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order with a finite change in slope at the transition

point. The change in slope is related to the electronic
structure and the spin and spin-orbit effects by an

expression which is a generalization due to Maki of
Abrikosov's formula for the spin-independent case. The
fair agreement between theory and experiment for the
slope of the magnetization curve suggests that Abriko-
sov's vortex lattice solution may be an appropriate
description of the magnetic structure even when spin
effects are substantial.

FIG. S. Plot of the normalized square root of the measured
area enclosed between the superconducting- and normal-state
magnetization curves versus the square of the reduced tempera-
ture t= T/T, o. These areas are for superconducting curves taken
in increasing fields {see Fig. 3). For ideally reversible curves the
ordinate is expected to be proportional to the "thermodynamic
critical field" H, . These results are thought to be consistent with
the view that the II. values are not appreciably altered by spin
effects.

(3) The behavior of the magnetization of Ti-16 at.%
Mo in the vicinity of the upper critical field suggests
that the transition to the normal state is of second

ACKNOWLEDGMENTS

Special thanks are owed to D. H. Leslie for his
excellent technical assistance in developing the ap-
paratus and acquiring the data. I wish to thank K.
Maki for the pre-publication use of his calculations,
and finally I wish to acknowledge helpful discussions
with T. G. Berlincourt at whose suggestion this study
was undertaken.

PHYSICAL REVIEW VOLUME 148, NUMBER 1 5 AUGUST 1966
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The pairing theory of superconductivity is extended to treat systems having strong electron-phonon
coupling. In this regime the Landau quasiparticle approximation is invalid. In the theory we treat phonon
and Coulomb interactions on the same basis and carry out the analysis using the nonzero-temperature
Green's functions of the Nambu formalism. The generalized energy-gap equation thus obtained is solved
(at T=0'K) for a model which closely represents lead and the complex energy-gap parameter A(~)) is
plotted as a function of energy for several choices of phonon and Coulomb interaction strengths. An expres-
sion for the single-particle tunneling density of states is derived, which, when combined with 5((y), gives
excellent agreement with experiment, if the phonon interaction strength is chosen to give the observed
energy gap &0 at zero temperature. The tunneling experiments therefore give a detailed justification of the
phonon mechanism of superconductivity and of the validity of the strong-coupling theory. In addition, by
combining theory and the tunneling experiments, much can be learned about the electron-phon interaction
and the phonon density of states. The theory is accurate to terms of order the square root of the electron-ion
mass ratio, 10 ~10 '.

I. INTRODUCTION
'N the original BCS theory of superconductivity, ' a

- ~ central role was played by the concepts provided by
Landau's theory of a Fermi liquid. ' In Landau's theory,

*This work was supported in part by the National Science
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of Matter, University of Pennsylvania, covering research spon-
sored by the Advanced Research Projects Agency. Part of the
work reported here was performed as a portion of a thesis of one
of us (J.W.K.) in partial fulfillment of the requirement for a Ph. D.
degree in Physics, University of Illinois, 1963.

t Alfred P. Sloan Foundation Fellow.
f. Present address: Department of Physics, Cornell University,

Ithaca, New York.' J. Bardeen, L. N. Cooper, and J. R. SchrieRer, Phys. Rev.
l08, 1175 (1957).' I . D. Landau, Zh. Kksperim. i Teor. Fiz. 3{},1058 (1956).

the excited states C.~ of the Fermi liquid are placed in
one-to-one correspondence with the excited states of a
free Fermi gas. That is, the excited states C~ are
labelled by the occupation numbers u~, of the "quasi-
particle" states of momentum k and spin component
s(& or l) in analogy with single particle occupation
numbers 'plk of the free Fermi gas. Presumably the
Landau configurations 4 v contain most of the man-
b dody correlations occurring in the superconducting
energy eigenfunctions +, except for those correlations
which are specific to the superconducting phase, i.e.,
the pairing correlations.

Since the states 4~ form a complete set, a state +,
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of the super phase can be represented as a superposition

of the Landau configurations. This representation has
the attractive feature that in describing a given%', only
a limited subset of all C~'s are required. This great
simplification of the configuration interaction problem
is due to two facts. Since the Landau configurations
already contain the correlations present in the normal

phase, the normal phase type correlations present in +,
will not mix different 4 ~ s. |A'bile the remaining pairing
correlations do mix various 4~'s, these states are re-
stricted to a small subset by the pairing condition of
the BCS theory. In simple cases, this condition corre-
sponds to the requirement of correlated occupancy of
time reversed states of the Landau theory (e.g. , k&, —k&

for a translationally invariant system).
The above simplifications reduce the configuration

interaction problem to a soluable form if one assumes the
validity of the Landau theory and assumes a simple two-

body interaction between Landau's quasiparticles. This
simple but powerful scheme has led to a detailed under-
standing of the properties of most superconductors. '

There is, however, a class of superconductors such
as Pb, Hg, etc. , which cannot be treated by such a
procedure. The difhculty can be seen in the following
manner. In constructing a superconducting energy
eigenfunction +„the configurations C~ which give the
largest contribution to the pairing correlation energy
are typically those in which quasiparticles are excited
above the Fermi surface by an energy of order the
average phonon energy Li.e., =Au&n, where con is the
Debye frequency]. The average phonon energy enters
here because the attractive interaction which causes
superconductivity is due to virtual exchange of phonons,
and this interaction is strongest when energy is nearly
conserved during the emission or absorption of the
virtual phonon.

Now the Landau theory works best when quasi-
particles are excited to states k in the immediate
vicinity of the Fermi surface k p. In this case an effective
mass approximation for the quasiparticle energy ez can
be used. LNote: ez ——0 for

~
k

~

=kr, that is, quasiparticle
energies are measured relative to the Fermi surface. ]
More important is the fact that the lifetime rg of these
low-lying excited states is so long that the corresponding
level width F~= 5/2rl, can be neglected in comparison
with ~~. This is the approximation of the Landau theory.
As one goes to higher energy quasiparticle states, the
level widths of the states increases due to the increased
rate for a quasiparticle to decay by emitting a phonon.
An important question is then whether the lifetime of
a quasiparticle of energy e&= Ace& is so short that the
level width of these states is of order the excitation

3 J. Bardeen and J. R. SchrieGer, Progress iw Lour Temperature
PIIysic s (North-Holland Publishing Company, Amsterdam, 1961),
Voj. III.

energy e~. If this is the case, as it is for strong-coupling
superconductors, the Landau theory cannot be used as
a basis for treating superconductivity in these metals.
This is not to say that the Landau theory does not hold
in the normal phase of these metals at temperatures
small compared to the Debye temperature. Rather, the
pairing interaction involves important virtually excited
quasiparticle states which cannot be handled by the
Landau theory (even at zero temperature). For weak-
coupling superconductors, such as Al, Zn, etc., the
quasiparticle lifetimes are sufficiently long that rea-
sonably well-defined states exist even for e&=Pro&.
Therefore one can treat the weak-coupling supercon-
ductors from the point of view of the Landau theory,
as in the BCS approach.

