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A comprehensive calculation of the second-order quantum-electrodynamic corrections to the hyperfine
splitting of S states is presented. The gauge-invariant reduction of the self-energy expression given by Yennie
and Erickson is used to systematically verify previous calculations of orders «, a(Za), a(Za)4n?(Za)™2, and
«(Za)ln (Za)™2 relative to the lowest order Fermi splitting EF and to obtain a result for the dominant con-
tribution to order a (Za)? for the 1.5 and 2 levels. The new contribution for the 15 state is

(a/7) (Za)Y[18.4£ 5]EF =[2.3£0.6]X 10-$EF,

where « is the fine-structure constant, Z« is the strength of the Coulomb potential, and the error limits are
estimates of uncalculated terms. Our results for n=2 provide a substantial check of Zwanziger’s calculation

of the hyperfine splittings in the 1.5 and 2.5 levels.

1. INTRODUCTION

HE recent measurement of the hyperfine structure

of muonium! and the persistent discrepancy
between theory and precise measurements of the hyper-
fine structure of hydrogen? have led to renewed interest
in the theoretical calculations.*® In this paper, the
third in a series on the calculation of radiative level
shifts,” we present a comprehensive calculation of the
second-order quantum-electrodynamic corrections to
the hyperfine splitting of S states. By employing a
gauge-invariant reduction of the self-energy expression
and computational techniques developed by Erickson
and Yennie,” we are able to systematically verify
previous calculations of order o, a(Za), a(Za)? In2(Za)~2,
a(Za)* In(Za)™? relative to the lowest order Fermi
formula and obtain a new result for the dominant
contribution to order a(Za)? for the 1S and 2S levels.
[In*x= (Inx)%.]] This new contribution is found to be
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an order of magnitude larger than its nominal order
and, in fact, its contribution is twice as large (in the
opposite direction) as the contribution of order
a(Za)? In(Za)~2. If the accuracy of the measurement of
the muonium hfs' (and of the magnetic moment of the
muon) is improved, this new term will be important for
the accurate determination of the fine-structure
constant.

Before presenting the calculations we will briefly
review the various contributions to the hyperfine
structure of the S-state levels of the hydrogenic atom.
The correct covariant treatment of the energy levels of
the two-body system proceeds from the Bethe-Salpeter
bound-state equation. Its reduction to physical terms is
facilitated by the use of four dimensionless parameters:
the electron-to-nucleus mass ratio m/M, the ratio of
nuclear and atomic sizes R/a,, the fine-structure con-
stant o, and the strength of the Coulomb potential Za.

In first approximation (m/M — 0, R/ag— 0, a — 0)
one may take the electron to obey the Dirac equation
with fixed Coulomb and magnetic dipole potentials

V=—Za/r, A=uXr/r,

where u=g(|e|/2M)1 is the nuclear-magnetic dipole
operator. To first order in the magnetic moment, but
to all orders in Za, the energy separation of the singlet
and triplet levels of the »nS state is?

8L,V =EF[1+4 (Za)®h(n)], (L.1)

where
(] . F—{gl 87rl 02 1.2
= $4(0)|*(o-u) (1.2)

(F=1)—(F=0)
is the Fermi energy difference representing the non-

89‘),.(7:) is the nonrelativistic wave function for the »S states.
The units are z=c=1, a=¢?, where e=— |¢| is the charge of the
electron. F=1I+4S is the total spin.
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relativistic interaction of the magnetic moment density
of the electron (evaluated at the nuclear position) and
the nuclear magnetic moment. The term (Za)%(n) is
the Breit relativistic correction,® which is (3)(Za)?
+0(Za)* and (17/8)(Za)*+O0(Za)* for the 1S and 2S
levels, respectively. £, is the lowest order expression
for the hyperfine separation and all corrections will be
expressed as multiples of it.

At the second level of approximation one continues
to treat the nucleus as a fixed point potential (m/M — 0
and R/ay— 0) but now considers contributions of
radiative corrections of relative order o, o2, - - -, evalu-
ating these terms to first order in the nuclear moment
using Dirac states for the electron in Coulomb and
magnetic dipole potentials. The functional dependence
of the radiative corrections is not analytic in Za but
actually has the form

a o
BEN® = EnF 1 ——0.328—+c1a(Ze)

27 T

2 (Za) [ c2s 102 (Za) 2+ o1 (1) In (Za)2+ca0 () ]
™

afi a?
+d—te—Zat---i, (13)

™ ™

i.e., a series in a, Za, and In(Za)~2 The first two terms
are the corrections to the static magnetic moment of
the electron. The other terms arise when binding is
taken into account. The term of order a(Za)F,F was
found by Kroll and Pollack’ and Karplus, Klein, and
Schwinger!! to be given by

a=—3+In2.

More recently, Zwanziger’® calculated the (n=2)

— (rn=1) difference of the coefficients in the second line
of (1.3),

[ea1(2)=ca1(1) ] In(Za)24-[c20(2) — c20(1)]
=(7/2—8/3 In2) In(Za)2—2.619+7(—0.94+0.02)
and, since then, Layzer® and Zwanziger* have obtained

the separate coefficients of the logarithmic terms,

—_ 2
C22=—7%,

37 4 8
621(1) = In2 ,
72 15 3

16 1 4
ca(2)=——In24+4+—+—.
3 72 15

Finally, at the third level of calculation one must
consider the effects of a nucleus of finite size and mass.

9 G. Breit, Phys. Rev. 35, 1447 (1930).
(13’512\];. Kroll and F. Pollack, Phys. Rev. 84, 597 (1951); 86, 876
(1;‘511{).‘ Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597
12D, E. Zwanziger, Phys. Rev. 121, 1128 (1960).
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These terms arise in the reduction® of the two-body
Bethe-Salpeter equation and correspond physically to
recoil, second-order perturbation in the dipole potential,
nuclear polarization, etc. The main effect of recoil is
conventionally summarized by using the reduced mass
instead of the electron mass in evaluating the wave-
function in (1.2). We thus include with E,F the over-all

correction factor
M 3
(M +m> '

The remainder of the nuclear corrections' beyond those
given by (1.4) and its cross terms with (1.3) is non-
trivial. For muonium, the additional nuclear correction
is

(1.4)

3a mM M
6E,.<3)=E,.F|:——— ln——]EEnFG“ (1.5)

T M2—m* m

to lowest order in « and Za. For hydrogen, one obtains
m
SE,® = E,.Fl:— 8.7a——:|
M

= £,/ [—=35X10-¢]=E,75,, (1.6)

assuming photon-proton interactions are described by
elastic-scattering form factors. Nuclear-polarization
corrections to this assumption have been found to be
negligible.’

The total hyperfine splitting of the ground state is
then

M
5E1 = ElF(
M

3 3
) [ 1+6nucl+£(za)2

m
2

o a
+——0.328——a(Za) (3—1n2)

2r w2

a 2 37 4 8
+—(Za)"-[—— In? (za)—2+<—+——— ln2>
w 3 72 15 3

xln(Za)~2+m<1>]}, (w7

where we have neglected terms explicitly third order in
the small parameters. We compare §E; with experiment
in Sec. 7 using the most accurately known physical
constants'® and the dominant part of the ¢y coefficient.

Because of the interest in obtaining as reliable a
theoretical prediction as possible, we shall present a
new unified derivation of the Za expansion of the radia-
tive correction of order « relative to the hyperfine

13 M. M. Sternheim, Phys. Rev. 130, 211 (1963); W. A. Barker
and F. N. Glover, ibid. 99, 317 (1955).

14 C. Iddings and P. Platzman, Phys. Rev. 113, 192 (1959) and
115, 919 (1959) ; R. Arnowitt, zbid. 92, 1002 (1953) ; W. Newcomb

and E. Salpeter, 7bid. 97, 1146 (1955); A. C. Zemach, ibid. 104,
1771 (1956).

15 Phys. Today 17, No. 2, 48 (1964); J. W. M. Dumond and
E. R. Cohen, Rev. Mod. Phys. 37, 537 (1965). The errors given
in (7.6)-(7.8) are three standard deviations.
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formula. The calculation given here has several distinct
advantages. First, the calculation retains gauge invari-
ance up to the point of the evaluation of matrix ele-
ments. Thus there is no cancellation of spurious gauge-
variant terms and the terms that do occur are readily
interpretable in physical language. In fact, the calcula-
tion proceeds as an expansion in terms of field strengths
rather than powers of potentials, and only the first two
terms in such a series are required for the coefficients
of interest here. Second, the calculation is made quite
compact by using an algebraic notation developed in
paper I. Finally, we can readily apply the order-
determining rules discussed in paper II to rigorously
identify terms that contribute to a given order, and
just as important, rigorously indicate that a given
neglected term is of an unimportant higher order in Za.

The calculation will also include an estimate of the
size of the a(Za)?E,TF coefficient cy0(n) for n=1 and
n=2. We do this for two reasons. In the Lamb shift it
is observed that accompanying the a(Za)® In?(Za)2mc?
term is a rather large contribution of order a(Za)®m:c2.
Thus, the contribution of order a(Za)?E,.F might be
considerably larger than the nominal order indicates.
We will also be able to give a substantial check of
Zwanziger’s calculation'? of the ratio of hyperfine
splittings in the 1S and 2S5 levels.

In the next section, we summarize the formal alge-
braic reduction of the expression for the second-order
self-energy correction. In Sec. 3, the calculation pro-
cedures are summarized and applied to the evaluation of
the lowest order contribution, that of the second-order
anomalous magnetic moment. The order-determining
rules are given in Sec. 4 and are used to single out the
types of terms which contribute to orders of interest.
In Sec. 5, the a(Za)E,F terms are identified and calcu-
lated. The calculation of the a(Za)? In?(Za)—2E,F and
a(Za)? In(Za)?E,F terms (for n=1,2) is given in
Sec. 6, as well as the calculation of the dominant
contributions of order «a(Za)?E.F. The results are
summarized and discussed in Sec. 7. Appendix A lists
the wave functions used in the calculations. Appendix B
gives the formal derivation of terms reduced differently
in paper I and shows the cancellation of some contribu-
tions. The second-order vacuum polarization contribu-
tion is calculated in Appendix C. The term giving the
dominant contribution to the state dependence of the
a(Za)*E,F coefficient cy0(n) is calculated in Appendix D.

2. REDUCTION OF THE SELF-ENERGY
EXPRESSION

Quantum-electrodynamic corrections of order a to
atomic spectra correspond to two types of Feynman
diagrams, the self-energy correction to the bound
electron current and vacuum polarization. In effect
these radiative corrections modify the electron’s
magnetic moment and spread its electromagnetic
distribution, both effects being directly observable in
the hyperfine structure of S states. The vacuum
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polarization effect is straightforward to evaluate and
will be briefly dealt with in Appendix C.

