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A comprehensive calculation of the second-order quantum-electrodynamic corrections to the hyperfine
splitting of S states is presented. The gauge-invariant reduction of the self-energy expression given by Yennie
and Erickson is used to systematically verify previous calculations of orders n, a(Zn), 0.(Za)~ln~(Za)~, and
n(Za)'ln (Zn)~ relative to the lowest order Fermi splitting E~ and to obtain a result for the dominant con-
tribution to order n (Zcx)' for the 1Sand 2S levels. The new contribution for the 1Sstate is

(+17') (Za)'t 18 4~5jEF= L2.3&0.6)X10 'E~,

where n is the fine-structure constant, Zn is the strength of the Coulomb potential, and the error limits are
estimates of uncalculated terms. Our results for n =2 provide a substantial check of Zwanziger s calculation
of the hyperfine splittings in the 1Sand 2S levels.

1. INTRODUCTION

HE recent measurement of the hyperfine structure
of muonium' and the persistent discrepancy

between theory and precise measurements of the hyper-
fine structure of hydrogen' have led to renewed interest
in the theoretical calculations. ' ' In this paper, the
third in a series on the calculation of radiative level
shifts, ' we present a comprehensive calculation of the
second-order quantum-electrodynamic corrections to
the hyperfine splitting of S states. By employing a
gauge-invariant reduction of the self-energy expression
and computational techniques developed by Erickson
and Yennie, ~ we are able to systematically verify
previous calculations of order n, a(Zn), n(Za) ln'(Zn) ',
a(Za)' ln(Za) ' relative to the lowest order Fermi
formula and obtain a new result for the dominant
contribution to order u(Zn)' for the 15 and 25 levels.
Lin'x=(lnx)'. ) This new contribution is found to be
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is the Fermi energy difference representing the non-

@ (r) is the nonrelativistic wave function for the nS states.
The units are A =c= 1, a =e', where e = —

~
e

~
is the charge of the

electron. F= I+S is the total spin.

an order of magnitude larger than its nominal order
and, in fact, its contribution is twice as large (in the
opposite direction) as the contribution of order
a(Zu)' 1n(Za) '. lf the accuracy of the measurement of
the muonium hfs' (and of the magnetic moment of the
muon) is improved, this new term will be important for
the accurate determination of the fine-structure
constant.

Before presenting the calculations we will briefly
review the various contributions to the hyperfine
structure of the S-state levels of the hydrogenic atom.
The correct covariant treatment of the energy levels of
the two-body system proceeds from the Bethe-Salpeter
bound-state equation. Its reduction to physical terms is
facilitated by the use of four dimensionless parameters:
the electron-to-nucleus mass ratio m/M, the ratio of
nuclear and atomic sizes E/ao, the fine-structure con-
stant a, and the strength of the Coulomb potential Zn.

In first approximation (m/M —+ 0, E/ao-+ 0, a ~ 0)
one may take the electron to obey the Dirac equation
with fixed Coulomb and magnetic dipole potentials

V= Za/r, —A=pXr/r",

where @=g(IeI/2M)I is the nuclear-magnetic dipole
operator. To first order in the magnetic moment, but
to all orders in Zn, the energy separation of the singlet
and triplet levels of the nS state is'

bL &'&=E rL1+(Zn)'b(ri)],
where
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relativistic interaction of the magnetic moment density
of the electron (evaluated at the nuclear position) and
the nuclear magnetic moment. The term (Za)2b(n) is
the Breit relativistic correction, ' which is (-', )(Za)'
+O(Za)4 and (17/8) (Za)'+O(Za)' for the 1S and 25
levels, respectively. E„~ is the lowest order expression
for the hyperfine separation and all corrections will be
expressed as multiples of it.

At the second level of approximation one continues
to treat the nucleus as a fixed point potential (rn/M ~ 0
and E/a~~0) but now considers contributions of
radiative corrections of relative order n, o.', , evalu-
ating these terms to first order in the nuclear moment
using Dirac states for the electron in Coulomb and
magnetic dipole potentials. The functional dependence
of the radiative corrections is not analytic in Zn but
actually has the form

+2

8E "'=E ~ ——0.328—+ciu(Zn)
2%- ~2

+—(Zn)'t c22in'(Zo) '+c2i(l) ln(Za) -'+c2O(e)j

+d—+e—Za+, (1.3)
x' x

i.e., a series in n, Zn, and ln(Zn) '. The first two terms
are the corrections to the static magnetic moment of
the electron. The other terms arise when binding is
taken into account. The term of order a(Za)E„~ was
found by Kroll and Pollack" and Karplus, Klein, and
Schwinger" to be given by

t ~
————,'+ln2.