In addition to this problem of quasiparticle damping,
one is faced with the problem of treating the retarded
nature of the phonon interaction between electrons.
This is a nontrivial problem even for weak coupling
superconductors. As Eliashberg showed, 4 even in the
weak-coupling limit the correct form of the retarded
interaction which enters the energy-gap equation differs
from those given by Frohlich, ' by Bardeen and Pines, '
and by Bogoliubov. '

Viewed as a Geld-theoretical problem, it might appear
that one has little hope of handling this strongly coupled
fermion-boson system in an accurate manner. The
reason that one can give an essentially exact treatment
of the problem follows from an important discovery of
Migdal' in his treatment of the coupled electron-phonon
system in normal metals. He showed that in normal
metals one can calculate the one-electron self-energy to
an accuracy of order (m/3E)'~' (m=—electronic mass,
M=—ionic mass) 10 ' by what amounts to second-
order self-consistent perturbation theory. This re-
markable result does not depend upon the strength of
the electron-phonon coupling but rather depends on the
existence of the small parameter (m/M)'I' in the
problem. The generalization of Migdal's result to
superconducting metals was given by Eliashberg' and
by Nambu. '

In this paper we generalize the Eliashberg-Nambu
scheme by taking account of the Coulomb as well as
the phonon interactions between electrons. "Equations

' G. M. Eliashberg, Zh. Kksperim. i Teor. Fiz. 38, 966 (1960)
LEnglish transl. : Soviet Phys. —JETP 11, 696 (1960)g.' H. Frohlich, Phys. Rev. 79, 845 {1950).' J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).' N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
/English transl. :Soviet Phys. —JKTP 7, 41 (1958)g.

A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
)English transl. : Soviet Phys. —JKTP 7, 996 (1958)j.' Y. Nambu, Phys. Rev. 117, 648 (1960).' Using a similar ' realistic" interaction, P. Morel and P. W.
Anderson have given an approximate solution for the pairing part
of the self-energy LPhys. Rev. 125, 1263 {1962)g.A numerical
solution for the pairing self-energy was reported by G. J. Culler,
B.C. Fried, R. %'. Hu8, and J.R. Schrieffer, Phys. Rev. Letters
8, 399 (1962).In both these calculations the "normal" part of the
self-energy which is important for strong-coupling superconductors
was neglected.
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determining the electronic self-energy as a function of
temperature are derived in Sec. II. In Sec. III an ex-
pression for the e6ective tunneling density of states is
determined. This density of states depends upon the
complex, frequency-dependent gap part of the electronic
self-energy. In Sec. IV the parameters of the model used
for Pb are discussed and the solutions of the self-energy
equations presented. Using these solutions, the e6ective
tunneling density of states is calculated and compared
to the experimental. tunneling data. "The results show
that tunneling measurements provide a delicate probe
of the structure of the electronic self-energy and reQect
the properties of the underlying eAective electron-
electron interaction.

(2.1a)

whose components c~p and c»t destroy an electron in
a Bloch state of crystal momentum p and spin orien-
tation t, and create an electron in the time reversed
state —

p&, respectively. The bare-phonon Geld operator

PqX ~qX+ ~—qX (2.1b)

is a linear combination of a destruction and a creation
operator for bare phonons of mode ) and wave vector
q and —q, respectively. The Hamiltonian of the system
can be expressed in terms of +~ and yq~ as

H=Q ev@vtr4+v+Q 04xa4x~a4x
qX

+ Z gvv'x&v-v'x+v' r4+v
pp'X

II. SELF-ENERGY EQUATIONS

A. Structure of the Equations

To treat strong coupling superconductors, we use the
forxnalism of Nambu. ' In this scheme one introduces a
two-component electron 6eld operator

scheme which is formally extended periodically through-
out q space to allow umklapp processes to be handled
automatically.

Since we are ultimately interested in deriving ex-

pressions for the thermodynamic and transport proper-
ties of superconductors, we concentrate on calculating
the Green's functions which determine these quantities.
The one-particle thermodynamic Green's functions are
defined in the Nambu scheme to be

G(P r) = —(&T('Pv(r)Pv'(0))) (2 3a)

Dx(41,r) = —(I'{s 4x(r) s 4xt(0) }), (2.3b)

where the average is taken in the grand canonical
ensemble

(A)—=Tr(e e~A)/Tre e~.

The operators in (2.3) evolve with the "imaginary
time" is according to

+,(r) = e~&, (0)e (2.3c)

e,x(r) =e~ v,x(0)e (2.3d)

The symbol T represents the conventional v-ordered
product and the operator U in (2.3a) is given by

t.I = 1+Rt+R,
where Rt converts a given state in an E-particle system
into the corresponding state in the %+2 particle
system; thus for the ground states

Etio,z)= io, X+2), (2.4a)

ZiO, X)= io, X—2), (2.4b)

etc. Notice that G is a 2&(2 matrix, whose diagonal
components G~~ and G~2 are the conventional Green's
functions for up-spin electrons and down-spin holes,
respectively, while G» and G» are Gorkov's" F and Il*
functions which describe the pairing condensation. Due
to the periodicity of G and D with respect to r, these
functions can be represented by the Fourier series

+2 2 (p4p4I p. lp&pm)(44 r4+v )
PISS%'394

X (Vv, tr4+v4)+const. (2.2)

G(p, r)=1/P P e
—' "'G(p,uo„), (2.5a)

Here e~ is the Bloch energy measured relative to the
Fermi energy EJ, and v~, v~ and v3 are the Pauli
matrices. Ke work in units with A.=1.The quantities
Q, g and V, represent the bare phonon frequencies, the
bare electron-phonon coupling, and the bare Coulomb
interaction between electrons respectively. Transla-
tional invariance of V. restricts y~+p2 —ps —y4 to be
zero or a reciprocal lattice vector K. Ke work in a box
of unit volume and impose periodic boundary con-
ditions. The electrons are described in an extended zone
scheme and the phonons described in a reduced zone

"We have previously reported some of these results, J. R.
SchrieBer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev. Letters
10, 336 {1963).

Dx(4Lr) = 1/P P e '""'Dx(q,iv„), (2.5b)

where
co = (244+1)4r/P, v„=2nrr/P, (2.5c)

"L. P. Gorkov, Zh. Kksperim. i Teor. I'iz. 34, 735 (1958)
LEnglish transl. :Soviet Phys. —JETP 7, 505 {1958)$.

n being an integer.
The one-electron Green's function for the noninter-

acting system is easily seen to be given by

G'&)(p)ND~) = [zoo~ evr4] (2.6)

The electronic self-energy Z(p, ice ) (a 2X2 matrix) is
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then defined by Dyson's equation

LG(p i~ )] '= LGo(p i~ )] '—&(p i~ ) (2.7)

An important feature of the Nambu formalism is that
the familiar Feynman-Dyson perturbation series rules
(and their finite-temperature generalization) hold in
calculating the G and D.

Our procedure is to set up an integral equation for
Z(p, ice„)which treats the electron-phonon interaction
accurately to order (m/M)'~' s/vv AD/Ev, where
m/3f is the electron-ion mass ratio, s/vv is the ratio of
speed of sound and the Fermi velocity, and con/Ev is
the ratio of the Debye energy and the Fermi-energy.
That such an integral equation can be found in closed
form was shown for normal metals by Migdal' and for
superconductors by Eliashberg. ' In their analysis the
theory was worked out at zero temperature and the
Coulomb interaction V. was neglected. Thus they took
0 and g to be the appropriately screened quantities as
in the Frohlich model of the coupled electron-phonon
system. Since the Coulomb interaction plays an im-
portant role in a consistent theory of superconductivity,
we work with the Hamiltonian (2.2) rather than that
used by Migdal and Eliashberg and carry out the
analysis at finite temperature.