The starting point for the calculation of the second-
order self-energy correction to the energy of an electron
bound in a fixed potential 4* is the formal, gauge-
invariant expression,' (I-2.1)

a [d*k/m% 1
En‘_—_ /n]'Yu . 7# n>
dn) Btie\ | T—k—m+ie
—(n|ém|n).

(2.1)

In accordance with Sec. 1 we are to evaluate AE, to
first order in the nuclear magnetic moment u in states
|n) which satisfy the Dirac equation with Coulomb
and magnetic dipole potentials,'?

Za euXr
eA"=<——-—-, )

r r

(2.2)

The resulting energy difference AE,(F=1)— AE,(F=0)
will then have the form af.(Za)E.F.

Observing that AE, depends on the external potential
A" through the operators

I'=p'—eA’= (E,—eA’p—eA) (2.3)
and the Dirac state satisfying
(n| (M—m)= (T—m)|n)=0, (24)

it might seem natural to immediately expand the bound
electron Green’s function and the wave function in
powers of A to terms linear in y and the first few terms
in Za=21/137. This direct approach fails for several
reasons. First, a direct expansion in the potential is
manifestly non-gauge-invariant and can lead to “false”
expansions in which all terms are of the same order in
Za and which sometime contain spurious lower order
terms which ultimately cancel.’8 It will be clear that
the natural expansion must be in terms of the gauge-
invariant field strength F,,=9d,4,—d,4,. Second, AE,
contains terms which involve the nonanalytic In(Za)=2.

Since AE, is gauge-invariant, it is a function of F»»
rather than the potentials. Moreover, since it is defined
to vanish for zero field strength, AE, is presumably at
least linear in F#*. In fact, after the d% integration has
been performed, AE, must take the form

AE,=aln|--F#...Qpye - - |n), (2.5)

6 The notation is that of J. D. Bjorken and S. D. Drell,
Relativistic Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1964). Scalar products of Dirac matrices with
four-vectors are denoted A=~y-4 =v,4"=+°4—vy-A and
II=~-IO=p—eA.

17 To distinguish the operators, wave functions, etc., which
correspond to w=0, we will use the subscript ¢ (for Coulomb
potential). For the additional parts linear in the nuclear magnetic
moment, we use the subscript u. For example, the wave function
in the complete Coulomb and magnetic dipole potential (2.2),
Sn=¢nct+8upn Or |n)=|n.)+|n,), may be split into a part ¢p,,
which satisfies the Dirac equation without u, plus a “magnetic
correction” §,¢,. Details of these wave functions are discussed
in Appendix A.

18 H. M. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958).
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where, because of the transformation properties of AE,,
Qu» must be an antisymmetric tensor. The tensors
available are (1) ou=[v,,7»]/2¢, which gives the mag-
netic moment structure M=eos,,F*/2=e0-IC—ica-§;
(2) Ouv,—1,y, which gives the “L” structure
I,-[I1»+I0]; and (3) F,,, corresponding to &—3¢2.
The - -- represent interspersed scalar functions which
can involve IT, 1%, and M, or scalar combinations such
as II,- - - 11~

A systematic reduction of AE, to calculable terms of
the above type is given in paper I. The procedure is
gauge-invariant and avoids ‘false” expansions where
actual logarithmic dependences exist. In brief the
calculation of AE,=0 for the case of the free electron
(F»»=0) is used as a guide for the corresponding
calculation for a bound electron (F**>£0). The calcu-
lations would in fact be identical and the result AE,=0
would again be obtained were it not for the fact that
the components II, do not commute with each other.
Remainder terms are thus obtained which are at least
linear in the commutator [TI¥II”]= —ieF**; these are
listed in Table I. Some modifications in the reduction
procedure of paper I are made in Table I which simplify
the hyperfine calculations. The new derivations are
given in Appendix B.

The double bar | “symmetric insertion” notation
used in Table I is a convenient algebraic device for
combining several similar terms. For example, 7.3 is
actually the sum of three terms obtained by successively
replacing each of the three 1/D factors by 1/D? The
|(1/5?%) notation indicates |[(1/D)||(1/D), i.e., two
consecutive insertions. In I, the insertion of ||(1/D)
into (1/D,) gives (1/D:%). In I3 one is to form terms
by replacing each 1/D by (1/D)M (1/D). The reader is
referred to Sec. I-2 for the full development of this
notation.

The content of the terms in Table I can perhaps best
be understood if we calculate them to lowest order in
F# (only the 7. and Iy terms are required) while
approximating each denominator as

Do=2m2+ K —k+3(1—2)H . (2.6)

Then, as indicated in later sections, AE, reduces to the
sum of two important forms

AE, (L)—————< 'p <n~+ )[p,

8B )= == Yl o). 27)

27

If we had retained the terms involving p in the de-
nominators, then the expressions would be modified by
“form-factor” functions of p?. These serve to suppress
relativistic regions of the matrix-element integration
[p|2m, rS1/m.

The terms AE,(L) and AE.(M) give, respectively,
corrections to the bound-state energy due to the charge
distribution and static anomalous magnetic moment of
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TaBLE I. The Erickson-Yennie reduction of the :i):;:-photon self-
1 00

3 dz/ amf ik [ CE 1L )

41r 0 0 F T

to calculable gauge-invariant terms.

energy expression AE,=

The mass-renormalized operator I —Isy, is the sum
of the following terms®

1 1 1
—z2)Bm—I,—[ 11", ]I ]—
Dy Dy?

1

Dy

I.=801

1 1)1
Io=—4z(1—2)0,—11"JI]—| [—
D D||D?
1 1 111
T14= —42(1—5)—T—[10 T} | [—
D D D||D
1 1 1771
Iny=—42—| 0,,—1,I]— |—
D D DD

=

1 1
IM2= —4m—z2M—
D D

1

D?

Toym=—22[I13+114]

1 1 1
Ia=4(1—2)7m—{1, 11 ]—{1" 1 ]—
\ Dy D)2

Dy

o= ——4z3m—|:IL,l'I]——[H” H]——l 'D

1 1 1
Ib=4(1—z2)z“m{—l'l, -,n][nv,n]—
Dy Dy?

A

1 1 1 1 1 1
+[:——,H:III,——[H",II]—— +—I —[H' n]l: :l } l
Dy Dy D2 D, D
1 1 1 1
I.=4(142)mA—T1,—{ (k—Nz11) ,[ 11,117 ] }— | | —

A A A

1 1 11]]1
I4=47 { —Ean](_EH“,HJ—I l—)
D D D||D

1 1 1 1
——[U”,HJ—EH“,D]—— } ‘ -
D D D? D

D\

A

1 1 111
I,= —422(k—2I0)—[11 I ]— [+ T1}— l ""‘
D D D||D?

Notation:

D=22m?+K — (k—2I1)2+2(1 —2) H —22M
Dy=22m*+K — (k—nzlI)2+z(1—2)H
Dy=22m*+K — (k—zl)2+z2(1—2) 1

M=I2—*=e¢q,,Fr"/2
H=m—1I?

s The terms labeled ILa, Ic, I4, I correspond to a different arrangement
of the terms labeled I¢, 14, I, Ir in paper I. The new derivations are given
in Appendix B.
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the electron.® The quantity H in AE,(L) is the Dirac
Hamiltonian

H=m?—1=2m[p*/2m+V+ €
—[eousF**/2+4p-eA+eA-p]
+[A2—=V2—2¢,V —ea?]. (2.8)

Note that H vanishes acting on the state |#) and de-
pends on #z through the binding energy e,.=m—E,>0.
The In(m?/H) term arises in connection with the
infrared behavior of the photon; the binding of the elec-
tron serves to cut off what would be a logarithmically
divergent d*k integration in the case of the free electron.
Employing a sum over states, this term gives the
famous Bethe sum for the Lamb shift and is of order
of magnitude (4aZa/3m?) In(Za)~2|$.(0)]2.

The terms proportional to w in AE,(L) will be shown
to be of orders

Q(ZQ)ELF,  a(Za)[In}(Za)=2, In(Za) 21 ELF .

The quadratic logarithm term arises from the confluence
of the “infrared” photon integration with an integration
over the electron’s coordinates which could diverge
logarithmically were it not for the form-factor cutoff in
the relativistic integration region. The terms linear
in win AE,(M) give the anomalous moment correction
(a/27)E,F plus terms of order

a(Za)E.F | a(Za)[In(Za) 21 ]E.F.

Other contributions to order a(Za)E,F are found to
arise from the parts of 77, 7y, and 7y which are
quadratic in F#*. The remaining terms only contribute
to order a(Za)?E,F or higher.

3. CALCULATION PROCEDURES AND THE
LOWEST ORDER MAGNETIC
MOMENT CORRECTION

We shall first discuss in a general manner the pro-
cedures used to reduce the terms 7(D) of AE, to a
calculable form. The essential problem is that the
denominators D and D; involve momenta and potentials
in a rather complicated way; hence, we must resort to
expansions. The following is a useful reduction sequence:

(i)  Neglect 22M in each denominator: 7 (D) — I(D,);

(ii)  “Shift” (k—NzI1)? to k2: I(D;) — I(Dy);

(ili) Take H=0 in those denominators next to the
wave functions.

For each step we must later consider the resulting error
or correction terms. One of the most useful results of

19 The operators in AE,(L) and AE,(M) can be interpreted as
the nonrelativistic limit (g?&m?) of the order « renormalized
bound-electron current in interaction with the external potential.
The In(m?/H) term shows that the Dirac component of this
current depends in an essential way on the external potential.
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Paper II is a simple rule which indicates rigorously the
orders in Za and InZa to which a given term may
contribute. In the next section we review the notation
involved and extend the rule to situations where hyper-
fine operators or hyperfine wave functions are involved.
Suffice it to say for the present that the reduction
sequence is chosen so that the correction terms to
steps (i) and (ii) are almost invariably higher order
than the original term; the order is never decreased.
“Outside” denominators (acting on wave functions)
are now functions of H alone so there is no error in
performing step (iii). After these steps any “inside”
denominators still retain their dependence on H. A
possible calculation procedure is to insert a complete
set of Dirac states and evaluate the matrix element
numerically, as in the Bethe sum term. For the hyper-
fine radiative corrections we shall find that the sum-
over-states calculation can be postponed by approxi-
mating H — p® in the inside denominators, the error
being a small contribution of order a(Za)*E,F. With
such a procedure we can write the entire denominator
as a function of p alone, and the matrix element can be
evaluated analytically in the momentum representation.

The application of the standard steps (i), (ii), (iii) to
the 7 terms is straightforward. After performing
step (i) by neglecting 22M in each denominator, we set
aside for future investigation the correction term

1 1 1
Iy m=2 (1+z)m——z2M———22M—‘
D D

1 1

1
— 3.1
D

and similar terms from 7. It will prove convenient
to write the results of step (i) in the form?