More recently, Zwanzigeri2 calculated the (n = 2)
—(v= 1) difference of the coefficients in the second line
of (1.3),

Lc2i(2) —c~i(l)] 1n(Za) '+(c~o(2) —c20(1)]
= (7/2 —8/3 ln2) ln(Za) '—2,619+m-(—0.94&0.02)

and, since then, Layzer' and Zwanziger' have obtained
the separate coefFicients of the logarithmic terms,

C22== —2

37 4 8
c2i(1)— + ln2,

72 i5 3

16 1 4
c2i(2) = ——ln2+4+ —+—.

3 72 15

Finally, at the third level of calculation one must
consider the effects of a nucleus of finite size and mass.

9 G. Breit, Phys. Rev. 35, 1447 (1930).'
¹ Kroll and F. Pollack, Phys. Rev. 84, 597 (1951);86, 876

(1952)."R.Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597
(1951)."D.E. Zwanziger, Phys. Rev. 121, 1128 (1960) .

These terms arise in the reduction" of the two-body
Bethe-Salpeter equation and correspond physically to
recoil, second-order perturbation in the dipole potential,
nuclear polarization, etc. The main effect of recoil is
conventionally summarized by using the reduced mass
instead of the electron mass in evaluating the wave-
function in (1.2). We thus include with E„~ the over-all
correction factor

(1.4)

The remainder of the nuclear corrections' beyond those
given by (1.4) and its cross terms with (1.3) is non-
trivial. For muonium, the additional nuclear correction
is

3n mM M
6E &"=E ~ —— ln—=E„~b„(1.5)

vr M2 —m2 m

to lowest order in 0. and Zn. For hydrogen, one obtains

bE„~» =E„~ —8.7&-
35

=E ~[ 35X10 '—$=—E ~6

assuming photon-proton interactions are described by
elastic-scattering form factors. Nuclear-polarization
corrections to this assumption have been found to be
negligible. '

The total hyperfine splitting of the ground state is
then

M 3
bk, i= A, i 1+k„,i+—(Zn)'

M+m 2

+ 0.328 a—(Z—n) (-', ——ln2)
2g %2

lX 2 37 4 8
+—(Z )' —1 '(Z )-'+ —+—-ln2)

3 72 15 3

X in(Za) 2+cM(1), (1.7)

where we have neglected terms explicitly third order in
the small parameters. %e compare bE& with experiment
in Sec. 7 using the most accurately known physical
constants" and the dominant part of the @20 coefricient.

Because of the interest in obtaining as reliable a
theoretical prediction as possible, we shall present a
new unified derivation of the Zo. expansion of the radia-
tive correction of order u relative to the hyperfine
"M. M. Sternheim, Phys. Rev. 130, 211 (1963); W. A. Barker

and F. ¹ Glover, ibid. 99, 317 {1955)."C. Iddings and P. Platzman, Phys. Rev. 113, 192 (1959}and
115, 919 {1959);R. Arnowitt, ibid. 92, 1002 (1953);W. Newcomb
and K. Salpeter, ibid. 97, 1146 (1955); A. C. Zemach, ibid. 104,
1771 (1956).

"Phys. Today 17, No. 2, 48 (1964); J. W. M. Dumond and
E. R. Cohen, Rev. Mod. Phys. 37, 537 {1965).The errors given
in {7.6)—(7.8) are three standard deviations.
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formula. The calculation given here has several distinct
advantages. First, the calculation retains gauge invari-
ance up to the point of the evaluation of matrix ele-
ments. Thus there is no cancellation of spurious gauge-
variant terms and the terms that do occur are readily
interpretable in physical language. In fact, the calcula-
tion proceeds as an expansion in terms of field strengths
rather than powers of potentials, and only the first two
terms in such a series are required for the coefficients
of interest here. Second, the calculation is made quite
compact by using an algebraic notation developed in
paper I. Finally, we can readily apply the order-
determining rules discussed in paper II to rigorously
identify terms that contribute to a given order, and
3ust as important, rigorously indicate that a given
neglected term is of an unimportant higher order in Zn.