In setting up an integral equation for Z it is important
to note that we are mainly interested in physical ex-
citations of energy or&«Ep. Higher energy states are
not thermodynamically populated at superconducting
temperatures. In addition, electron tunneling, electro-
magnetic absorption studies, etc. yield interesting in-
formation about the slpercondlc6ng state primarily in
this low-energy domain. Thus we are interested in the
structure of Z(y, ia&„)for p pv and ~co„~(&Ev.In this
range the Coulomb interaction leads to important
screening and renormalization eA'ects, however it does
noI, lead to interesting variations of 2 in a region
about the Fermi surface as is evident on dimensional
grounds. Thus, for our purposes the Coulomb inter-
action serves mainly to renormalize the bare electron
and phonon-energy spectra and screen the electron-
phonon interaction, as assumed in the Frohlich model.
In addition there remains a short range (screened)
Coulomb repulsion which opposes superconductivity.
As we will see, this short range (almost instantaneous)
interaction must be handled in a manner different from
that used for the (strongly retarded) phonon inter-
action between electrons.

FrG. 1. Electron self-energy diagrams for the screened Coulomb
(dashed line) and dressed phonon (wavy line) exchange by the
self-consistently dressed electron propagator (solid line).

Our basic approximation for Z(p, ia& ) is shown
schematically in Fig. 1. The solid line represents G as
given by Dyson's equation (2.7) in terms of this self-
consistently determined self-energy. In the first dia-
gram of this figure, the dashed line represents the
electronically screened Coulomb interaction. If the
Bloch functions were approximated by plane waves,
the screened Coulomb interaction would be given by

U(p, iv„)= I V, (q)/~(q, iv„)];
V, (q) = (4pre'/qP), v =co„—~„ (2.8)

where x(q, iv ) is the electronic dielectric function.
In the second diagram of Fig. 1, the wavy line

represents the phonon propagator Dx(q, iv„) and the
right and left dots represent the electronically screened
electron-phonon coupling functions, gP, P .q(iv„) and

gP q, v, z(iv ), respectively. For a plane-wave approxi-
mation to the Bloch function, g would be a funciion
of the momentum and energy transfer (g,iv„)alone and
one would have

gQ&( v~) Lgp p a&/x—( q, v~)]. (2.9)

In general, g will depend separately upon the initial
and final states, p and p —q, of the scattered electron if
crystalline anisotropy effects are important. For-
tunately, g(iv ) always enters a.s a factor multiplying
D(iv„).Since D drops to zero as I/v„' for

~
v„~)con,

and dynamical (as opposed to static) electronic screen-
ing enters only for v Ep))coD, one can safely replace

»t7. q(i v) by its static limit gPP q(0)=—gPP x. Further-
more, since the (longitudinal) dielectric function is
essentially identical in the normal and superconducting
phases, g». q can be considered to be a fixed parameter
determined in the normal state. "While the long wave-
length transverse dielectric function is very different
in the two-phases this need not concern us since: (a) for
phase space reasons only short wavelength phonons
contribute appreciably to the pairing correlations;
(b) shear deformation, umklapp and collision drag
interactions dominate the coupling for phonons of
interest to us. These interactions, however, should not
be affected by the Meissner currents which modify the
long wavelength transverse dielectric function in the
superconducting phase. Therefore g»), is considered
to be a fixed parameter which we attempt to determine
from experiment. Vnfortunately, first principles esti-
mates of g are not fully reliable at present. '4

In our approximation, phonon corrections to the
electron-phonon vertex as shown in Fig. 2(a) have been
neglected since they lead to corrections (m/M)'~' as
discussed by Migdal' and Eliashberg. ' The essential
point is that because of the rapid decrease of D(iv )

"R.K. Prange, Phys. Rev. 129, 2495 (1963),
"Using a pseudopotential adjusted to fit high-temperature

resistivity measurements, D. J. Scalapino, Y. 97ada, and J. C.
Swihart, Phys. Rev. Letters 14, 502 (1964}, have calculated an
effective electron-phonon coupling which is in good agreement
with the results reported here.
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I

v
I
)coD, only vertices in which the energy transfer

Ice„—co„
I

is of order orD or less contribute appreciably
to Z. For the low lying excitations of interest to us this
restriction requires that I&u I

and Ice ~
I

separately be
&~D. It follows that the propagators of the inter-
mediate electronic states will be small unless the Bloch
energies of these states (measured relative to the
Fermi surface) are also of order coD. For general values
of the phonon momenta q and q', at least one of the
intermediate states will be far from the Fermi surface
(having an energy of order Ev) so that a vertex cor-
rection of order cuD/E~ results. Physically this result
corresponds to the fact that only intermediate states
with particles near their mass shells contribute appre-
ciably to Z. Because of the large disparity between the
speed of sound and the Fermi velocity, this restriction
severely limits the phase space for virtual transitions.
Only if phonons are absorbed in the inverse order to
that in which they are emitted q&, q&, , q„&,q„~q„,
q„&, . , q&, qj will be an appreciable contribution
result, i.e., phonon line crossing graphs like that of Fig.
2(a) can be neglected.

w ~ y w w

Fio. 2. Vertex corrections to the electron self-energy.

The Coulomb corrections to the electron-phonon
vertex (other than screening, which has already been
included) are not so simple. The lowest corrections
shown in Fig. 2(b), lead to a significant change in the
effective electron-phonon coupling. Fortunately, these
processes lead to essentially constant scale factors
multiplying g». q of Fig 1, as Rice has shown. "Using
this fact we will lump these vertex corrections in with
g to be determined from experiment. Notice that we
must not include phonon corrections of the electron-
Coulomb vertex if we include the corrections shown in
Fig. 2(b), since this would double count graphs. Finally,
there remains the Coulomb corrections to the electron-
Coulomb vertex. These again lead to scale factors on
the screened Coulomb interaction of Fig. 1. Since
phonons are not involved here, these corrections will
not give interesting energy variations of z for

I
ar„I(con,

and we lump them in with the screened Coulomb
interaction V.

In passing we note that in real metals, crystal
momentum is conserved modulo a reciprocal lattice

"T.M. Rice (private communication).

/ ) /
f I r

P p+K P P p+K

/
I

P P+K
W W +

P P

t
I I ~

P+E. P

r q ~ ~ r
I t 1 { 1+ +p+K p+K P

FIG. 3. Umklapp corrections to the irreducible self-energy.
Here E and E' are reciprocal lattice vectors.

vector K. Therefore, if Z is defined by (2.7) (Dyson's
equation) we should, strictly speaking, include self-
energy graphs of the form shown in Fig. 3, where the
momentum of the electron line connecting the various
"irreducible" self-energy parts is not equal to the
external electron's momentum. Since we are interested
in electronic states p near the Fermi surface, a state
y+I where K is a reciprocal lattice vector, will in
general be far from the Fermi surface (unless p happens
to be very near a zone boundary). Therefore, the state
p+K will have high excitation energy and it will in
general lead to a small effect in determining the ex-
citation spectrum except for states very near zone
boundaries, which are of no special importance to us.
Therefore, we neglect diagrams of the type shown in
Fig. 3 in calculating Z.

In view of the above discussion, the integral equation
determining Z(p, ice„) is directly obtained by writing
down the contributions corresponding to the two dia-
grams of Fig. 1.

&(p ~ ) = —Z &6(p,~ )r3
P p'n'

&&{2 Ipvv ~l'D~(p —p', ~-—i~. )

Dg(q, iv ) = dv Bx(q, v) {Li/(iv —v) g

Here, the spectral weight function is given by

&~(q,v) = (1—e'"2 e "'1(J
I «~li} I'

Xb(v —E+E;)/P e
—eE'), (2.11b)

+1'(p—p')), (2.1O)

where for simplicity we have taken the screened
Coulomb interaction to be a function of the momentum
transfer alone. The phonon Green's function has a
spectral representation of the form
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, 5%)l—
P

C
P

-3r
)

P

Pi&c

Z plane The contribution from the circle at infinity can be shown
to vanish. This expression for Z(p, ice ) can be analyti-
call continued with respect toior„to the real axis from
the upper half-plane by replacing ia by ~+i8 I.n m

form Z is a function of the continuous (real) variables

p and co. Note that (2.14) actually represents four
coupled integral equations which determine the four
components of the 2X2 matrix Z. It is convenient to
express these components as the coeScients of the
Pauli matrix representation of Z:

Z(p, (a)=—(1 Z(p—,co))o)1+y(p,co)rg+X(p, (o)rz, (2.15)

FIG. 4. Contours for changing the summation in the
self-energy equation to an integration.