1 1 1
Iv(D)=[2(1+2)—4]2m—[ M, +2p-eA]—||—
D, D, || D2
1 1 1
+[2(1+z)—4]zzm—[Mc—2p-eA]—| —, 62
D, Dy D2
where
M,=es-3, M.=—1iex-8. (3.3)

We shall postpone discussion of the higher order terms
in the second line of (3.2) until Sec. 6. For step (ii), we
shift D;— Dg and again set aside the correction terms,
which may be written as an expansion in powers of
D\—Do=2zk-TI—2*112. After step (ii), all of the
denominators D, are next to the wave functions, and
thus automatically become simply Dgy=z2m2-+K — k2.

* This separation avoids introducing a spurious divergence due
to relativistic wave functions when D; — D,.
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After this, we need only evaluate

o 1 0
AL, (M, E——/ dz 2(—1+z)/ dK
ar J o 0

™
d‘k 1 1
— —||—(n.| M, +2p-eA|n.)
7r21: D()02 D002
—1

o
:—<1/Lc
2T

=L ne —y-eA|n)
27

———(Mu+zp~eA>ln'->
|

2m

a
=—3E, V),
2T

3.4)

where 6£,® is the Fermi energy including the Breit
relativistic wave-function corrections. AE,(M,) is the
energy shift corresponding to the electron’s anomalous
magnetic moment of order a.

4. IDENTIFICATION OF CONTRIBUTING TERMS

In order to calculate AE, to a specific order in Za
(and in fact, InZe) it is clear that because of the com-
plexity of the terms (D) and their many possible
expansions in terms of unbounded operators, a simple
method is needed to determine the order of magnitude
of the neglected terms. A rigorous analysis of the struc-
ture of the matrix elements and the parametric integra-
tions of AE, has yielded such an order-determining rule
(Sec. I1-5). This rule of order is most simply understood
applied to a term Ix of AE, which has already been
reduced to a nonrelativistic matrix element by per-
forming the Dirac algebra and approximating the
relativistic states as Pauli-Schrodinger wave functions.
We also suppose that the denominators of 7x do not
involve the external potential 4.

The content of any term /¢ in terms of Za and InZa
will then be characterized by the following three
quantities: the “nominal order” of the matrix element
as determined by assigning each operator factor in the
numerator its nonrelativistic expectation value; the
degree i of “infrared” divergence of the z integration
at z— 0 which would occur if each denominator of 7 ¢
were replaced by Doo=3z?m?+ K—#k?; and the degree e
of “electron” divergence at |p| — o (r— 0), which
would occur in the momentum space (position space)
evaluation of the matrix element if the denominators
in I'x were D2

! We use the integration identity (I-2.33c)

[af 2 1 L[t
0 ra¥ [K—k+AR|| D 4|4
in which 4 is positive-definite.

2 ’_I‘ht? index ¢ may be determined for each term of the poly-
nomial in z contained in Ik simply by noting that if 7x (Do) has
n denominators, then 2(»—3) powers of 1/z remain after the d‘&
and dK integrations.
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If both the z integration and matrix element integra-
tion converge for Ix(Dg) (ie., <0, ¢<0) then the
effective range of integration is determined by the non-
relativistic wave functions, and the dominant order of
Ik will be just the nominal order. If both ¢ and e are
zero (i.e., logarithmic behavior in both photon and
electron integrations) then the dominant order of /x is
the nominal order multiplied by In?(Za). For the cases
1<0, e=0or =0, <0, a single InZ« factor is obtained.
If either ¢ or e is greater than zero then the dominant
order of I ¢ is m factors of (Za)~! larger than the nominal
order, where m is the larger of 27 and e. The dominant
order also has a InZa factor if in addition 2i=e<0.

It is straightforward to apply these rules to determine
which orders a given term in Table I contributes to the
hyperfine structure. One first drops the operator de-
pendence of the denominators, returning later to
determine the orders contained in the neglected terms
(which are never of lower order). After performing the
v algebra and taking the nonrelativistic wave func-
tions,? we can look for dependence on the magnetic
dipole moment u in two places. Either the operator
itself has magnetic dependence or the linear dependence
on u comes from the wave functions. In the former case
the operator eA=—ieuX[p,1/7] contributes the factor
E.F/Za to the nominal order. For the other case we
note in Appendix A that 8,4, (), the magnetic correction
to the nonrelativistic Coulomb wave function, coincides
asymptotically with [E:F/2(Za)m? V¢, (r) at small 7.
Accordingly, for the purposes of determining the
dominant order, the magnetic wave function correction
is equivalent to a factor E,F/(Za)? for determining the
nominal order and equivalent to an extra 1/7 acting on
the Coulomb wave function for determining e. As a
convenient notation we list the indices of a term in the
form 9;N., where NV represents the nominal order (Za)¥,
counting 1 for each power of Za and 4 for E.F; ¢A thus
can be counted as [p,V], and 8,4, as V..

We emphasize that the rule of order determines
rigorously only the dominant order of a term. Contri-
butions from the nonasymptotic parts of the wave
functions give higher order terms; a contribution of
order a(Za)?In*(Za)—2E.F does not preclude contribu-
tions of order a(Za)? In(Za)2E,F ; etc.

We can make the observation that the nominal order
is always even since integration symmetry requires an
even power of momentum p in the numerator; con-
sequently, from the rule of order, actual contributions
can involve InZa or In?Za factors only when accompany-
ing even powers in Za. We also observe that the
contributions of leading order of those terms which

The index e is given by the formula
e=np+n1,—3—w,

where the first two terms give the number of operators p and 1/r
in the numerator structure and w is the effective power of 7 of the
wave functions near the origin. For nonrelativistic Coulomb
S states, w=0, 1, 2 is the number of wave functions acted directly
upon by p.

% This approximation usually yields a correction term of
relative order (Za)2. See Sec. II-5.
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have e=20 and e=2i depend on the asymptotic wave
functions and hence are ‘state-independent”; the
entire 1/#® dependence is absorbed in the definition
of E,F.

Now, with the advantage of the order determining
rules, we can sort out those terms of Table I which
contribute to the orders of interest. The search can be
narrowed considerably by noting that except for I
and I all terms have <0, are explicitly quadratic in
the field strength, and always have nominal order N at
least 8 when they contribute to the hyperfine splitting
of S states. We also note that the quadratic terms
I;,5,c,a, have numerator structures containing either
magnetic wave functions (and effectively three powers
of 1/r so that N—e=6+w) or an odd number of ¥
matrices (which bring in the small components of a
wave function so that N—e=>5+4w, with w=1)*; in
either case these terms have N—e>6 and only contain
state-independent (a/7)(Za)2E.F contributions. Such
terms will not be calculated in this paper. Their contri-
butions will actually be quite small due to several
parametric integrations (z,\,u), each giving a numerical
factor less than 1.

The quadratic term I has the structure

1 1 111 \M
g4
D D DIIDI\D

We obtain a w=0 contribution when the left hand D!
is replaced by D-'MD-'. This term has N—e=35, so
we obtain a contribution to order a(Za)E,F. All terms
of this order are calculated in Sec. 5.

Almost all of the contributions to orders of interest
come from Iy and I, the terms which contain struc-
tures linear in the field strength.

The full content of the 7, numerator is

I+ [11,,1]=p-[p,yoV ]
—p-[pyeA]
+E,- I:V:Y' p]— p ECA,T' p]
—V-[Vyy-pl—eA-[p,Vvo]. (4.1)

The first two numerators in (4.1) yield terms (denoted
by I, and Iy, respectively) which have nominal order
N=6, indices 1<0, e=1, 0 and hence contributions of
order

a(ZQ)E.", a(Za)[In*(Za)™?, In(Za)21]E,F.

The terms given by the third line of (4.1) are trans-
formed in Appendix B to forms quadratic in F**. These
terms, together with those from the fourth line of (4.1),
therefore give negligible state-independent «(Za)2E,F
contributions, of the same type as I,,5,.4,c.

The dominant contribution of I is characterized by
wNe=_04_1 : aE,F

. M Actually, I, and I, have canceling w=0 contributions. This
is demonstrated in the second part of Appendix B.
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for Iy, and by
2,‘N¢=_260,_1 . a(Za)2[ln(Za)_2,1:|E,,F
for Iy, (with a magnetic wave function).

We should emphasize that careful consideration must
be given to the correction terms obtained in reducing
the denominators and wave functions of 7 and I, to
calculable forms. The reduction procedure given in
Sec. 5 shows that contributions to order a(Za)E,F also
arise from first-order expansions of M in the de-
nominators of I, and from the first-order magnetic
form-factor correction (i.e., expansion of p? in the
denominators) of 7. The systematic analysis of Sec. 6
shows that contributions of order a(Za)?In(Za)—2E,F
are found in the expansion of V in the denominators of
I, and Iy, the expansion of M, in the denominators of
Ip,, and form-factor plus relativistic wave-function
corrections to 7.

5. THE «(Za)E,” RADIATIVE CORRECTIONS

We now proceed to a specific, self-contained calcula-
tion of the contributions of order a(Za)E,F. We leave
the systematic analysis of higher order corrections for
Sec. 6.

It is clear from the order-determining rules that
a(Za)E,* contributions occur only when N,=6;, 8, 10,
etc. (with 2i<e). The condition N—e=n;;,+3+w=35
is met only by n1,=1, w=1 or ny,,=2, w=0; i.e., only
one or two operators 1/r (either from V, eA, or §,4,),
each acting on a Coulomb wave function. Moreover,
since e 1, the electron integration is in the relativistic
region p>>B, so that only the asymptotic wave functions
(A2) and (AS) are required. We thus may limit our
search to terms which (after reduction of the Dirac
algebra and angular integration) have numerator
structures of the form

V(p2)"V or V(pz)n-}-l (n=1)2))

evaluated between asymptotic nonrelativistic Coulomb
wave functions. [In fact, this observation provides a
simple over-all technique for calculating the desired
contributions to the a(Za)E," order.] The only terms
found to yield such structures are I, I1,, I, and Iy,
since the numerator structure of the neglected terms
always involve an “isolated” V, i.e., an operator 1/r
not acting upon a wave function. In addition, the
evaluation of the contributing terms is simplified by
selecting only the operator arrangements with potentials
at the outside and by employing only the asymptotic
part of the wave functions. The other numerator
arrangements and the nonasymptotic parts of the wave
functions contribute to higher orders and are considered
in Sec. 6.

The dominant order of the I, and I, terms is
a(Za)E,¥, but contributions to this order also occur in
the reduction of their denominators to calculable form.
The exact reduction procedure we use to obtain these
terms is fairly arbitrary, and, in fact, several procedures
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have been used to check the results of this section. The
systematic reduction used here follows the sequence
(1), (ii), (iii) of Sec. 3 and has the feature of preserving
gauge invariance up to the final step. Only at the final
stage will we select the terms linear in the nuclear
magnetic moment.