The calculation will also include an estimate of the
size of the rr(Zn)sE ~ coefficient css(tt) for n= 1 and
e= 2. We do this for two reasons. In the Lamb shift it
is observed that accompanying the rr(Za) s ln'(Zrr) 'mes

term is a rather large contribution of order rr(Za)smc'.
Thus, the contribution of order n(Zu)sE ~ might be
considerably larger than the nominal order indicates.
We will also be able to give a substantial check of
Zwanziger's calculation" of the ratio of hyperfine
splittings in the iS and 2S levels.

In the next section, we summarize the formal alge-
braic reduction of the expression for the second-order
self-energy correction. In Sec. 3, the calculation pro-
cedures are summarized and applied to the evaluation of
the lowest order contribution, that of the second-order
anomalous magnetic moment. The order-determining
rules are given in Sec. 4 and are used to single out the
types of terms which contribute to orders of interest.
In Sec. 5, the er(Za)E ~ terms are identified and calcu-
lated. The calculation of the a(Zrr)'ln'(Ztr) 'E and
tr(Za)sin(Zn) 'E ~ terms (for n=1, 2) is given in
Sec. 6, as well as the calculation of the dominant
contributions of order n(Zor)sE„~. The results are
summarized and discussed in Sec. 7. Appendix A lists
the wave functions used in the calculations. Appendix 8
gives the formal derivation of terms reduced differently
in paper I and shows the cancellation of some contribu-
tions. The second-order vacuum polarization contribu-
tion is calculated in Appendix C. The term giving the
dominant contribution to the state dependence of the
n(Z )'Er„rcoeefficient ere(n) is calculated in Appendix D.

2. REDUCTION OF THE SELF-ENERGY
EXPRESSION

Quantum-electrodynamic corrections of order rr to
atomic spectra correspond to two types of Feynman
diagrams, the self-energy correction to the bound
electron current and vacuum polarization. In effect
these radiative corrections modify the electron's
magnetic moment and spread its electromagnetic
distribution, both effects being directly observable in
the hyperfine structure. of 8 st@tt;s. Thy vacuum

polarization effect is straightforward to evaluate and
will be brieAy dealt with in Appendix C.

The starting point for the calculation of the second-
order self-energy correction to the energy of an electron
bound in a fixed potential A" is the formal, gauge-
invariant expression, 's (I—2.1)

In accordance with Sec. 1 we are to evaluate AE„ to
first order in the nuclear magnetic moment y, in states
~n) which satisfy the Dirac equation with Coulomb
and magnetic dipole potentials, '

The resulting energy difference AE (F= 1)—hE„(F=0)
will then have the form ref„(Zrr)E ~.

Observing that AE depends on the external potential
3" through the operators

II"—=p"—eA "—= (E„e.4' y—eA)—
and the Dirac state satisfying

(2.3)

(n
~
(H —m) = (H—m)

~
n.)=0, (2.4)

it might seem natural to immediately expand the bound
electron Green's function and the wave function in
powers of 3" to terms linear in p and the first few terms
in Zrr—1/137. This direct approach fails for several
reasons. First, a direct expansion in the potential is
manifestly non-gauge-invariant and can lead to "false"
expansions in which all terms are of the same order in
Zn and which sometime contain spurious lower order
terms which ultimately cancel. " It will be clear that
the natural expansion must be in terms of the gauge-
invariant field strength F„„=—8„.4 „—B„A„.Second, AE
contains terms which involve the nonanalytic 1n(Za) '.

Since ~„is gauge-invariant, it is a function of F&"
rather than the potentials. Moreover, since it is defined
to vanish for zero field strength, AE„ is presumably at
least linear in F&". In fact, after the d4k integration has
been performed, ~„must take the form

~ =re(tsl F" . Q„, ln), (2.5)
"The notation is that of J. D. Bjorken and S. D. Drell,

Retatieistic Quantum Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1964). Scalar products of Dirac matrices with
four-vectors are denoted A—=y A —y„A "—=yoAO —y. A andII=—y. II—p—eA.

'~To distinguish the operators, wave functions, etc., which
correspond to @=0, we will use the subscript c (for Coulomb
potential). For the additional parts linear in the nuclear magnetic
moment, we use the subscript p. For example, the wave function
in the complete Coulomb and magnetic dipole potential (2.2),e„=p„,+e„p„or ~n}=

~ }+~nn„}, may be split into a part ts„„
which satisfies the Dirac equation without p, plus a "magnetic
correction" b„qb„. Details of these wave functions are discussed
in Appendix A."H. N. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958).
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where, because of the transformation properties of hE„,
Q„, must be an antisymmetric tensor. The tensors
available are (1) o„„=(y„,—y„j/2i, which gives the mag-
netic moment structure M= eo„,—F""/2=ee X iea —8;
(2) II„y.—Il,y„, which gives the "L" structure
II„[II",IIj; and (3) F„„, corresponding to 8'—K'.
The ~ represent interspersed scalar functions which
can involve II, II', and M, or scalar combinations such
as 0 -.II~