&(p,~ )=—1
dz r3G(p', z)rz

C

dv Bg(p—p', v)
zoo z v

X
1+e ~* Ne„—z+v 1+e~*

where
III.&=~-l ). (2.11c)

By substituting (2.11a) into (2.10) and transforming
the n-summation to an integral along the contour c
shown in Fig. 4, one 6nds

e(p~~) = "+~(p~~) (2.16b)

Thus, the calculation of G is reduced to solving three
coupled equations for the functions Z, 4 and X which
determine the electron self-energy. The function
d(p, s&) =C(p,s&)/Z(p, cv) plays the role of the energy
g pap parameter of the pairing theory and vanishes in
the normal state.

fwhere we have chosen phases so that the coefFicient o
rz is zero. It follows from (2.14) that Z, C and X are
even functions of co. By combining (2.15) with Dyson's
equation (2.7) one finds the analytically continued
one-electron Green's function is given by

(aZ(p&(o)1+ &(p,a&) rz+4(p, (a) r~

&Z'(p, ~)—e'(p, ~)—4'(p, ~)

where

——V(p —p') tanh(Pz/2) . (2.12)

B deforming the contour c to c' (see Fig. 4) and usingY
the relation

G(p, co+ib) G(p, (u——ib) = 2i ImG(p, u)+ib), (2.13)

which follows from the spectral representation of G, one
obtains

1
&(p,~.)=—Z da)' Iml r+(p', a&') r,)

00 1
X Z Igvv &I dv'Bg(p —p', v) ~.—or' —v

X -+
2+8 ~" 1'„—or +v 2+e~"

+yV(p —p') tanh(pcs'/2)

dv r3I G(p', uu„+v)+G(p', ~ v))ra-
IPvv'&I B&(p p ~"

X

p/g

1—et'"

B. Reduction of the Self-Energy Equations

To obtain explicit solutions of the integral equations
one is forced to use a computer. Fortunately a number
of simplifications can be made which greatly reduce the
labor involved in carrying out the computation. (1) For
most purposes, X, which arises from the Coulomb
interaction, can be included as a simple scale change
of ep which is the same in the normal and supercon-
ducting phases. Furthermore, X is a slowly varying
function of or for or &20or~ so that ~ depends just upon
p. (2) Since Z and 4 vary with p on a scale of order Pv
we can set

I pl =pv except where the behavior of these
functions far from the Fermi surface is important.
(3) By using these simplifications, the integration over
the magnitude of p' (or more generally ev. , for an
anisotropic Fermi surface) can be explicitly performed
for the terms in (2.14) involving the phonon interaction.
%bile the corresponding integration cannot be carried
out for the term arising from the screened Coulomb
interaction, a pseudo-potential U, can be introduced
which accounts for virtual transitions far from the
Fermi surface. Kith the aid of U, one can then carry
out the integral over ep. so that one is left with two
coupled equations determining Z and 6, which for
an isotropic (dirty) superconductor are one-dimensional
equations involving the frequency variable or. In a clean
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For the purpose of determining the single particle
I-U characteristics, the tunnel junction can be described

by the Hamiltonian

refer to the classical turning points, for a given energy
of the tunneling particle, and a given barrier potential
U(x) in the oxide layer. Here k, (x) is given by

IJ=HI,+H„+IIg. (3 1) L2mU (x)—k
(
P]'~'.

Here IJ& and H„are the full many-body Harniltonians
for the superconductor (l) and normal metal (r),
respectively, and II& is the e6ective tunneling inter-
action discussed by Bardeen" and Cohen, Falicov and
Phillips

The first term in IIz gives rise, when a bias voltage
is applied, to a. current flow from l to r. The transition
probability per unit time for an electron to tunnel from
3 to r is given by

+1' 2 (2 klkr('k)s ( krs+H. ( ) ~ (3.2) ~-)=2x(ZI(&l 2 &kt)~k t(k) II)l'S(&~—Zr)),
F k~k&s (3 5)

12» I
=~~, ii~ii exp k), (x)dx

4x2p (l)p (P) (3 3)

Here c),„tcreates an electron in the Bloch state (lrs) in
metal (l) and c)... destroys an electron (lr„s) in metal
(r).

As Bardeen has shown, the tunneling matrix element
can be written in terms of the expectation value of the
current density operator in the oxide barrier. Since the
density of electrons drops to a small value in this region,
an independent-particle approximation is presumed to
be valid in evaluating Tk,k„.Using Bardeen's expression,
Harrison" has evaluated the tunneling matrix element
within the %KB approximation and 6nds

where F and I refer to the final and initial states,
respectively, and the angular brackets to an ensemble
average over the initial states.

In Appendix B it is shown that this expression can
be reduced to

'M g~) =
A))s

i6x'
d~ &r"(~) (1 f(~))—

X Vr'((d V)f((d —V) . (3.—6)

Here 3
~ ~

is the area of the barrier, t the eGective square
of tunneling matrix element (see Eq. (BS)j, and
f(&v) = (e(' +1) ' is the Fermi factor. Most important,
3 &(co) the effective tunneling density of states, is given
by

Here p('"' are the one-dimensional density of states in
metals (l,r) for motion in the direction perpendicular
to the barrier interface:

.Vz (cv) = depA (k,co),

where A (k,&u) is the spectral weight function

(3.7)

pg =I./mdkg/d$gg, . (3 4)

where L is the length of the metal in the direction
perpendicular to the oxide, k& is the component of the
wave vector perpendicular to the oxide and $~, is the
energy associated with motion in this direction. Since
the single-particle basis functions for the metal would
be of the form

1/2

e'"i i' sin(k&x+y), ),I.

~ J. Bardeen, Phys. Rev. Letters 6, 57 (1961).
2' M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.

Letters 8, 316 (1962).
~ W. A. Harrison, Phys. Rev. 123, 85 (1961).

if one used a free-electron model, we should only
consider positive values of k, with a mesh of gr/I. .
Since one generally performs averages over smooth,
symmetric functions of k&, one can alternatively include
positive and negative values of k, if a mesh of 2m./I is
used for k&.

The delta function in (3.3) involving the components
of k parallel to the barrier reflects the fact that the
transmission is specular. In the exponential, x~ and x„

i
A (k,co) =—

~
ImG() (k,(0) j . (3 g)

d(d Nr"(~) f((d)1Vr'(~ V)(1—f((0—V')). —

Here Gii is the one-one component of the Xambu
Green's function. %e observe that expression for zv„g
(outside of numerical factors) is just what one might
write intuitively —viz. , the current that flows is pro-
portional to the product of number of electrons capable
of tunneling and the number of states available to be
tunneled into. However, it is not that simple. For
example, at T=O'K, the single-particle tunneling
current arises solely from a process in which one
electron from a superfluid pair in / tunnels through the
barrier to a single-particle state in r. The remaining
electron of the pair fills a single-particle state in 1.. The
Fermi factors and density of states perfectly represent
this case.