Let us thus start with the structures ;. and I, and
(i) expand the magnetic moment operator M from the
denominators (and denote the correction terms as
I, ). In each outside denominator we (ii) “shift”
the & term:

(k '—)\ZH)2 g k2’ D(outside) - Dl

(and denote the correction terms as I;_,), so that (iii)
D (outsidey = Doo. Thus, besides the correction terms Iy
and I;,, the term I, reduces to a form with outside
denominators

Dog= 22m2+K-—k2 (5.1)

and inside denominators
Dy\=22m*+K — (k—\zI1)2+2(1—2)H

(A=1 except in I,).

We now proceed to extract the leading order by
making the following wvalid approximations (i.e.,
leaving corrections of higher order). We simplify the
inside denominators by letting

(F—NzI1)2 — k— (k—Xzp)?= (k—\3p’)?

(5.2)

(5.3)
and

H— p. (5.3

The neglected terms cannot be order a(Za)E,F since
the expanded potentials do not act on the wave func-
tions. The resulting inside denominators

Dy =2'"m*4K — (k—N\zp")2+2(1—3z) p? (5.4)

may be combined with the outside denominators by a
parametric integration. The denominator combining
formula in terms of symmetric insertions is

o) ) 5)
Dy; Dool IND\1/ \Dq/ \D
1 1 2 u ll._u r 1 t
[N o
0 D)\u Dku Dxu D)‘u
where
1 1 1
D Dy, Dy
and

Dyu=uDs1+ (1—u)Dqo
=22m*+K — (k—uhzp’)?
+uz(1—2)p*+u(l—u) 22p2.  (5.7)
We now selectively calculate terms linear in w. The
required a(Za)E,¥ structure arises from the I, terms

when we take the magnetic asymptotic S-wave part of
the left-hand wave functions:

Oy — CuopnV,
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where
2 e . mE,F
_2el (o u>= _ 5.9
2Zaf3?

="

3m Za

Thus, in nonrelativistic approximation we obtain the
following reduced structure:

1 1 1 1
Tress: Cu(¢n,V——D'——PV—¢n) —. (5.9

DOO D)l DOO

For I,, which only couples large to small components,
we effectively have the numerator structure

op P P’
—p-po-|e|]A=——p- |¢|A+—io-pX|e|A, (5.10)
2m 2m 2m

where p-¢eA=0 for S states and A=—uXV(1/7)
=1uX[p,V]/Za. Keeping only the term with V to the
right and performing the angular average, (5.10)
becomes

2

— el 2 p
(o w)- —p*V
32m

VA

(5.11)

and is to be taken between nonrelativistic Coulomb
states. Finally, if we replace p? with —2mV acting on
the left-hand wave function (which is valid in the
asymptotic limit), then we obtain the same structure
as Ircs,4 in (5.9).

We now return to the contributions I;_» and I;_,
obtained in the reduction of /.. The same steps through
(5.3) applied to these terms do not give corrections of
order a(Za)E,F. The I;_y contribution to a(Za)E,F is
obtained only when M is expanded from the left-hand
outside denominator of I;. The I, u, terms (with
M, — C,Vp? then give the structure

1 1 1 1
ILc—Mn : ZZCu(¢n)—Vp2_p ° —'-pV_(ﬁn)

1
—. (5.12)
Dy Dyi Dy Dy D

The analysis for 77, u. is similar; we easily find that
it gives the same a(Za)E,F structure as (5.12). (Note
that the I1; denominators yield no I1;_ corrections
to this order.)

Contributions to order a(Za)E.F from I;_, are ob-
tained for the shift of only the left-hand denominators
of I; specifically we have the structure

A2t
n|| —— JII,—[II’,]I n)|—
Dy D,/ D\ D, ,D
1 1 1 1 1
- <n — (2k-Nzp—N222p?)—II,—[I1*,11 ]— n> ’—- ,
DO D)\ D)\ D)\ D
(5.13)

where we have selected only that part of the shift which
contributes to the order of interest here. Selection of
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the parts linear in y lead to the identical structures for
Irepsupand Iy, »:

1
(2)C,,(¢,.,——V(2k')\zp—)@z?p?)
Dy,
1 1 1 1
X—D'—DV—¢n) —. (5.14)
D\i Dy Dy D

After combining denominators with the # integration
(5.5), we may integrate the k term by parts according
to (I-2.46),

k Azup
‘ —= , (5.15)
D)\u D)\u
so we have the effective replacement
2k Azp—N22pP=N222p2 (2u—1). (5.16)

We now turn to 13 and note that its structure is the
same as I3y and 114 in lowest order, differing only
by the replacement of z2M with —2zM. [We shall see
that the total a(Za)E.F contribution of 7.y and all
the 113, I14-derived terms actually cancel.]

Finally, we note that the only contribution to order
a(Za)E,F obtained in the reduction of I in Sec. 3 is
the shift correction

1

(5.17)
D2

1 1 1
($0-esn—s)—s.)

00 1 1

plus a similar term for shifting the right-hand de-
nominator. To extract the a(Za)E,F contribution of
the term (5.17), we take M — M, — C,p?V, shift the
right-hand denominator D;— Dy, and integrate by
parts as in (5.16).

In order to obtain the total a(Za)E,F contribution,
we must evaluate the detailed structures of I, I, and
I as given in Table I. The matrix elements for I,
and Ij, are

2Cu(¢u,V 4 V¢n)
Dy,D\y
><H|:4(1—z:’)z"‘m2 42(1—2) 422(1—32) 43
DD D*  DyD _17003]
(1 2 €) #)
(5.18)

The matrix elements for 7;_,, I;_y, and Iy are

zcﬂ(m,v

p4
V¢,.>
DooDyy
[422 (1—2) 4z
—_— 1
DuDoD ' DoiDyy
3) 4)

' (4 (1—22)2%m? Qu—1)N222

D\1Dy*D
1)

][22(2u—1)+z2—2z]}. (5.19)
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The matrix elements for 7, are

2c( ML V¢)
" ¢n, DgoDu n
[2A+am—dnlC-2m) QU
Doul®
O ©

After we combine denominators using (5.5), all of the
terms have the form

a 1 1 1 o d*k
— du / dz / dN? / dK / —
4w J o 0 0 0 F

(p2)9+1
X 2C,,<¢,., V V¢n)
D

P(z,u)
, (5.21
i ! (D)™ G20

where p,7=0,1,2, and the parameter \ is 1 except in
the I;;-derived terms.

The dK and d* integrations may be done immedi-
ately as in Ref. 21 after shifting by uAzp’ (which is a
¢ number in momentum space). There are now = de-

nominators, each of the form
2w+ [u(1—u)\22+uz(1—2) JpP=a?p?+22m?. (5.22)

The matrix-element integration is easily performed in
momentum space using the asymptotic form

1 2 1/2
Vor— ———I:(—-) Za¢,,(0):| ; (5.23)
pL\m
for example,
©  dp T 1
/ —_— (5.24)
o @p*+22m? 2 azm
We then obtain a common factor
@ 2 T 1
[ = | “erin e -]
4 T 2 m
a
=—(Za)E,F, (5.25)
T

multiplying \, 2, # parametric integrals of the same
form as (II-5.46). The separate integrals and their
values are listed in Table II.

The total contribution is

a(Zo)E,F[—13/4+1n2]. (5.26)

Combining this with the vacuum polarization result

(C9)

a(Za)E."[1], (5.27)
we obtain the total radiative correction
a(Ze)E F[—5+1n2], (5.28)

thus confirming the results of Kroll and Pollack™® and
Karplus, Klein, and Schwinger.!*
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T II. a(Za) E,F coefficients. Integration 1[1 d lﬂ—/ldﬂ
ABLE II. «(Za) E,F coefficients. Integ 7l 2 )o Vu )

of the tabulated integrands.»

Term Integrand Integral
I 2(1—22) (1—u)? 1/2+ In2
X[1—z4+N2(1—u) 172
Ioi-mp,  z(1—2)NQu—1)(1—u)? 5/8— In2
X[1—z4+Nz(1—2u)]372
I —4(1—2)[1—uz]12 2—81n2
I3 —4z(1—2)(1—w)[1—uz]12 —13/4441n2
Trsmp 4(1—2)z(1—u) (1 —uz)[1—uz] 32 13/4—41n2
I —422(1—u)?[1—uz]12 3/2—31In2
Tramp 422(1—u)2(1 —uz)[1 —uz] ™32 — 3/2431n2
ITy—p —2z(1—2)(1—2u) 1 —w)[1—uz]12 —51/849 In2
Total —13/4+ In2

s Evaluated in II-(B. 8-13).

6. THE HIGHER ORDER RADIATIVE
CORRECTIONS TO THE HYPERFINE
STRUCTURE

We have anticipated in Secs. 2 and 4 the presence of
radiative corrections of order

a(Za)? In2(Za)2E,F, a(Za)?In(Za)2E.F,
and a(Za)?E.F.

The specific sources of logarithmic terms may be found
using the order-determining rule given in Sec. 4. Con-
tributing terms can only have indices

2¢Ne= 000 for a(Za)2 In? (Za)""EnF
or

2ilVe=0,(e<0), 260(1<0), 282, 4104 ---

for a(Za)?In(Za)2E.F.

Thus, all terms but those derived from I and I, are
eliminated from consideration since they are at least
quadratic in the field strength with N=8, i<0.

Contributions to the nonlogarithmic order, a(Za)?E,F,
are legion and arise from all terms of Table I. As
pointed out in Sec. 4, contributions from terms quad-
ratic in the field strength with ¢<0 are of the size of a
small fraction times (e¢/7)(Za)2E.F and do not contrib-
ute to the ratio 88E,/6E;. As in the corresponding
Lamb shift calculation of terms of order a(Za)%mc?, we
will only estimate a bound on the total magnitude of
such terms. We will, however, calculate explicitly the
terms of order a(Za)?E,F which accompany the
logarithmic contributions; as in the Lamb shift calcula-
tion, we expect such terms to have coefficients much
larger than unity. This is indeed the case, so these terms
give the dominant contribution to the «(Za)2E,F
coefficient. With the exception of one small term, which
must be calculated by a sum-over-states method, we
will also be able to obtain the total a(Za)2E,F “state-
dependent” contribution to the (#=2)/(r=1) hyper-
fine splitting ratio.

The most interesting higher order contributions
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arise from the I terms, and we start our calculations
there. We first take seven steps in succession which
reduce the I, terms to a convenient calculable form.
After the calculation of the final form, we will return to
carefully consider in reverse sequence the contribution
of the neglected terms of each step.