A systematic reduction of ~„to calculable terms of
the above type is given in paper I. The procedure is
gauge-invariant and avoids "false" expansions where
actual logarithmic dependences exist. In brief the
calculation of ~„=0for the case of the free electron
(F&"=0) is used as a guide for the corresponding
calculation for a bound electron (F&"WO). The calcu-
lations would in fact be identical and the result ~„=0
would again be obtained were it not for the fact that
the components II„do not commute with each other.
Remainder terms are thus obtained which are at least
linear in the commutator LII",II'1= ieF&";—these are
listed in Table I. Some modiications in the reduction
procedure of paper I are made in Table I which simplify
the hyperfine calculations. The new derivations are
given in Appendix B.

The double bar
~~

"symmetric insertion" notation
used in Table I is a convenient algebraic device for
combining several similar terms. For example, JI.3 is
actually the sum of three terms obtained by successively
replacing each of the three 1/D factors by 1/D . The
[)(1/D') notation indicates [~(1/D)(~(1/D), i.e., two
consecutive insertions. In I~&, the insertion of ~~(1/D)
into (I/D~) gives (I/DP). In Ir,~ one is to form terms
by replacing each 1/D by (1/D)3f(1/D). The reader is
referred to Sec. I-2 for the full development of this
notation.

The content of the terms in Table I can perhaps best
be understood if we calculate them to lowest order in
F"" (only the Ir, and 1~ terms are required) while
approximating each denominator as

Do= s'e"+E'—k'+z(1 —s)H. (2.6)

Then, as indicated in later sections, AE„reduces to the
sum of two important forms

(2.7)

If we had retained the terms involving p in the de-
nominators, then the expressions would be modified by
"form-factor" functions of p . These serve to suppress
relativistic regions of the matrix-element integration
( y~ &m, r&1/m.

The terms CLE (L) and hE„(M) give, respectively,
corrections to the bound-state energy due to the charge
distribution and static anomalous magnetic moment of

TABLE I. The Erickson- Yennie reduction of the one-photon self-
d4k

energy expression 0 J' „=-— dz dX' dK —~.{ ~
I—Ill~

~
&)

4~ o o o F ~'i
to calculable gauge-invariant terms.

The mass-renormalized operator I—I~ is the sum
of the following terms'

1 1 1 1
I& =8(1—z')z mm—rr„—frr",IIj-

Q

1 1 1 1
IL,,= —4z~(1—z)—Ir„—fn",IIj—

D D D D

1 1 1 1
IL,4 ———4p—II„,—/II", LIE-

D D D D

1 1 1
I~I ——2 {1+z)m—z'M-

D DI D'

1 1 1
I~2= —4m—zsiV—

D D D'

.V
Ir,.~= —2zt Is,3+IL,4j

D

1 1 1 1
I, =4(1—z2)~m —

t rr„,II1—t rr",II)—
Q

1 1
I.,= —4y~—Lrr„,IIj—Lrr, IIj—

D D D D'

1 1 1
I =4(1—)8 —rr„—,II tD,II~

A, A,

1 1 1 1 1 1
+ —,II rr„—Lrr, IIj—+—rr„—Lrr, IIj II,—

A, A. D) ' Q, D)%' D

1 1 1 1
I,=4(1+z)z'mZ —n„—{(k —Xzrr}„,t rr&, rr "j}—

D) Q,

1 1 1 1—(a,IIj—t D„,Dj-
D D D' D

1 1 1 1
I,= —4z& g —zII)—Pr„,IIg—La,IIj-

D D D Dg

Notation:
D =zsms+K- (k —zII)~+z() —)II—~~

D) =zsm~+K —(k —XzII)~+z(1—z)II
DI ——z2m'+K —(k —zrr)'+z (1—z)II

M =—IP—rrs = eg „„F»/2
H—=m' —H'

a The terms labeled ILw, Ie, Ia, I& correspond to a di8erent arrangement
of the terms labeled Ie, Ia, I~, If in paper I. The new derivations are given
in Appendix B.
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the electron. "The quantity H in ~„(1.) is the Dirac
Hamiltonian

EI—=m' —II'=2m[p'/2m+ V+e ]
[—ee„„F&"/2+ p eA. +eA p]

