well

behaved at all positions of the focus and accounts
satisfactorily for the peak of intensity at the surface
and the fine structure. The neglect of double refraction
and absorption is valid if the crystal length is less
than the aperture length~ and less than the absorption
length for the laser or the harmonic.

Experiments are reported using a crystal of LiNb03
and a He-Ne gas laser. The crystal was oriented to
eliminate double refraction, and the coherence length
could be controlled through the crystal temperature.
The SHG as a function of temperature with the focus
in the center of the crystal is given in Fig. 11, which
is in satisfactory agreement with the calculated Fig. 1.
The dependence on focal position for various values
of 0 is shown in Figs. 12—21. The same (arbitrary)
power scale is used in Figs. 11-21.The peaking at the
surfaces, the fine structure, and the absence of 6ne
structure for 0-&0 and 0)10 are found in qualitative
agreement with theory. A satisfactory quantitative
comparison with theory for the case 0-=2.14 is shown
in Figs. 14(a) and 14(b). To obtain agreement an
appropriate amount of the 6rst term of (53) represent-
ing the harmonic of the 1.15-p, laser line was added to
the calculated curve for a =2.25. Extra lines can easily
be taken into account in this manner if they have
~0

~
&10, since then the shape of the curve is a uni-

versal function independent of 0. and given by the
first term of (53). Finally the 1.15-p laser line having
cr 50 was used to measure the ratio dpi/dpi for LiNbOi
by observing the peaks at the surface produced by the
extraordinary and ordinary components of the laser
beam.

Ke conclude that the theory of SHG in regard to
the dependence on coherence length and position of
the focus is in satisfactory agreement with experiment.
Focused beams under nonmatching conditions are con-
venient for quantitative measurements of nonlinear
optical coefficients providing the coherence length is
known.
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