As in Sec. 3 we first reduce the denominators of the
I, terms through the steps (i), (ii), (iii). The denomi-
nators acting on the wave functions

D00= z2m2+K —k?
may be combined with the inside denominators
Dy=22m*+K —k*~+2z(1—2)H

with a parametric # integration. Carrying out the dK
and d* integrations® and using the specific form of the
I, terms, we obtain as in Sec. I-3:

o 1 1
AE,(L)= ——/ du/ dz
m™Jo 0

1
XP(z,u)<n 1 [1r0]

n> , (6.1)

where

Pau)=—201—2)u(l—u)+(1—2)
Fz(1—2)(1—u)+22(1—u)?

and
A=zm*+u(1—2)H. (6.2)
Continuing the reduction sequence, we
(iv) take nonrelativistic forms:
H— Hyp=p*+2mV+p2, |n)— |n)vr; (6.3)
(v) neglect the Coulomb potential in Hyg:
Axr— Ag=zm*+u(1—2)(p*+6%); (6.4)

and (vi) neglect all numerator structures in Iz but I,:
HJ" [H",H] —p [p’V:l'YO- (65)

The matrix element, to first order in the magnetic
moment, is thus reduced to

1 1
(5#¢ﬂ1 p -—[p, V]d’n) +<¢nyp * _[p) V]5p¢n)
Ao Ao
1
= (6,,(#1;,“—[]) : )[p: V]]¢7‘>
Ao

+(¢n,p - E—O,[p, VJ:IM») , (6.6)

where |¢,) is the nonrelativistic Coulomb wave func-
tion: Hyg|$,)=0. As the final step, we

(vii) neglect the second matrix element in (6.6).

We now can concentrate on calculating the first term
of (6.6), which we designate I1._s,4. It is perhaps the
most interesting term considered in this section in that
it is the sole source of the double logarithm contribution.
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We may write the matrix element either in momentum
space, or what will prove more convenient, in position
space:

(am—i[p-,[p,vm)

—Za /
- &
272

1
=—Za$n(0)
u(l—z

20
[ #6.(9)

Ao(p)
e‘Br/U
/ d*r 8, (r) ’
) r

(1—2)w
24 (1—2)w ’

6.7)

where
u(1—3z)p82
zm?+u(1—3)32 B

(6.8)

¥
with
w=ufB/m?.

The required S-wave magnetic wave functions for n=1
and n=2 are given in Appendix A. The energy shift
corresponding to Ir._s,4 is then

a 2m? rldu ' dz
AE,(L.— 8,,¢)=—(Za)2EnF—/ ——[ —_—
g B2Jo ulto 1—

e8lv

X P (z, u)/ s2ds 6,,¢,,(s) ,

where, for =1 and 2,

(6.9)

dudn(s)= 26‘“[ + (In2s+y—1)4+(2— n)(——-l-S)

1 13 s
+m—1)-—(n— 1)s(ln23+'y——+—>] , (6.10)
4 4 2

in terms of the dimensionless radial variable
s=pr. (6.11)
The radial integral for the leading term of 8,¢,(s) is

-2

2n 0

-1 —y 1
ds e et lv=—ro Y n 4

n 1+y n nH—y'

(6.12)

If we express y in terms of z and 8 as in (6.8) and use
the Za — 0 limit of the first part of (6.12),

u(l—2)g2 '~ Bru(l—z)7
y=[—————] _,,[ ] , (6.13)
P+ u(1—2z)52]  Ze0 4y 2z

in the z and « integrations of (6.9), we obtain a result
purely of order a(Za)E,F, which has already been in-
cluded in the calculations of Sec. 5. The correction to
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(6.13) is found, using (I1-5.52), to be

2m? 1 dz

—~(Za)2E F_

ldu

{ l P(z,u)
[omtu(i—a)@ ] [am?]"
o 4 1
=;(Za) En [;} /0 du P(0,u)
+0[a(Za)*E,F].  (6.14)

The contribution of the y?/(1+7y) part of (6.12) is

a 2m? L dzP(z,u) 1
—(Za)QEnF———/ du/ ,
T n Jo o zmP4u(1—2)8 14y

which diverges logarithmically at z2~0 if we set Za=0
in the integrand. The logarithmic contribution is found
by taking 1/(1+47y) — 1; the result is

:—!r(Za)"’EnF[z] /0 '

m? 1 P(z,u)—P(0,u)
X [P(O,u) In—- / dz
0

uf3?

(6.15)

, (6.16)
b4

in which we have included the nonlogarithmic contribu-
tion of P(z,u)— P (0,x) and have dropped terms of order
a(Za)*E,F. The contribution of the remainder, which
converges for Za=0, is found by transforming from
a z integration to a y integration (II-B.6c),

—(za)zE 2 / /0

-(Za)2E F[,J / du POu)[—21n2]. (6.17)

dy*P(z,u) r 1 1]
ymipu(1—y)pl 14y

The total contribution of the leading term of 8,¢.(s) to
the orders of interest is then easily found to be

a 4 n
—(Za)*E,F— [ ( )+ +2— 21n2] (6.18)
3n Za

™

For the next part of 8up.(s) the relevant radial
integration is

=2y 1+y

In—
14+9)?2  y

2/ ds e“/”e“’(lns+'y—1)=( , (6.19)
0
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and we thus must evaluate

_(.1_(Za)zlfg,,F[:zL]/1 du/1 dz
T 0 0

P(s, 1 14+
(&) In—2 . (6.20)

X
z+(1—z)w (1+y)? v

Let us consider first the P(0,x) term, which exhibits an
infrared divergence at z~0 when w=0. We make the
separation

1 I+y 1 2y+y* 14y
In——=In—+In(1+47y)— In—.
(I+y)? y (I+y2 y

(6.21)

Then by changing variables to x= (1—w)(1—32), the z
integration of the In1/y term has the form

1 dz 1
/——m-
0 2+ (1—2)w y
1 1 —e dx r
S tun) M ey
21—wJ/y 1—x 1—21—w

1 1 7
=-In*~+—40(w),
4 o 12

(6.22)

and gives the double logarithm —2%(a/7)(Za)2E.F
X1n?(Za)~? radiative correction to the hyperfine struc-
ture. For the remainder of the function (6.21), the z
integration is convergent for w~0. Changing variables

a 1 ' dz P(z,u) 1
4—(Za)2E,,F/ du/
T 0 0 2+ (1—2)0 (14y)°

x {1n2+ (”"Z)B'i%,}“ (n— 1)[

2+

1
4
T
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again from dz to dy?, the integration for w=0 is
1ot 24y 14y

/ Zdy[— In(14y)— ln———]
0 y (+y?  y

=—In?2—In2—-1.

(6.23)

Performing the # integration with P(0,x), we then
obtain the contribution

a 2 n\? 13 n\?
-—(Za)2E,,F|:— ln“’(—) +— ln(——)
T 3 Za 9 Za

89 2 8
+—+—1r2-——(ln22+1n2+1):l . (6.24)
54 9 3

For the remainder of the polynomial, we notice the z
integration is convergent for w~0 and

L U P(zu)—PO0u) 1 14y
f du/ dz In
0 0 g+ (1—2)w (1+y)? y

1 1 P(z,u)—P(0,u)
- / du f PPl ldid
0 0 2

1 11 z
X [— In—4- In—+0 (\/w)] , (6.25)
2 w 2 11—z

which gives the additional contribution

a 7 5 n\?2
—(Za)’E,.F[——-{—— ln(——) :I .
T 36 6 \Za

We proceed in much the same manner for the re-
maining parts of 8,¢.(s). After the radial integration
we have the contribution

(6.26)

+y

1 7 3
/ln In2 Y

2y

4 1+y\ y

iz r:y)]}

=43(Za)2E,,F /o 1 du{ P(O,u)[(ln}v——z /o 1 dy(1+yy)2>(]n2+§(n—2)+i(n—1))

14y

7 3 vy

—4:_/;1 (lfy)“((n—Z)_(n— 1)(ln ,

In24——-

2]

1 P(zu)—P(0, 3 1
+/ dz—(zL—(—i)[an-}--(n—Z)—l——(n—l)]}
0 2 2 4

=§ ;(Za)2E,.F”:ln(2n—>2—§— 2 ln2-”_ln2+z-(n—- 2)+i(n— 1)]—;@— 2)+§8—1—(n— 1)}

a

for n=1 and n=2.

(6.27)
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Combining the contributions of Egs. (6.18), (6.24),
(6.26), and (6.27), we obtain

4]
AE,(Le—8,6) =—(Za)2E.F
™

2 8 59
X[——— In? (Za)—2+<— ln2—-—) In(Za)2
3 3 18
8 59 2 1151
+(—— In22+4— ln2—-—1r2+——):|
3 9 9 108

and
2 13 2 1385

X I: ——In2(Za)24+— In(Za)2+ ( — —1r2+————)] (6.28)
3 18 9 108

for n=1 and n=2, respectively.

We now return to consider the terms neglected in
steps (i) through (vii). In step (vii) we ignored the
second matrix element in (6.6), whose contribution can
be written in momentum space as

a 1 1 P(zu) 1 a3t
—(Za)2E,.F/ du/ dz ——/
T 0 o s+ (1—2)w =/ (¢241)

Pttt 1
<[
PH1 (t—t)2 L1922 1442

] , (6.29)

where, so far, we have only included the contribution
from the asymptotic parts of the wave functions ¢, ()
and &,¢.(p) as given in (A2) and (AS). The d3%, d%
integrals can be put in the form of the integrals given
in Appendix B of paper II. The result is

a 1 1 P(z,u) 1
—(Za)?E,* / du / dz
™ o Jo zt(1—2)w (1+y)?
a 2 nt 2
- —(Za)2E,.F|:— In————~
T 3 (Za)2 3

4 13 5
- ln2+———+O(Za)] . (630)
3 18 12

The contribution from the nonasymptotic parts of the
wave functions is most easily calculated in position
space. This is done in Appendix D, and we find the
additional contributions

“apn] <, (6.31)
—(Za)E,F| —, — 6.31
™ 327
for n=1 and n=2, respectively.