+[A'—V' —2e V—e ']. (2.8)

Note that H vanishes acting on the staten) and de-

pends on n through the binding energy ~„—=m —E„&0.
The In(m'/H) term arises in connection with the
infrared behavior of the photon; the binding of the elec-
tron serves to cut o6 what would be a logarithmically
divergent d4k integration in the case of the free electron.
Employing a sum over states, this term gives the
famous Bethe sum for the Lamb shift and is of order
of magnitude (4aZu/3m') ln(Zo) '~@„(0)~'

The terms proportional to p in hE (I.) will be shown
to be of orders

a(Zn)E ~, u(Zu)'-'[ln'(Zn) ' 1n(Zn) '1]E„".
The quadratic logarithm term arises from the conHuence
of the "infrared" photon integration with an integration
over the electron's coordinates which could diverge
logarithmically were it not for the form-factor cuto8 in
the relativistic integration region. The terms linear
in p in AE„(M) give the anomalous moment correction
(n/2s)E "plus terms of order

a(Zn)E ~ n(Zn)'[ln(Zn) ', 1]E ~.

Other contributions to order a(Zn)E ~ are found to
arise from the parts of Il., I,~~, and II..~ which are
quadratic in F&". The remaining terms only contribute
to order u(Zn)'E„~ or higher.

1 1 1 1
lory ~=2(1+s)m—s23II st

D Dj Dg D'
(3.1)

and similar terms from I~~~. It will prove convenient
to write the results of step (i) in the form"

Paper II is a simple rule which indicates rigorously the
orders in Zo, and lnZn to which a given term may
contribute. ln the next section we review the notation
involved and extend the rule to situations where hyper-
fine operators or hyperfine wave functions are involved.
Sufhce it to say for the present that the reduction
sequence is chosen so that the correction terms to
steps (i) and (ii) are almost invariably higher order
than the original term; the order is never decreased.
"Outside" denominators (acting on wave functions)
are now functions of II alone so there is no error in

performing step (iii). After these steps any "inside"
denominators still retain their dependence on II. A
possible calculation procedure is to insert a complete
set of Dirac states and evaluate the matrix element
numerically, as in the Bethe sum term. For the hyper-
fine radiative corrections we shall find that the sum-
over-states calculation can be postponed by approxi-
mating H ~ p' in the inside denominators, the error
being a small contribution of order 0.(Zn)'E„~ With.
such a procedure we can write the entire denominator
as a function of p alone, and the matrix element can be
evaluated analytically in the momentum representation.

The application of the standard steps (i), (ii), (iii) to
the I~ terms is straightforward. After performing
step (i) by neglecting z'M in each denominator, we set
aside for future investigation the correction term

3. CALCULATION PROCEDURES AND THE
LOWEST ORDER MAGNETIC

MOMENT CORRECTION

Ke shall first discuss in a general manner the pro-
cedures used to reduce the terms I(D) of BE„ to a
calculable form. The essential problem is that the
denominators D and D j involve momenta and potentials
in a rather complicated way; hence, we must resort to
expansions. The following is a useful reduction sequence:

(i) Neglect s'M in each denominator: I(D) —+ I(D&);
(ii) "Shift" (k —Xzll)' to k'. l(D~) ~ I(DO);
(iii) Take B='0 in those denominators next to the

wave functions.

For each step we must later consider the resulting error
or correction terms. One of the most useful results of

"The operators in AE„{L,) and AE„(M) can be interpreted as
the nonrelativistic limit (q~&&m') of the order n renormalized
bound-electron current in interaction with the external potential.
The ln(m'/H) term shows that the Dirac component of this
current depends in an essential way on the external potential.

1 1 1
I,v(Dg) = [2(1+s)—4]s'm—[M„+2p eA]—

Dg

1 1 1
+[2(1+s)—4]s'm—[M —2p. eA]—,(3.2)

Dg Di D

where

M =en K M, = —ice.8. (3.3)

~ This separation avoids introducing a spurious divergence due
to relativistic wave functions when DI -+ Do.

%e shall postpone discussion of the higher order terms
in the second line of (3.2) until Sec. 6. For step (ii), we
shift D~ ~Do and again set aside the correction terms,
which may be written as an expansion in powers of
D~ Do 2sk II—z'll'. After —step ——(ii), all of the
denominators Do are next to the wave functions, and
thus automatically become simply Dao ——s'm'+E —k'.
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After this, v e need only evaluate'-"

AL„(M'„)=— dz 2(—1+z)
o

dK

d4k 1 1
X — (n,.