For temperatures greater than T=O'K, the other
term in H~ gives rise to a current flowing from r to 3

which is proportional to
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Thus, the tunneling current density j is given by

ej=—(re~i —rec~),
AI(

where E»= (,'+ lP (E~))'/' and hence

discs(ce) =de~/dEa] s .= [~ Ad—h(co)/&/

(c/' —A'((o) )'/'j. (3,16)
or

et

j.6x'
der Er"(ce)fit r'(ce —V)

X(f( —V)—f( )). (3.9)

This expression is not correct even when the energy
variation of the gap is small and of course fails com-
pletely for those energies where the gap varies rapidly
with energy and/or has a large imaginary part.

For normal metals, one can show that the tunneling
density of states is just the single-particle density of
states in the absence of electron-phonon interactions,
since

de/, A (k,co) = 1+0
M

(3.10)

j[=et/16s'j dcd Sr"(cd),

in this case. Here m/M is the electron- to ion-mass ratio.
Thus, electron-phonon interactions cancel out to order
(m/M)'/2 in the tunneling density of states for normal
metals. "Therefore, the normal-superconductor tunnel
current density is given by

IV. ZERO-TEMPERATURE SOLUTIONS OF
THE SELF-ENERGY EQUATIONS AND
CALCULATION OF THE TUNNELING

DENSITY OF STATES

Taking the zero-temperature limit of the self-energy
equations (2.21) and (2.27) one finds that the energy
gap A(c0) =p(co)/Z(co) satisaes the integral equation

t/0 c A(~')
A(~) = der' Re

Z (cd) 0 (~~2 A2 (~&))1/2

X[E+(cd' cd) X(0)U—,j, (4.1)

and the renormalization parameter Z(cu) is given by

and
dj/d V= [et/1&r']Nr'(cd)

~
„v. [1—Z(co) jr'=

(3.12)
dc/' Re E ((o',co) .

(coI2 A2 (~&))i/2

Thus, the diBerential conductance is proportional to
the tunneling density of states of the superconductor.

The spectral weight function for a strong-coupling
superconductor is given by

Z (k,(u)(u+ e/,
A (k,cd) =—Im (3.13)

(Z2(k, c0)uP —e '—y'(k c0)

Since Z and q are weak functions of k near the Fermi
surface, the integral (3.7) for the effective tunneling
density of states is simply evaluated to give

(4.2)

As discussed in Sec. II, the frequency integral over
the phonon kernel in the gap equation can be cut oG
at ~„. 10'~ because of the rapid convergence of that
part of the integrand. Kith the introduction of the
Coulomb pseudopotential U„the entire integral can
be cutoff at co,. From a computational point of view,
the choice of A(co) instead of ct (a&) is very useful since
Z is given by a quadrature once 6 is determined.

In order to clarify the important physical features
which determine the structure of the self-energy, it is
useful to write the kernels E'+(cu,c0') in the form

Er(co) =Re
(oP—A'(cd)) '/' l

(3.14)
&+(~,~') =Z dv cr/, 2(v)F/, (v)

cd'+ca+ v+ cti

This result should be contrasted with the naive ex-
tension of the simple BCS model to allow for the energy
dependence of the gap. There the spectral weight
function would be written at T=O'K as

A cs(k, )=l(1+ //Ea)b( —Ea)
+-', (1—ep/Ep)b(co+Ep), (3.15)

~ This does not exclude band effects of the type reported by
L. Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965).Also,
implicit in our neglect of vertex corrections is the assumption that
the phase velocity of the phonons is small compared to that of
the electrons at the Fermi surface. In semimetals and degenerately
doped semiconductors this need not be the case and structure can
be observed. Further, we assume the tunneling matrix elements
varies on the scale of the Fermi momentum. As W. L. McMillan
has pointed out, certain tunneling anomalies observed in normal
metals by J. M. Rowell can be accounted for by variation pf T»,
(private communication).

(4.3)
co —M+ p —f5

Here Fy(v) is the phonon density of states for the li
mode,

d g
B/, (It, v),

(2s)'
F/, (v) =

E(0)
Fg(v)a/, 2(v) = dQ

8irPv'

2 p+

C dV lg.il'J3i(~, ). (43)

This represents an average of the electron (X mode)

and n/, '(v) is an elf ective electron-phonon coupling
constant defined by
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phonon matrix elements over the allowed momentum
transfers. The properties of the physical system which
are important in determining the electron self-energy
in a region of order co, about the Fermi surface are
contained in nq'(v), Fq(v) and cV(0) U, . Once these are
given the structure of Z(cd) and h(au) can be deter-
mined by solving Eqs. (4.1) and (4.2).

Data from inelastic neutron scattering'4 can be used
to determine the phonon density of state P&, Fz(v);
and, as we will see below, the I-V characteristics of
superconducting tunnel junctions provide information
on Pqnq'(a&)F&, (a&). For Pb we estimated that the
phonon density of states would have peaks near 4.4
and 8.5 (meV) of width 0.75 and 0.5 meV, respectively.
In our original calculations" these peaks were repre-
sented by Lorentzians which were chosen because the
integrals giving EC~ could then be carried out analyti-
cally. However, the choice of a Lorentzian gave rise
to a small but 6nite nonphysical phonon density of
states at negative frequencies. The e6'ects of this were
minor, but could be observed in the failure of the
imaginary part of h(c0) to vanish properly as cd ap-
proached the gap edge 60. To avoid this difhculty, it
is convenient to represent the phonon density of states
by cut-off Lorentzians":

Gy alii 2 Cd2) 2 N3X 2 (d )I 2

It is perhaps of interest to note that these estimates
of Fq(ca) were made before a full understanding of the
electron tunneling data and its implication about
Pzaz(co)F&(a&) were known; and they were regarded
as only a rough guess. Recent work by Rowell and
McMillan" in which the tunneling data were used to
extract cc'(co)F (a&), and calculations of F (ar) by llennettc6
using the phonon dispersion relations obtained from
the neutron scattering data24 show that this estimate
is in fact surprisingly realistic.

To complete the speci6cations, the behavior of the
electron-phonon coupling strengths nq'(s&) and the
value of the Coulomb pseudopotential U, must be
speci6ed. Since the peaks in the phonon density of
states are relatively narrow, the frequency-dependent
phonon-coupling strengths were approximated by their
values at the peaks &oc" Li.e., ccc(co)=ccc(~c') and ccc(&u)

=ccc(cd~')]. The strength of the longitudinal electron-
phonon coupling ccP(co&') —=cc' was adjusted so that the
calculated value of the gap at the gap edge ha =—5(50)
agreed with the experimental value of 1.34 meV for
ratios ccrc/ccc2 of 1 and 0.5. We estimated that U, =0.11,
and computations were carried out for U. values of
0.11 and 0.

Before discussing the solutions of the gap equation
and the resulting effective tunneling density of states
for this model of Pb, it is useful to briefly consider the
nature of the results for a simpler model in which the
phonon density of states has just one peak, see Fig.
7(a). In the absence of U„the solution of the gap

,0; I
G&
—(dr [ )calg (4.6)

Here A z normalizes Fz(cd) to unity and cds~ is taken as
2co2". Calling the lower peak the transverse peak and
denoting its values by X= t: col' ——4.4 meV and ~2'= 0.75
meV. In the same way the upper peak will be desig-
nated as the longitudinal phonon peak with X=l and
col' ——8,5 meV, co2'=0.5 meV. A plot of the resulting
phonon density of states

F(~)=2Fc(~)yF, (~) (4 7)

in which two effective transverse polarization modes
ha, ve been taken and each Fq(cd) is normalized to unity
is shown in Fig. 6.

2.0—
O

3'

I.O

I

2

I.O—

FIG. 6. Model for the lead phonon density of states F{ao). Here
~&'=4.4 meV (milli-electron volts), co~'=0.75 meV, co1' ——8.5 meV,
and co~'=0.5 meV.