The terms dropped in step (vi) involve all the various
numerator structures of I, (4.1) except Ir.. The
analysis of Appendix B shows that, except for Iy, all
of these depend quadratically on the field strength and
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hence may be disregarded here. The /1, matrix element,

~ o

however, is very important. The y matrix brings in
small components so we have

1 o-p
IR AN
Ag 2m

- Honr o). 6

m 0

(6.32)

1
p-—Lpy-eA]
Ao

For S states, the p-M,p contribution vanishes upon
angular integration.?® The contribution from step (vi)
may be written in momentum space as

a 1 1
AE,.(L,.)=—-—[ du/ dz
m™Jo 0

1 —Za
XP(z,u)(—-E—)C,. - (27)%2¢,,(0)

m Y

X / Popon(d) (6.3)

m+u(1—2) (P+6)

or, with the use of the wave equation
Pbn=[—2mV —"I¢n,

may be written in position space as

a 1 1 P(z,u)
AE,.(L,.)=—E,.F/ du/ dz
™ 0 0 u(l—z)
* ¢n(7)

/ rdr e 8 lv(2mV+-52) .
0 ¢n(0)

The radial integrations are similar to, but easier than
those in Ir.-s,4, and yield

a 1 1 P(z,u)
AE,.(L,.)=—E,.F/ duf dz
™ 0 0
y

(6.35)

(6.36)

u(1—3)
X{—Zn——}- Y
1+y (1+y)
—(n—l)[—Zn Y +2 Y ]} (6.37)
(I+y2 A4y

for n=1, 2. As in (6.12), the leading term proportional

% It is easy to see this for the S-wave part of M. For the D-wave
part, note that after integration, the matrix element must be
linear in ¢-y, the only scalar. The coefficient of ¢-u may be
obtained by choosing the two vectors ¢ and @ to be parallel to
each coordinate axis in turn and then averaging over the three
directions. Since ¢ and @ appear linearly in the matrix element
(6.33), the D-wave part of M, gives no contribution:

o qu-q—i0-ya’=io-u(g-*+¢,*+¢.) —io-ug*=0.
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to —2ny contributes a result purely of order a(Za)E,*,
which has been included in Sec. 5, plus a remainder of
order a(Za)2E,F, identical to (6.14). As in (6.15), the
terms

[2n+1—(m—1)(—2n)]y*= (2n*+1)y* (6.38)

yield a contribution of order a(Za)2E.* In(Za)™? just
like (() 16), with [2/x] replaced by [2+41/x¥]. The
remaining terms of order 43, are like (6.17) and yield

a / / d y‘lP (z,u) 52
0

2m2-i-u(1 ¥ y*

x {T+[1+zn<n— 1)]y2[ e 1}
2y?
(e 1>(l+y)3}

1
—(Aa)ZE F/ du P(0,u)
Zu—>0 0

X[—2<2+;2)1n2—%—(n 1)(71 23”2)]. (6.39)

The total contribution to the orders of interest for
n=1, 2 is thus easily found to be

n\* 11
AL (L) ==(Za B [ <2+ () +:]
2Za 24

8 2 4 1
4 (- 1)(—-!———)} . (6.40)
3n 3n? 3n  n

The terms neglected in step (v) are given by replacing
1/A in (6.1) with

1 1
——=—=2mu(1—3)
Avr A

1
V—.
Avr Ao

(6.41)

This does give a logarithmic contribution »8,. Con-
tinuing the expansion of V gives no logarithm, but
rather an infinite series of state-dependent a(Za)2E,F
terms. We only consider here the matrix elements

n> NR

NR

1 1
pi—u (1 —_ Z) 277! V—[p,, V:l‘)/o
Au Ay

(6.42)

1 1
pi—u(1—z)2mV—
Ay Ay

For I,._v, the first line of (6.42), the required e=2
structure is obtained by taking the asymptotic magnetic
wave function on the left and the asymptotic form

n(28)°"*

—[psVIba— p: (6.43)

2wp®2m

on the right. We thus obtain the logarithmic con-
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tribution

o

— /1 du/l dz P(zu)u(l—z)
m™Jo 0 —C“ n(26)5/2 2—/a
|G )]
2m 27 27?
/ 'p / &y p-p
% _
PAc(p)) @ p?Ao(p™?)

a 2 n?
=— —(Za)2E,,F[— In
™ 3 (Za)?

S
——+O(Za):|
12

X[41n2—2]. (6.44)

For I, v, the second line of (6.42), we obtain the e=2
structure by taking the 1/7 in A=—uXV (1/7) acting
on the right-hand wave function, and ¢-p/2m (from
the small components) only on the left. Using the
asymptotic wave functions, we then have

__(i/ du/ dz P(zu)u(1—3)
—Ja "(25)5/2 2/ ¢ 1
G ()]
e 2 iZa 2m
/ &p @y pp
X|—————op
p*Ac(p?)

< &
@ Ao(p”)p”

By combining the ¢ matrices and using the trick noted

in footnote 25, the momentum integrations may be

simplified to the form

-uXp'. (6.45)

/ a*p d“P pp 2
o-up-p’
p*Ao(p?) q2 Ao(p’2)p’23
7t 1

[41n2—%J20-u (6.46)

u(l—z) zm2+u(l—z)62

and hence 7, v yields the logarlthmic contribution

a 2 n?
—--(Za)2EnF[— In
T 3

(Za)? _—+ ( a)J

X[4n2—3 (6.47)

In step (iv) we will not consider the corrections to
the nonrelativistic approximation of the wave functions
since the neglected terms are of order (8, and higher. In
the reduction of H — H y, the logarithmic indices 28,
are obtained from the first-order expansion of
M +M+2p-eA; however, only the I, y, structure
contributes for .S states after the angular integrations
are performed. The contributing matrix element is

1 1
—u(1—=2)M —[p.,y eA] n> . (6.48)
Ao Ag

The e=2 structure is obtained by asymptotic steps
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similar to those used for the Iy, y matrix element. In
momentum space we thus have the logarithmic con-
tribution

—‘;r /01 du/ol dz P(z,u)u(1—3)

Lo )

@p 1 rd’p" pp
X/ —|— e (uXp’). (6.49)
Ao(p®) PV q* Ao(p”)p”
The momentum integrals reduce to
a’p ey pp
[ [ 2 S mmw 630
80 0] @ 8?3

and we thus obtain the I, . contribution
n2

5+0(Z )? 3. (6.51)
Zay 12 0 ][ e

This completes the calculation of the logarithmic and
dominant a(Za)2E,F contributions of the I, terms, since
the corrections to steps (i), (ii), (iii) do not yield such
contributions. The I terms, the only other source of
logarithmic orders, are easier to discuss since ¢ is
negative. Following a modification of the reduction
sequence outlined in Sec. 3, we shall approximate
D — Dy, expand D, in powers of H, and shift the % inte-
gration by everything but zp. All of the neglected terms
can be rearranged to show quadratic dependence on the
field strength. Since 7 is zero or negative, we will not
consider them further. The remaining structure is

a 2
—(Za)E,F| [— In
T 3

1 1
£ / dz2(— 1+z)z2m<n M
4o g K— kit (k—sp)’
1 1
X n>' ‘— (6.52)
22m?*~+ K — ko®+ (k—zp)? D2

In momentum space the momenta following M are
denoted as usual by p’. The denominators can be com-
bined with a parametric # integration in the form

D,=uD+ (1—u)D' =22m*+ K — ko*+ (k—zp,)?

+z22u(1—u)q®, (6.53)

where
pu=up+(1—u)p’,
¢=(p—p').
In momentum space we may shift the d* integration

by the ¢ number zp,, perform the dK, d*, and dz inte-
grations, and obtain

)
0 2‘1[' 2m

1

AE,(M)=
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Let us first look at the M, contribution for non-
relativistic large components only. For S states
M,— C,q?V, and we have the momentum-space
expression

a 1 Za
AEn(Mu)NRLC= —( ‘——)Cu< - —)
2r\  2m 272

/ du/d3 /d3 ,¢n(?)¢ (i’)’ (6.55)
1+a2q?
where
u(1—u)
= .
me

We transform to coordinate space by using the Fourier
transform

el

1 1 22
dreiar
1+a2q- 2r)? a2 r

(6.56)

so that the p, p’ integrations may be done immediately
and yield

a 1
AEn(Mu)NRchz— —C,

T 2m

1 e—r/a
XZa/ du/darzb,.“’(r) .
0 fdz

Since r~a~1 here, we may use the expansion of the
wave function about Br=0,

(6.57)

¢n<r>=¢,.(o>[1—2amr

1
+—(1+
3

to obtain the power series

AE.(M)nrLc

1
—) (Zamr)2+O(Zamr)3:| , (6.58)
n2

=—(—I—E,.F/ du/wdx xe"ll-—ZZozx[u(l—u):l”2
Ly 0 0

1 ’ 1 ! Zax)*u(1 3
#1145 Janruai-rozay]

a
=E,F [————Za—l—

1
( —)(Za)2+O(Za)3:l. (6.59)
2r 4 6m n?
The first term is again the contribution of the static
anomalous moment. The second term is part of the
I yu—p contribution already considered in Sec. 5.

The additional contributions to AE, (M) arising from
the use of complete relativistic wave functions, rather
than the nonrelativistic large components, are most
easily obtained if M, is divided into two parts,?

My=(M,+2p-eA)+ (—2p-eA). (6.60)
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The relativistic wave-function corrections to the first
term may be taken from Breit® if we neglect the de-
nominator structure [an error of order a(Za)*E,"] and
recall

—(1/2m){n.| M,+2p-eA|n.)y=(n.|—y-eA|ns). (6.61)
One finds the contributions
a 3 17
~(Za)2EnF[—; —] (6.62)
T 416

for n=1 and n=2, respectively. The contribution of
the second term, —2p-e€A, to the S-state hfs arises from
the small components, which can be taken as o+ p/2m
acting on the nonrelativistic wave function ¢,. In
momentum space we thus obtain

a —1
/ du/d‘*pqs,,
21r 2m

1 —2e¢ p- quc p

14-a’q* ¢ qQ®  2m

ap'
21:2

oa (). (6.63)

In position space the operator structure is written

1 puXq
1+02q2 q2
1 p-uXrd/l—eie
=— | d¥reier —( ) (6.64)
4 i dr r
and the spin structure for S states is
c-uXre-r uXr r
— — =0 ——X-=——=¢'y (6.65)
ir 7 r 7
so we have simply
a d ¢pn(r)\2d f1—ele
Y R i G B
T 4m2 dr ¢,(0)/ dr r
The asymptotic part of the wave function,
d ¢a(7)
-— ~—Zam e Fr (6.67)

(which is exact for n=1), yields a result of order
a(Za)*E.F InZa,

o -1 ! 2aB 1

—(Za)E ,F— du[ln + ]

T 4 Jo 14248 14248
a 1 2Za

=— (Za)ZE,,F[ —=In—+0 (Za)] . (6.68)
T 4 n

For »=2, the additional contribution of order
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a(Za)2ELT is
s f e (-2
o / u/ rre \,
a —1rt 1
=-(za)2E,,F—[———]. (6.69)
T 4l2 16

For n=1 and =2, we thus have the total contribution

a
AE, (Mu— ¢Rel) == (Za)zEﬂF
™

1 2Za\? 3 13
XI:—— ln(—) +—4—(n— 1):| . (6.70)
8 n 4 64

Finally, M ,=—«-[p,V] contributes to the above
orders as it connects large and small components (which

we take in their nonrelativistic limit). To first order in
the magnetic moment we thus have

oo

1 eq
xz[qbn(p) T s xa(t)
14+

a2 q2 q‘l #

AE, (Mc)— du

27 2m 2q?