~
M„+2p eA

~
n, )x'i Doo' Boo'

1
n., (M„+2y.eA) n„

2x 2m t

(—ni
—y eAin, )2'

(3 4)

where bF.„") is the Fermi energy including the Breit
relativistic wave-function corrections. AE„(M„)is the'
energy shift corresponding to the electron's anomalous
magnetic moment of order a.

2' Ke use the integration identity {I-2.33c)
d4k 1 i 1 1 1

p ~ ~2i LE k2+A)2 D2+~
dE

in which A is positive-definite.
"The index i may be determined for each term of the poly-

nomial in z contained in I~ simply by noting that if I~(Dpp) has
n denominators, then 2(n —3) powers of 1/z remain after the d4k
and dE integrations.

4. IDENTIFICATION OF CONTRIBUTING TERMS

In order to calculate DE„ to a specific order in Zo,
(and in fact, lnZa) it is clear that because of the com-
plexity of the terms I(D) and their many possible
expansions in terms of unbounded operators, a simple
method is needed to determine the order of magnitude
of the neglected terms. A rigorous analysis of the struc-
ture of the matrix elements and the parametric integra-
tions of AE„has yielded such an order-determining rule
(Sec. II-5). This rule of order is most simply understood
applied to a term I~ of AE„which has already been
reduced to a nonrelativistic matrix element by per-
forming the Dirac algebra and approximating the
relativistic states as Pauli-Schrodinger wave functions.
We also suppose that the denominators of I~ do not
involve the external potential A ".

The content of any term I~ in terms of Zn and lnZo,
will then be characterized by the following three
quantities: the "nominal order" of the matrix element
as determined by assigning each operator factor in the
numerator its nonrelativistic expectation value; the
degree i of "infrared" divergence of the s integration
at s ~ 0 which would occur if each denominator of IE.
were replaced by Boo—=z'nz'+E —k'; and the degree e
of "electron" divergence at

~ p~ ~ ~ (r ~ 0), which
would occur in the momentum space (position space)
evaluation of the matrix element if the denominators
in Iz were Doo-"

If both the s integration and matrix element integra-
tion converge for Ix(DOO) (i.e., i&0, e&0) then the
effective range of integration is determined by the non-
relativistic wave functions, and the dominant order of
Iz will be just the nominal order. If both i and e are
zero (i.e., logarithmic behavior in both photon and
electron integrations) then the dominant order of Ix is
the nominal order multiplied by 1n'(Zn). For the cases
i &0, e= 0 ori =0, e &0, a single lnZa factor is obtained.
If either i or e is greater than zero then the dominant
order of Ix is m factors of (Zu) ' larger than the nominal
order, where m is the larger of 2i and e. The dominant
order also has a lnZa factor if in addition 2i= e(0.

It is straightforward to apply these rules to determine
which orders a given term in Table I contributes to the
hyperfine structure. One first drops the operator de-
pendence of the denominators, returning later to
determine the orders contained in the neglected terms
(which are never of lower order). After performing the
y algebra and taking the nonrelativistic wave func-
tions, " we can look for dependence on the magnetic
dipole moment p in two places. Either the operator
itself has magnetic dependence or the linear dependence
on p comes from the wave functions. In the former case
the operator eA= —iep&& (p, 1/rj contributes the factor
E„~/Za to the nominal order. For the other ca,se we
note in Appendix A that 8„&„(r),the magnetic correction
to the nonrelativistic Coulomb wave function, coincides
asymptotically with t EP/2(Za) m'j Vg„(r) at small r.
Accordingly, for the purposes of determining the
dominant order, the magnetic wave function correction
is equivalent to a factor E„~/(Za)' for determining the
nominal order and equivalent to an extra 1/r acting on
the Coulomb wave function for determining e. As a
convenient notation we list the indices of a term in the
form 2;X„where X represents the nominal order (Zu) ~,
counting 1 for each power of Zo. and 4 for E„~;eA thus
can be counted as $p, Vj, and b„p„as Vp„.

We emphasize that the rule of order determines
rigorously only the dominant order of a term. Contri-
butions from the nonasymptotic parts of the wave
functions give higher order terms; a contribution of
order n(2n)' in'(Zn) 'E„~ does not preclude contribu-
tions of order a(2n) ln(Zn) 'E„I";etc.