~B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B. Woods, Phys. Rev. 128, 1099 (1962)."D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 14, 502 (1964). J. C. Swihart, D. J. Scalapino, and Y.
Wada, ibid. 14, 106 {1965).

Ao
~o

»G. 7. Single phonon peak model as an illustration of the
manner in which structure in the phonon density of states is
reflected in the gap and the effective tunneling density of states.
The phonon density of states F(co) is plotted in 7(a); the real
(solid) and imaginary (dashed) parts of the gap h(~) in 7(b);
and the normalized tunneling density of states Ez(~)/E(0)
{solid) compared with the BCS form (dashed) in 7(c).

g' W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1965).
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Eq. (4.1) has the form shown in Fig. 7(b). Here
for our present discussion we have sirnplihed the form
of these solutions by neglecting the weak structure at
n~p+hp which is associated with the nonlinear nature
of the gap equation. As the frequency approaches
Q)p+Ap the real part of the gap increases and reaches a
maximum at fdp+ Ap. It then decreases, becomes
negative and Anally goes to zero. The imaginary part
of the gap exhibits a peak slightly beyond (a)p+Dp.

This is a direct reflection of the structure of the effective
electron-electron interaction. At frequencies co below

~p+5p the bulk of the phonons which can be exchanged
have frequencies greater than co and the effective
electron-electron interaction is attractive. Physically,
charge fluctuations at co cop+hp are over screened by
the ion-cores since the typical lattice vibrational fre-
quencies occur at higher frequencies. %hen or is larger
than (crp+Ap, the bulk of the phonon modes occur at
lower frequencies and the ion-cores respond out of
phase to co charge fluctuations producing a repulsive
effective electron-electron interaction. This is respon-
sible for the change in sign of the real part of 5 at
frequencies somewhat above ~p+6p. In the neighbor-
hood of cop+hp, the real part of the gap peaks because
of the near resonant exchange of large numbers of
phonons which enhance the electron-pair binding
energy. The imaginary part of the gap also reflects
this resonant exchange of phonons which becomes a
maximum at frequencies ~ in the neighborhood of
Gap+ Ap.

In Fig. 7(c), the ratio of the effective tunneling
density of states in the superconducting and normal
states is plotted for this single-phonon peak m.odel.
To see how the structure in 6 modifies this ratio it is
useful to expand Er (co)/X(0) in powers of 6/s&.

&r(~)/&(0) =1+2((~~(~)/~)' —(~2(~)/~)') (4.g)

As 5q increases above hp the effective tunneling density

of states increases above the BCS value (the dashed
curve). This is the situation just below coo+60. How-
ever as the phonons at the peak in the phonon-density
of states can be resonantly transferred, the imaginary
part of the gap rises and the effective tunneling density
of states decreases. Moreover, since just above cop+6p,
A~ is decreasing while D~ is increasing to its peak value,
this decrease in X,(co)/E(0) is sharp and the curve
drops below the BCS value and, in fact, can drop below
unity.

In Figs. 8 and 9 results of a numerical solution of
Eqs. (4.1) and (4.2) for the gap h(s&) and renormali-
zation parameter Z(cu) are given. These solutions are
for a ratio of coupling constants nP/nP of 1 and a
Coulomb pseudopotential $(0)U, of 0.11.The value
of nP necessary in order that hz(ho) equal the experi-
mentally measured" lead gap of 1.34 meV was 1.2. The
peaks in hi (solid line Fig. 8) which occur for (cv—Do)/
co~' values near 1 and 2 reflect the two peaks in the
phonon density of states. Beyond the second peak,
the real part of the gap decreases and becomes negative
since the bulk of all the phonons occur at lower fre-
quencies. In the present case, the real part of 0 remains
negative, asymptotically approaching a value pro-
portional to U, . The additional structure at OGDEN'

+mcdy +5p (e and m integers) is associated with
multiphonon processes and arises mathematically
the nonlinear nature of the gap equation. In Fig. 9, a
plot of the real and imaginary parts of the renormali-
zation parameter Z are given. The structure of the
effective electron-electron interaction and the under-
lying form of the phonon density of states is clearly
reflected in Z. Asymptotically it can be seen from Eq.
(4.2) that Zz must approach unity from above. In
some of the early numerical work this asymptotic
behavior was violated because the integration in the
Z equation was cutoff at ~,. This unsatisfactory feature
can be simply eliminated by adding on to the numerical

I.O—

.8-

.6—
2

\ o

i N(o)U+ ~ O. ll 2.8

2.4

2.0

!.2
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I'IG. 9. Plot of the real
(solid) and imaginary
(dashed) parts of the re-
normalization parameter
Z(co) versus (c0—Ap)/co1'
for the model parame-
ters given in I'ig. 8.

-.8—

-l.O-

Pro. 8. Plot of the real (solid) and imaginary (dashed) parts of
4(c0)/co1' versus (co—bp)/au1' for the model of the Pb phonon
density of states Eq. {4.7). Here c01~——4.4 me&, hp ——1.34 meV,
nP=1.2, aP/nP=1. 0, and N(0) U, =0.11.
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"J.M. Rowell, P. %'. Anderson, and D. E.Thomas, Phys. Rev.
Letters 10, 334 {1963).
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result obtained for the Z from (4.2) the remainder Jt.'(tp)

GO

dip' Re —— K (tp, tp')
(tpt2 +2 (~t))1/2

t = 0.5tt

)

tftp K—(Cd,M )

o 2 —(pt+. tp t+pt )2+ (tp t)2-
=—ln

Pt ((P—PP
' —tP )'+ ((P2')'

t22 (Pt+Pt2 +tde) + (Ptp )
+ — ln

2trt ((tt ttt2 pt ) + (ttt2 )—
—.6

The approximation is excellent since (D(cp./cp. )2«1.
From the plots of 62/tptt and Z2 it is clear that in the

vicinity of the phonon peaks the quasiparticle approxi-
mation fails completely for lead. The widths of the
spectral weight function for ~ co~~ are comparable with
their positions and in addition multiple peaks associated
with phonon admixtures are present. This shows the
breakdown of the quasiparticle approximation referred
to in the Introduction. It does not a6ect our calculations
since we have not used this concept (or approximation)
in our work.

In I'ig. 10, the ratio of effective tunneling density of
states Xr(cp)/$(P) which we calculated from 6 is
plotted as the solid curve. The short-dashed curve is
the BCS constant gap prediction and the dash-dot
curve is experimental tunneling data obtained by
plotting the ratio of the differential conductance dI/dV
in the superstate to that in the normal state as a
function of the bias voltage (cp= V). Just as for the
single peaked model (Fig. 7) previously discussed, the
characteristic knees near (pt —Ap)/cprt values of 1 and 2

reflect the peaks in the phonon density of states at or&'

and re~', respectively.
In order to investigate the sensitivity of these results

"I.O

FIG. 11.Plot of the real {solid) and imaginary (dashed) parts of
A(co}/~1' versus (ap —hp)/cy1' for the model of the Pb phonon den-
sity of states Eq. (4.7).Here co1' =4.4 meV, Ap ——1.34 meV, ap = 1.6,

, / P=0.5 and $(0) U, =0.11.

upon the parameters of the model the gap equation was
solved for the case in which the ratio of the relative
electron-phonon coupling at2/ttt2 was reduced to P.S.
Since the size of the coupling nP was set by fitting
62(dp) to the experimentally determined value of 1.34
meV, the effect of reducing the t222/ttt' ratio is to place
more weight in the longitudinal peak at so~'. This is
clearly visible in the behavior of the gap, I'"ig. 11.The
second peak in h~ associated with co~ is now consider-
ably larger than the first peak associated with the
transverse phonons at co~'. This behavior is rejected
in the associated tunneling density of states I'ig. 12 by
the large knee near co=co~'+50. The strong oscillation
between 2 and 3 is also a higher order manifestation of
the increased strength of the longitudinal coupling.
The experimental tunneling data (dash-dot) Fig. 10
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FrG. 10. The effective tunneling density of states Ez(~)/
+(0)=Re(co/(aP —6'(co))'/'} versus (~—hp}/co1' (solid) obtained
from b, of Fig. 8. The ratio of the differential conductance of Pb
in the superconducting to that in the normal state (Ref. 2S) is
plotted (dash-dot) as a function of (co—Dp}/cv1'. The prediction
of the simplified BCS model co/(oP —hp }'/2 is shown as the short
dashed curve.