+¢n(1>)

q
e T R0 B

where, ignoring higher order relativistic modifications,

the magnetic contribution to the small component is

—o-cA ¢p
3 Xa(p)=————¢n(p)+—0upu(p).  (6.72)
2m 2m

The contribution from the first term of (6.72) in position
space is

a
———-—( Za)/ du/d3
2w 2m?

9 f1—e/\o-ro-uXr
><¢n(r)—( -)—_— é.(r), (6.73)
ar r i
where the S-state hfs is obtained from
oro-uXr 2o-p
— =-— (6.74)

3

wr
Integrating by parts and proceeding as in (6.68) and
(6.69), we obtain for =1 and n=2

U du

0 2ma

22« 5
+In—-— 1+§(n— 1)+O(Za):| , (6.75)
n
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where the order aZaF,F term will cancel with another contribution obtained below. The contributions of the

second terms of (6.71) and (6.72) combine to form

Bl /d3 /d 6 (p)
—_ " p'dn(p
2w 2m? 2x® / r ? It+dg ¢
o erla
R du / d‘rcbn(r) —Outa(r)
x 4m?

™

a ! > rdr
=—(Za)?EnF/ du/ —e"/"[l—Zamr-{-O((Zanzr)?):ll:
0 0o @

6u¢,.(p’)

3
+1n25r+'y—2+5(n— 1)-|-O(Zamr):‘

amr

Udu 2«
=—(Za)2E F[ - [ -———+ln———-——2+ (n—1)~+- +O(Za)] (6.76)

2ma n

for =1 and »=2. The total contribution is thus

o
AE,(M.)=—(Za)E,*

2Za\? 5 17
Xliln(——~) ——+t—(n— 1)+O(Za)] . (6.77)
n 2 8

We have thus found that the total contribution of
the I terms to the orders a(Za)?E,F and a(Za)*E.F
XInZa is

a
AE.(M)=—(Za)?E,F
g

7 /2Za\? 3 141
X[— ln<—~) ——a—(n— 1)] . (6.78)
8 n 4 64

7. SUMMARY

The sum of the 7, and I contributions calculated
in Sec. 6 and of the vacuum polarization terms calcu-
lated in Appendix C, together with the lower-order
terms calculated in Secs. 3 and 5 may be written as

a 1 5 2 2n\2
AEn=—E,.F{*+1r(1n2——)Za——(Za)2 an(——)
2 2 3 Za

+[55+E+ (n= 1):](Za)2 1n(2Za)2

22 457
il
3 2700

-—(4-{—32%) (n— 1):|(Za)2} (7.1)

for =1 and #=2. The numerical values of the various
contributions to the coefficients are listed in Table III.
As anticipated from the Lamb-shift calculation of

order a(Za)®mc?, the (a/m)(Za)2E.F coefficient accom-
panying the In?(Za)~? contribution (second line in
Table III) is quite large, +16.63. We should thus have
a good estimate of the total coefficient since the other
(a/m)(Za)*E.T coefficients are small (they only add up
to 4+1.73 even though all except the smallest are
positive) and most of the uncalculated coefficients are
expected to be even smaller. Let us discuss the various
uncalculated terms.

The largest number of uncalculated contributions to
order (a/m)(Za)*E,F are the terms quadratic in the
field strength. These are separately rather small since
the parametric (z,\,#) integrations each give factors
smaller than 1 and the momentum integration does not
give the factor 7 occurring in the a(Za)E,¥ coefficient,
as in (5.24). The terms would not be expected to add
together to give a large coefficient since none of the
other calculated coefficients for either the hfs or the
Lamb shift are larger than their largest single contribu-
tion. It seems quite conservative to put an estimated
bound of &1 on the total of the (a/7)(Za)2E,F coeffi-
cients from terms quadratic in the field strength.

The only other uncalculated state-independent
coefficients of (a/7)(Za)2E,F are from the shift correc-
tion terms labeled L—p in Table III. These terms are
seen to contribute an extremely small amount (49) to
the a(Za)E,F coefficient in Table III and are also found
to give only small contributions to the a(Za)%mc® and
a(Za)® In(Za)?mc? coefficients in the Lamb shift.” We
will estimate their contribution to order (a/7)(Za)2E,F
to be negligible.

The largest uncalculated terms are anticipated to
be the contributions of the nonsymptotic parts of
the wave functions in the second term in the V expan-
sion of I;. This is because the first term in the V
expansion yields the entire contribution of order
a(Za)? In*(Za)—2E,F and the dominant contributions of
orders a(Za)? In(Za)2E.F and a(Za)E,¥, both for the
state-independent and state-dependent coefficients,
when the nonasymptotic parts of the wave functions
are used. To estimate the size of the contributions of the
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X (Za)?In(Za) 2 X (Za)?
Term Eq. No. X1 XrZa X(Za)?In*(Za)? n=1 (n=2)—(n=1) n=1 (n=2) —(n=1)
Le—8,¢ —asym (5.9), (6.18),(6.30) 0 —1.18 0 +2.00 —0.67 +0.14 +1.13
Lc—5iy¢ —nonasym (6.24),(6.26),(6.27),(6.31) 0 0 —0.67 -2.76 +2.82 +16.63 —7.34
Le—by¢ —V —asym (6.44) 0 0 0 -0.52 0 +0.32 —0.71
Le—86 — V —nonasym 0 0 0 0 0 not calc. not calc.
Le —:S"¢ -V-V 0 0 0 0 (V] not calc. not calc.
L, —4sym (5.9),(5.11), (6.40) 0 —1.18 0 +2.00 —1.17 +0.14 +1.40
L“ —nonasym (6.40) 0 0 0 0 —+0.67 0 —0.61
Ll —V —asym (6:47) 0 0 0 -0.85 0 +0.53 ~1.18
Ly —V —nonasym 0 0 0 0 0 not calc. not calc.
L,—V—-V 0 0 0 0 0 not calc. not calc.
'p (5.14) 0 —0.07 0 0 0 not calc. 0
L-M (6:51) 0 0 0 -0.33 0 +0.21 —0.46
pr¢ (3:4), (5.17), (6.78) 0.50 —0.14 0 -0.88 0 +0.46 +0.99
Quadratic in F, 0 0 0 0 0 not calc. 0
Vac. Pol. (C9) 0 +0.75 0 +0.27 0 —0.08 ~0.33
Total 0.50 —1.81 —0.67 —1.07 +1.65 18.36 +n.c. ~7.11 $n.c.
= +18.36 £50 = —5.57 :0.06b
Coefficient of ExF for Z=1 1161 —96.21 —7.98 -1.30 +2.01 +2.27 40.62 —0.69 20.01
ppm ppm ppm ppm ppm ppm ppm
» Estimated limit of uncalculated terms.
b Result of complete numerical calculation in Ref. 15.
nonasymptotic parts in the second term in the V Using the value
expansion, we combine them with the contributions of eao(1) = 18.36-45 (7.3)
the remaining terms in the V expansion to give the 2 : :
only uncalculated state-dependent coefficients. (The in Eq. (1.7) with26
calculation of the remaining terms in the V expansion
requires a sum-over-states method.) Comparing the EF 2R Hp
total calculated state-dependent coefficient with the =R
. R Mo
complete numerical results of Zwanziger'? in Table III,
we see that only Mc
o ) =1421.1024+£0.039— (4274 ppm) (7.4)
(—=35.57+£0.06)— (—7.11) 1 sec
~/
557 ——; and
d.9 -
8p=(—3543) X105, (7.5)
of the state-dependent coefficient has been uncalculated. ~ where'®
Taking about the same fraction of the calculated state-
& a1=137.0388:0.0019 (£13.7 ppm), (7.6)

independent coefficient, +18.36, we estimate about =44
for the corresponding uncalculated contributions to the
(/) (Za)E,F coefficient. Adding this to the =1 for
terms quadratic in the field strength, we estimate

|cao(1)—18.36] <5,

as listed in Table III.

Having used the precision of Zwanziger’s result to
estimate the size of our uncalculated terms, let us
reverse the procedure and note that our calculated
terms provide a good check of the sign and magnitude
of Zwanziger’s (n=2)— (n=1) difference. Such a check
is particularly desirable since the Lamb shift state-
dependent coefficients are quite small and one might
thereby expect the hfs state-dependent coefficient to be
similarly small. This is not found to be the case, either
for the a(Za)?In(Za)™2E,F coefficient or (especially)
the a(Za)?E.F coefficient. The reason for the large
coefficients is seen to be that the §,¢,(7) (the “magnetic
correction” parts of the wave functions), unlike the
Coulomb wave functions, are strongly state-dependent
near r=0, apart from the state-independent divergent
leading term —1/2Zamr in (A3). This was particularly
seen in the calculations in Appendix D.

(7.2)

¢=2.997 925X 10"4+£3X10* cm/sec

(£0.9 ppm), (7.7)
R,=109 737.3140.03 cm=! (==0.3 ppm), (7.8)
p/io=0.001 521 032 5, (7.9)

we obtain?6

0E,(H ; theor) =1420.3454-0.044 Mc/sec
(£31 ppm) (7.10)

for the ground-state hfs in hydrogen. This disagrees
with the experimental value?

8E:1(H ; exp) = 1420.405 751 80028 10~

Mc/sec (7.11)

26 The error intervals quoted for the numbers used for the
theoretical values of 8E; represent estimated absolute limits of
error rather than a standard deviation or expected error. Thus,
we use three standard deviations for the E,F error limit of 427.4
ppm (which is almost entirely due to the uncertainty in «) and
add this to +5(Za)?*==-0.6 ppm from ¢z(1) and to 43 ppm from
8, or =13 ppm from uu/u, to get the 31 ppm in (7.10) and
(7.12) or the 41 ppm in (7.15). Smaller error intervals quoted
elsewhere (Refs. 1, 4, 14) are obtained by using one or two
standard deviations for the uncertainty in «.
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byﬁﬁ
812,(H ; exp)—8E (H ; theor)
SE.(H)

This discrepancy makes the hydrogen hfs measurement
unsuitable for determining a.
For muonium, we may take?

(7.12)

=43+31 ppm.

o/ p=23.183 38+0.000 04 (£13 ppm),2® (7.13)
and §, as in (1.5) with
M,/m,=206.765, (7.14)
and obtain?®
SFE1(M ; theor) =4463.1640.18 Mc/sec
(&£41 ppm) (7.15)
which agrees quite well with experiment,!
0E1(M ; exp) =4463.154+0.06 Mc/sec
(%13 ppm).2® (7.16)

If, instead, we use the experimental values to determine

the fine-structure constant, we obtain?®
a1=15131.2210(p,/pp0F1) 2= 137.039020.0012
(&9 ppm), (7.17)

which agrees quite well with the value (7.6) obtained
from the fine-structure separation of the 2P3;;— 2Py,
levels in deuterium.?®

ACKNOWLEDGMENT

The authors are indebted to Professor Donald R.
Yennie for suggesting this problem and for his constant
encouragement and many helpful suggestions.