We can make the observation that the nominal order
is always even since integration symmetry requires an
even power of momentum p in the numerator; con-
sequently, from the rule of order, actual contributions
can involve lnZ0, or ln'Zn factors only when accompany-
ing even powers in Zn. We also observe that the
contributions of leading order of those terms which

The index e is given by the formula

e =n~+n~/, —3—w,

where the first two terms give the number of operators p and 1/r
in the numerator structure and m is the eGective power of r of the
wave functions near the origin. For nonrelativistic Coulomb
S states, m =0, 1, 2 is the number of wave functions acted directly
upon by p.

~This approximation usually yields a correction term of
relative order (Za)~. See Sec. II-S.
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have e~0 and e&2i depend on the asymptotic wave
functions and hence are "state-independent"; the
entire 1/rP dependence is absorbed in the dehnition
of E„~.

Now, with the advantage of the order determining
rules, we can sort out those terms of Table I which
contribute to the orders of interest. The search can be
narrowed considerably by noting that except for II,
and I~ all terms have i 0, are explicitly quadratic in
the field strength, and always have nominal order E at
least 8 when they contribute to the hyperfine splitting
of 5 states. We also note that the quadratic terms
I,,b, ,~,, have numerator structures containing either
magnetic wave functions (and electively three powers
of 1/r so that X—e=6+w) or an odd number of y
matrices (which bring in the small components of a
wave function so that E—e=5+w, with w~1)24; in
either case these terms have X—e~6 and only contain
state-independent (n/7r) (Zn)'E r contributions. Such
terms will not be calculated in this paper. Their contri-
butions will actually be quite small due to several
parametric integrations (z,X,N), each giving a numerical
factor less than 1.

The quadratic term Il.~ has the structure

1 1 1 1 M—11„—LII,II]———.
D D D D D

We obtain a zan=0 contribution when the left hand D '
is replaced by D 'MD '. This term has E—e=s, so
we obtain a contribution to order n(Za)E r. All terms
of this order are calculated in Sec. 5.

Almost all of the contributions to orders of interest
come from IJ. and I~, the terms which contain struc-
tures linear in the field strength.

The full content of the II, numerator is

fl'LII„,II]=p LP,~,V]
—p Lpv'A]
+E- LV,v p]—p LeA, v p]

—V LV,v.p]—e& Lp, Vvo]. (4.1)

The erst two numerators in (4.1) yield terms (denoted
by Iz„and Il,„, respectively) which have nominal order
%=6, indices i&0, e=1, 0 and hence contributions of
order

n(Zn)E~r, a(Zn)'Lln'(Zn) ', ln(Zn) '1]E„
The terms given by the third line of (4.1) are trans-
formed in Appendix 8 to forms quadratic in FI"".These
terms, together with those from the fourth line of (4.1),
therefore give negligible state-independent n(Za)'E„
contributions, of the same type as I

The dominant contribution of I~ is characterized by

2Ã, = 24 g . nE„~

"Actually, I~ and I, have canceling m=O contributions. This
is demonstrated in the second part of Appendix B.

for I~„and by

„N',=,60, n(Za)'Lln(Zn)-', 1]E.r

for I~, (with a magnetic wave function).

We should emphasize that careful consideration must
be given to the correction terms obtained in reducing
the denominators and wave functions of I~~ and Il„ to
calculable forms. The reduction procedure given in
Sec. 5 shows that contributions to order n(Za)E r also
arise from first-order expansions of M in the de-
nominators of II, and from the first-order magnetic
form-factor correction (i.e., expansion of p' in the
denominators) of I~. The systematic analysis of Sec. 6
shows that contributions of order a(Za)'ln(Zn) 'E r
are found in the expansion of V in the denominators of
Il.„and II.„the expansion of M, in the denominators of
Il„„, and form-factor plus relativistic wave-function
corrections to I~.

5. THE e(Ze)E„r RADIATIVE CORRECTIONS

We now proceed to a specific, self-contained calcula-
tion of the contributions of order n(Zn)E„r. We leave
the systematic analysis of higher order corrections for
Sec. 6.