.94—

.92'-

FIG. 12. The effective tunneling density of states E'z(~)f
X(0}=Re(~/(eo' —LV (co))'/'} VerSuS (ca —Ap)/cc)1 fOr 6 Obtained
from Fig. 11. Comparison with Fig. 10 shows the increase in the
size of the structure near co1'+hp which arises from the choice of
nP/aP =0.5 instead of 1.0.
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Fro. 13. Plot of the real (solid} and imaginary (dashed) parts
of h(ou)/co1' versus (cg —b,o)/op1' for the model of the Pb phonon den-
sity of states Eq. (4.7).Here co&' ——4.4 meV, 6,0= 1.34 meV, aP =13,
~P/0P=0. 5, and E(P) U, =0.

does not exhibit this additional structure so that it
is possible to distinguish quantitatively between these
two different forms for Pq nq'(&u)F&, (co).

The e6ect of removing the Coulomb pseudopotential
is shown in the behavior of 6 plotted in Fig. 13. The
ratio of the electron-phonon coupling constants oP/nP
is again taken to be 0.5, and the structure of 6 in Fig.
13 should be compared with 6 in Fig. 11. Without
the pseudopotential, the size of the electron-phonon
coupling which is necessary to obtain LL&(60)=1.34
meV is reduced. This decreases the variations in 6 and
therefore ultimately reduces the structure in E, (co)/
X(0). This is shown in Fig. 14 where the tunneling
density of states for oP/aP=0. 5 and U,+0 is plotted.
A comparison of this case with the aP/aP =0.5, Uo= 0 11
case, Fig. 12, clearly shows that U, enhances the struc-
ture in the eBective tunneling density of states.
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O O

z z I.02-

I 00 Ii

I
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Fzo. 14. The eft'ective tunneling density of states E2(co)/
Pf(P) =Re(cg/(co~ —dP(co))'/') versus (co—50)/ao&' for b, obtained
from Fig. 13.Comparison with Fig. 12 shows that U, enhances the
structure in the effective tunneling density of states.

V. CONCLUSION

A conclusion to this paper seems particularly in
order since the bulk of this work was completed several
years ago and many of the conclusions have in fact
been veri6ed in great detail. The 6rst and perhaps the
most basic conclusion is that experimental data support
the Eliashberg' form of the interaction kernel in the
gap equation. They do no support the form suggested
by the work of Frohlich' or Bardeen and Pines. ' These
latter two interactions agree with Eliashberg's only in
the static limit; how'ever, the structure in the gap
function arises from the dynamic behavior of the
interaction.

This work provides a good illustration of the useful-
ness of Green's-function methods in solid-state prob-
lems. Here these methods provide a framework within
which the retarded nature of the electron-phonon
interaction and the breakdown of the quasiparticle
approximation (because of the large damping at energies
associated with the peaks in the phonon density of
states) can be simply dealt with. For example, because
of the separation of frequency and momentum variables,
it is clear that the eGective tunneling density of states
is X(0) Reco/Lca' —6'(co)]'I' rather than involving de-
rivatives of h(co), as a na'ive quasiparticle approxi-
mation would give.

A second conclusion is that tunneling data provide
a direct probe of the electron-ion system capable of
measuring P&, uq'(a&)F&, (&u) and the Coulomb pseudo-
potential U.. The sensitivity of the results for di6erent
choices of these parameters supported the choice of
Fq(a&) given by Eq. (4.7) with nP/uP=1 and. U, =0.11.
The calculated value of nP = 1.2 is an important meas-
ure of the effective electron-phonon strength in Pb.

Subsequently to the above work, a number of appli-
cations of the theory have been made. One of the 6rst
of these was that not only is the gross structure of the
phonon density-of-states peaks observable in the I-V
characteristics, but the Van Hove critical points are
reQected as log and square-root singularities in d I/dV'
vs V.' McMillan and Rowell" have since obtained the
complete a (ra)F(s&) curve and U, for Pb by a beautiful
calculation in which the tunneling data are used as the
input and the equations solved for the parameters of
the system. These results are in remarkably close
agreement with the set of parameters (see Fig. 8) for
the simple model of Pb which we discussed.

In addition, the 6nite temperature equations have
been solved for Pb using this model. Swihart, Wada
and one of the authors" have found that both the
anomalous 260/kT, ratio and critical magnetic Geld
versus T behavior for this model are in good agreement
with experiment. It is also worth noting that the
imaginary part of 6 has been used by Fibish" to explain

' D. J. Scalapino and P. W. Anderson, Phys. Rev. 133, A921
(1964). D. J. Scalapino, Rev. Mod. Phys. 36, 205 (1964).

'9 M. Fibich, Phys. Rev. Letters 14, 561(K) (1965); 14, 621(E)
(1965).
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the damping of the log singularity in the ratio of normal
to superconducting nuclear spin-lattice relaxation time
at T,. In addition, the agreement between theory and
experiment for the temperature dependence of the
phonon-limited electronic thermal conductivity of
strong-coupling materials is greatly improved by the
above type theory, as Ambegoakar and Tewordt have
shown. '0

Thus, it appears that the theory of strong-coupling
superconductors can account in detail for most of the
discrepancies between the weak-coupling theory and
experiments on strong-coupling superconductors.

In the reduction we have used the relation

where

leo e(En ~.)
Im

(d"—E„'+i() 2E„.

() 1, x)0,
0, x~0.

(A3)

If we view the momentum indices p and p' as matrix
indices and the summation over the index p' as

d3 '
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(1+Q)(f)'= VF,
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Kadanoff, W. L.McMillan J.M. Rowell, J. C. Swihart,
and Y. %ada.

APPENDIX A: COULOMB PSEUDO-
POTENTIAL U,

where the matrix elements of 0 are given by

Q- =L~(~' ~.)/2&—p jV(p p'), — (A5)

Ke derive here the Coulomb pseudopotential U.
which reduces the range of energy integration from
0 —+ ~ in (2.26) to 0~co. 10con in (2.27). We write
(2.26) in the form

F„= Ao 4 (p', ~')
Im

Z'(p', (a')co"—e„'—(p (p', (0') i
Xtanh(pcs'/2) . (A6)

~ (p)=- kd + (f(0 Since V is a repulsive potential, 1+Q is a nonsingular
operator and (A4) can be written as

&'p'
) 4 (p', ~')

Im
(2 )' (P(y' ') "— ' —S'((' '))

X V(p,p') tanh Q4'/2) . (A1)

4,c (1+Q)—'VF U P

where the Coulomb pseudopotential U, satisfies

(1+Q)U.= V;

(A7)

(AS)

Now Z(p, ca) ~ 1 and (t)(p,co) -+ (f)'(p) for co))con, since
the phonon-electron interaction is ine6ective except for
energies co)(dn. Furthermore Pro&)1 for temperatures
at which the material is superconducting, so that
tanh(P(d'/2) 1 for ~'&or. . Therefore the integral from
+, to ~ can be simplif(ed by replacing Z(p', co') and
tanh(p(d/2) by unity, and (t)(p', ra') by (f)'(p'), so that
(A1) reduces to