APPENDIX A: WAVE FUNCTIONS
USED IN THE CALCULATIONS

The 1S and 2S nonrelativistic Schrodinger wave
functions for the electron in a Coulomb field are

$1(r)=1(0)e*r,
@2(r) =¢2(0)e=Fr(1—Br)

|6a(0) |*=8%/7,
B=B(n)=Zam/n.

(A1)
where

with

The asymptotic form of these wave functions in momen-
tum space is

(26)5/2 1
fu (D)~

(PR

(P>6) (A2

27 D. P. Hutchinson, J. Menes, G. Shapiro, and A. M. Patlach,
Phys. Rev. 131, 1351 (1963).

28 The error intervals in (7.13) and (7.15) are estimated error
limits, while the error interval in (7.16) is one standard deviation.
The error interval in (7.17),

+9 ppm S +3[ (213 ppm)?+(3=13 ppm)2]*7,

is essentially one standard deviation.
® E. S. Dayhoff, S. Triebwasser, and W. E. Lamb, Jr., Phys.
Rev. 89, 106 (1953).
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The S-wave part of the first-order magnetic dipole
perturbation to the above wave functions is'>*

8,01(r) =2(Za)*mCpn(0)e 5"
—1 3
X [———l— (In28r+vy—1)— —+ﬁr]
287 2
Sup2(r) =2(Za)*mCypn (0)eF"

-1 1
x| —+ ndprtr =1+
48r 4

—Br<ln26r+7—§>—%(ﬁr)2:| , (A3)

where y=0.577* is Euler’s constant and
E.F=27aBC,/m=4|e|{c-u)B%/3m. (A4)

The asymptotic form of these wave functions in momen-
tum space is®

6y¢n(l))~CuV¢n(p) =—Cy

2

B
éa(p).

(P>62) (AS)
2m

APPENDIX B

In this appendix we account for the difference in form
of the terms 7 par, I, 14, and I, of Table I and the terms
I 14,1, and I, of paper I. We first note that the term
I of Table I can be identified with the contribution of
the second part of (I-2.48) before the latter is reduced
to the terms /., and 7, of paper I. Second, instead of
transforming the term (1-2.71)

1 1
Io=2zy,(k—2I1)—[1I* 11 ]— B1
0 » D[ :]D ( )

l 1
D?
into the terms 7, and 7 of paper I, we take an approach
more convenient to the hyperfine structure calculations.

We first note that if v, is anticommuted past (k— zIT)
and commuted past D~! we obtain the magnetic
moment structure

'YM[H":II]= M, (B2)
and thus rewrite /¢ as the sum of the terms
1 11
Ig’=2z(k—zH)——(—2M)-| {— , (B3)
D D||D?
I/ =4z(k II)ll:IIII1 !
=4z — — [ | | —
0 w32 MD y ]D“D2’ (B4)

1 11
Ie=—2 k— w H, — .
3 zn)[7 D][H H]DHD2 (B3)

We next use an integration-by-parts identity (I-2.46)
k, 211,

p llp

®S. J. Brodsky, thesis, University of Mi t -
publishad). y innesota, 1964 (un

(B6)
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to reduce the term

1 \M 1 1
A B
DI\ D? D D D2/ || D?
1 1 171 M
S P A L O
D D DA1D/ || D?

Note that commutators of M occur when we apply the
identity

(42 ]om—tamr |+ orans. @9
Thus,
zo'=4z2( [vm D]~ n—;——[ , Ji) %
il . o

The subsequent reduction of the first line in 7’ is just
like that of (I-2.61) and yields 71 of Table I.
We write the second line of 7o’ as

1 11
— 42— [y, M I — [ILM ) — | |—
4 Ly, M~ [11 ])D2‘ >

1 1 11
— 42—y, M1~ II"D—H— (B10)
p ML

and combine it with

1 11
ns s a1
"D “llp

+421[n D]—l— o] (B11)
ZD s 1)2, D ’

where (B6) and (B8) have been used again. The sum
of the first terms of (B10) and (B11) vanishes,

- [:‘Y ':M]II + [H:M]+ [[Hl‘:H]aH#J
= %VnV»VXEEHp’H)‘];H ,J =0, (B12)

as in (I-2.73). The sum of the second terms of (B10)
and (B11) becomes I4 in Table I when the identity

[y»M]=2[10,I1] (B13)
is used. Thus, we have shown
Iy=I m+1;+1,, (B14)

as required.

The terms 74 and 1. turn out to have cancelling w=0
contributions (w is defined in footnote 22). In I, we note
[11,,D]=[11,,2zk - 1—3117]

= 22k, [ 10, 11" ]— 200 [ I, XX ]—2[ 11, 11T, (B15)
The last two forms give w=0 contributions to /; when
IT sbetween the commutators:
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1 1 1
Ii(w=0)=—4z { BEH,,H]HE[II“,II]E
1 1 1
+B[Hmn]HE[H">H]B

1 1 111
——[mo}—n[m,ul—!||—. (B16)
D[ jD LIL ]m] lD

Similarly I, gives w=0 contributions when the
||&”=||2I1” insertion is performed on the middle D—!:

1 11 111
1,(w=0)= — 4g%y,—[ I, 1 ]—II"—[1I* 11 —“—.
(w=0) 'YD[u ]D D[ ]D
(B17)

If we anticommute the y* in (B17) through the
D1, ]D"Y, and ignore commutators with D!
(which are higher order since they are cubic in the field
strength), we see that (B16) and (B17) cancel. The
remainder containing the anticommutator

{777[11#7“]} = ZEHMHV] (BIS)
has an odd number of y matrices in the numerator,
bringing in the small components of the wave function
so that w=1.

We also wish to demonstrate that only the I, and
I, structures of the I, numerator (4.1) contribute to
nominal order N=6. A representative matrix element
for the terms in the third line of (4.1) is

(=

This is clearly zero (since m—II vanishes acting on
either wave function) except for commutators of IT with
the denominators or with the operator p#= (E,,p). The
commutator with the denominators may be written

12

n> }—1— . (B19)

1 [D, II]
NI
D D D
2 21 A — ‘[Hy L) I (B20)
= —2g2—pr—e ,
ool o IIp
where we have used the identity
[D,X]=2:{11" 11k, (B21)

and the equivalence (B6). The contributions of (B20)
are of order a(Za)*E.F (,85) and higher. The term from
the commutator of IT with p* is also easily seen to be of
higher order, as are the terms in the fourth line of (4.1).

APPENDIX C: THE VACUUM-POLARIZATION
CORRECTIONS TO THE HYPERFINE
STRUCTURE

The energy shift due to vacuum polarization® is given
to order a by

AE,(VP)=(n|vy-eA"?|n), (C1)

# R. Serber, Phys. Rev. 48, 49 (1935 ; E. Uehling, bd. 48, 55
(1935). ) &
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where A,VP is
potential

the induced vacuum-polarization

ve(g) @ ld 2e*(1—1%/3) e
A q =——q/ 1 —————A4,(q).
* 2 Jo  Ami4qt(1—1?) *

Higher order terms at least cubic in the external
potential A, have been ignored. In the calculations of
the corrections to the hyperfine structure, relativistic
modifications to the wave functions may be ignored
with error of order a(Za)3E.F.

For the Coulomb part y-e4 — vV, the hyperfine
dependence is taken from the linear magnetic correc-
tions to either wave function. In position space we
obtain the contribution

(C2)

a Za [
AE,(VP—¢)=——— | dv212(1—12%/3)
T 4m?
e—rla
X [#r8.00— 8800, (€3
ra?
where
a?= (1—12%) /4m? (C4)

and 8,4, is given in Appendix A. The required integra-
tions are straightforward; the result through order
a(Za)?E,TF is

AE,(VP—¢) =a(Za)EnF[ ]“*’ (Za? m—l:li:l

2Za
8/1 3 8 46

—+- (Za)2EnF|: <———6 2)—[———-———]. (C3)
T 15\2 2 9 225

For the magnetic term, y-e4 — —v-eA, we recall
the Coulomb S-wave-function matrix-element identity
used in the calculation of Iz,

—q¥y-eA=2M,(V+e,). (Ceo)
We thus obtain the contribution
a C, !
AE,(VP—p)= ——-Za——/ 2:2(1—12/3)
iy 4m2 0
e—r/a
X [ s s (Ve (€1
ra

The result through order a(Za)2E.F is
3
AE,(VP—p) =a(Za)EnF[§]
« 10 1
+-—(Za)2E,.Fl:———+—5n2:l . (C8)
T 15 10

The total contribution of (C5) and (C8) is thus
AE,(VP)=AE,(VP—c)+AE,(VP—p)

— (7B [ ]* (Zay? I“E[lga]

64 7
+2(za2E F[———am}. )
JEPET| (©9)
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APPENDIX D

To evaluate in position space the contribution of the
second term in (6.6), we may perform three integrations
over angles and obtain

a 0 0 s+s’ 1 1
AE,,(z'ii)=—(Za)2EnF/ ds/ ds’/ ds"/ du/ dy
™ 0 0 |s—s’| 0 0

P(z,u) d
X———————0upa(5)X(s5,5",5"",¥)—a(s"), (DI1)
¥+ (1= ds'
where
s=pr, s'=pr', and s§?=p(r—r)?, (D2)
Bun (5) =09 (r)/ (Za)*mCy$4 (0) (D3)
[as given in (6.10) for n=1 and 2],
Dn(s)=n(r")/$4(0), (D4)
and
e s 22— 253/
X(s,s",s" y)=— . (D3)
y s*
The asymptotic parts of the wave functions
dupn(s)~—e*/ns, (Do)
d
—pn(s)~—ne, (D7)
ds’

correspond to the asymptotic parts (AS) and (A2) in
momentum space and thus yield the contribution
(6.30), of order a(Za)? In(Za)—2E,F. For the remainder
of (D1) the integrations are convergent for w=0
(Za=0) so the contribution of order a(Za)?E,F may be

obtained by taking the limit
1dy
Sy vy

/ i / P(z,u)X(s,s, ”,y)

e

2 ri s 24 s2—s""2— 253/ 5
A,
3 S” 5”2 S2

The s” integration is now easily done, and we obtain

o0

a
AE,(vii; nonasym) =—(Za)2E,F / ds
m™

0

o
x[am,.(s)u(s)—(—e—)(—gne-s)], (Y)
ns.

where, for n=1 and 2,

4 3
In(S)Ege—l‘ —n+2s(n— 1)[ln25+7+;i|

0 14¢
—25[n+2s(n~1):|/ dt e‘“'ln—A} , (D10)
0 12

with ¢=s"/s. The final results given in (6.31) may be
obtained by performing the s and then the ¢ integrations.