(i'p' e(E,. (d,)—
e (p)+,V(p,p') (t '(p')

(2gr)' 2E„
(f p

V(p p')
(2s)'

e(p', ~')
g IIIl

~((' ') "—.'—e'(6 '))

Xtanh(p '/2). (A2)

"V.Anbegoakar and L. Tewordt, Phys. Rev. 134, 805 {1964);
V. Ambegoakar and J. %'oo, i'd. 139, A1818 {1965).

determining U, . Finally, by taking components of (A7)
we obtain

d3p/

~ (p) = U. (p,p')F(p').
(2m)'

(A10)

It is clear from the form of (A6) that F„decreases
extremely rapidly for e„)co.. For this reason the major
contribution to the integral in (A10) comes from states
p' near the Fermi surface, ~p' —pp~((pp. Since the
pseudopotential U, has appreciable variation only on
the scale of pz, as is easily seen from (A9), we can
replace U, (p,p') by U. (p,pp) in (A10). The p' inte-
gration can then be carried out with the aid of (2.18)

or in component form, one has the integral equation

d3pll
U (p p)=V(p p) V(pp )

(2s)'

it(E„"—(d.)
X U.(p",p'), (A9)2E„"
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and (2.19) and one finds

~(~')
c~' Re~—

~k. -"k.y")

essential experimental condition is that the two metals
be in thermal equilibrium at some fixed temperature.
Hence we may take p, = p, ,=p, and may carry out the
ensemble averages for the two metals, independently.
Finally, we observe that terms of the form

X U. (p,ps) tanh(lp~'/2). (A11)

If we are only interested in «i«'(p) for mornenta p p«;,

p can be set equal to p«; and one obtains (2.27), where

U.—= U. (p F,pr) . (A12)

I(~.(&+1)I 2 &» "'I~.(&))I'

can be written as

(82)

(83)
The integral equation (A9) which determines U. has

a direct interpretation. It simply accounts for Coulomb
scatterings outside the energy band &co, about the
Fermi surface which have been excluded from the
numerical integration by the introduction of co, in Eq.
(A11). Physically, because the Coulomb interaction is
repulsive, the correlations induced by the multiple
scatterings taken into account in (A9) reduce the
probability that the two electrons are within the range
of the screened Coulomb interaction. This has the
e6ect of making U, smaller than the corresponding
s-wave average of the plane-wave matrix element

V(pkp ). This reduction can be explicitly determined if
we approximate V(p,p') by a factorizable potential

since the operator c~"t selects out that subset of ex-
citations which are characterized by the wave vector k.

Then, explicitly introducing Harrison's-' expression
for Tk~ we can write

dM exp 2

1
X k«P E,[(n, /C], "t[m„)/'

I~ p&)

Xf'«(E, E„,I«
—~)—

V(p,p') = V. ,
=0, otherwise.

(A13)

Here V, is the average of the Coulomb interaction over
the Fermi surface and ao is of order the Fermi energy
EF. Using this, the solution of (A9) is

U, = V,/[1+1V(0)V. ln(Ep/kd, )] (A14)

if the density of Bloch states is taken constant for

~
e„~(~. Using values appropriate to Pb we find

X(0)U.=0.11.

APPENDIX 8: REDUCTION OF THE
TUNNELING RATE EXPRESSION

Ke derive here the reduction of the general expression
for the tunneling rate (3.5) to the form (3.6). We
define

~
m(X)) as an exact eigenstate of the X-particle

metal in the absence of both Hz and any applied voltage
V. E„~is the energy associated with the state

~
m(1V) }.

Then the delta function conserving energy can be
written

g (E E )—g(E i«k+«+E N i V E —i«k E N)

Cko i«(E„„—E „—p„—co)

Xb(E.,—E,+yk —V+~), (81)

where in the last expression we have dropped the en-
cumbering superscripts. The letters m and n will be
used to denote excited states containing Ã and E~1
particles, respectively. It should be noted that an

&&~(E.« E«+~ V+~)—, (84)—

k«2 (X)
En, Em, = U(&)+ e«~

~

— +p
2m

(85)

where U(x) is the barrier potential and

The use of the bare electron mass is consistent with our
treatment of the barrier as a potential step (with
rounded shoulders). In addition to the possibility of
structure in the barrier we are also neglecting image
force corrections to the barrier potential and any
asymmetry in that potential due to bias voltage or to

where I' =e&"e ~&~"' &~~ and we have carried out the
spin sum. Note that k~ and k&' have only positive values.
The sum over k~~ can be done first. In principle, the
expression in the square brackets depends on k~~ but in
practice such dependence is very weak. Furthermore,
since the exponential factor decreases rapidly with
increasing k~I, only electrons moving perpendicular to
the barrier contribute significantly to the tunneling
current. If we consider a wave function which is mainly
in the right-hand metal with an exponentially de-
creasing tail in the barrier, then
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fabrication procedures. While such e6ects are certainly
present we do not believe their inclusion is essential to
an understanding of the I-V characteristics of the
metal-insulator- —metal tunneling processes for very
small voltages. The sum over k~ ~

can then be written as

y dkl I' exp —2 dg

X (2m(U(x)+E —E )+k~ ~')'", (86)

where Aii is the area of the barrier. We assume that
U(x) changes rapidly (but not so rapidly that the
WEB approximation is invalid) in the vicinity of x,
and x~ so that for most of the barrier region U(x)
=U, . We define the metal-barrier work function
q = U —p, . A precise specification of the cuto6 kP
of the ki~ -integral is immaterial since only the region
around k~I 0 is important. For small applied voltages
and at low temperatures only states near the chemical
potential will contribute to the tunneling current. So
in the case where V«y, the integral (86) over k~~ is
well represented by

where

A i it/4n, (87)

t = 1/d((2m ')'~ +1/2d) exp(—2d(2m rp)'~') (88)

and d =x„—x~= barrier thickness.
Now we consider the expressions in the square

brackets in (84) and their relation to the one-particle
Green's functions. An alternative way of writing the
one-one component of the Green's function defined by
Eq. (2.3a) in Sec. II is

and

P p„[(n(c,[m)('h(E. —E —p+~)

where f(&o) = (1+c& ) ' and A (k,&g) is the spectra. l

weight function
1

A (kp)) = ——
ImGgg (k, ~+t'5) . (812)

While a portion of the temperature dependence has
been accounted for by the introduction of the Fermi
factors, A (k,o&) will also have temperature dependence.
It is convenient to define the effective tunneling density
of states by

jar (co) =X(0) degA (k,a)), (813)

de„PP„„[(n,
~
c,"t

i
m,„)~ '

neer

X& (E.„E„„p~)——

since then our final expression for the transition rate
w, & (815) has formally the same structure as that for
tunneling between two systems of noninteracting
electrons where Sz(co) would be just E(0) near the
Fermi surface.

Finally, consider the k& sunis. In the continuum
approximation it is more convenient to sum over both
signs of k, (and reduce p, by a factor of two). Then
since eI„is not limited by any essential restrictions from
kii we can replace el„by e&. Thus, the square bracket
involving the sum over k, in (84) becomes

Gn(k, r)= —P p~(mi TcI,(r)cl, t(0) im). (89)
In a similar manner one can reduce the second square
bracket in (84) and obtain the desired reduction of

Then by inserting a complete set of states one can
easily show that

P p„)(n(c„t)m)('8(E.E„p~)——

=A (k,a)) (1—f(co)), (810)

A

16m'
ko Xr"(co)(1 f(co))—