It is clear from the order-determining rules that
n(Zn)E contributions occur only when X,=6&, 83, 10&,
etc. (with 2i(e) The .condition X—e=nq~„+3+w=5
is met only by e&~, ——1, ~a= 1 or n&~,

——2, m =0; i.e., only
one or two operators 1/r (either from V, eA, or b„@„),
each acting on a Coulomb wave function. Moreover,
since e 1, the electron integration is in the relativistic
region p»P, so tha. t only the asymptotic wave functions
(A2) and (A5) are required. We thus may limit our
search to terms which (after reduction of the Dirac
algebra and angular integration) have numerator
structures of the form

V(p') "V o V(p')"" (~=1,2, )

evaluated between asymptotic nonrelativistic Coulomb
wave functions. LIn fact, this observation provides a
simple over-all technique for calculating the desired
contributions to the n(Zn)E„r order. ] The only terms
found to yield such structures are IJ.„II.„,I~, and II.~,
since the numerator structure of the neglected terms
always involve an "isolated" V, i.e., an operator 1/r
not acting upon a wave function. In addition, the
evaluation of the contributing terms is simplified by
selecting only the operator arrangements with potentials
at the outside and by employing only the asymptotic
part of the wave functions. The other numerator
arrangements and the nonasymptotic parts of the wave
functions contribute to higher orders and are considered
in Sec. 6.

The dominant order of the Il., and Il.„ terms is
n(Za)E r, but contributions to this order also occur in
the reduction of their denominators to calculable form.
The exact reduction procedure we use to obtain these
terms is fairly arbitrary, and, in fact, several procedures
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Doo= s'm'+E —k'

and inside denominators

(5.1)

D),=z'rn2+IC —(k —P zXX)'+z(1 —z)II (5.2)

(X=1 except in Ir,~).
We now proceed to extract the leading order by

making the following valid approximations (i.e.,
leaving corrections of higher order). We simplify the
inside denominators by letting

(k —ZzXX)& ~ F02—(1 —Xzp)2=—(k —Zzp')' (5.3)
and

(5.3')

The neglected terms cannot be order a(Za)E r since
the expanded potentials do not act on the wave func-
tions. The resulting inside denominators

Dgg ——z'm'+IC —(k —Xzp')'+z(1 —z) p' (5.4)

may be combined with the outside denominators by a
parametric integration. The denominator combining
formula in terms of symmetric insertions is

have been used to check the results of this section. The
systematic reduction used here follows the sequence
(i), (ii), (iii) of Sec. 3 and has the feature of preserving
gauge invariance up to the 6nal step. Only at the 6nal
stage will we select the terms linear in the nuclear
magnetic moment.

Let us thus start with the structures I~, and IL,„and
(i) expand the magnetic moment operator M from the
denominators (and denote the correction terms as
Ir, sr). In each outside denominator we (ii) "shift"
the k term:

(k —Xzxx)' ~ O', D(,„g„a,) —+ Dg

(and denote the correction terms as Ir, ~), so tha, t (iii)
Dl(outside) Doo. Thus, besides the correction terms I~
and I~„, the term IL, reduces to a form with outside
denominators

where

2 lel &a p& mE.'C—=—
3 m Za 2ZeP3

(5.8)

Thus, in nonrelativistic approximation we obtain the
following reduced structure:

1 1 1 1
Ig~p. C„g„,V p pV 4 —. 5 9

Doo DX1 Doo

where y eA='0 for 5 states and A= —pXP'(1/r)
=ip&([p, Vj/Za. Keeping only the term with V to the
right and performing the angular average, (5.10)
becomes

2 x'
&a p)- p'V

ZQ 3 251
(5.11)

and is to be taken between nonrelativistic Coulomb
states. Finally, if we replace p' with —2nsV acting on
the left-hand wave function (which is valid in the
asymptotic limit), then we obtain the same structure
as Ir,. q ~ in (5.9).

We now return to the contributions I~ ~~ and I~ „
obtained in the reduction of IJ.. The same steps through
(5.3) applied to these terms do not give corrections of
order a(Za)E„r. The Ir, sr contribution to u(Za)E„r is
obtained only when M is expanded from the left-hand
outside denominator of Ir, . The Ir,. sr„ terms (with
M„~C„Vp') then give the structure

1 1 1 1 1
Ig, ~„.s'C„P„) V p pV P„—.5.12

Doo»i D) i Doo

For IL,„, which only couples large to small components,
we electively have the numerator structure

e p p' p
x x a lelA= —p. IelA+ ~ y&& lelA (5 10)

2m 2m 2m

where

and

1 1

D Doo
(5.6)

The analysis for IL,„~,is similar; we easily 6nd that
it gives the same a(Za)E r structure as (5.12). (Note
that the IJ.& denominators yield no I&& ~ corrections
to this order. )

Contributions to order u(Zu)E„r from Ir, „are ob-
tained for the shift of only the left-hand denominators
of IL„speci6cally we have the structure

Dt,„—=uDxg+ (1—u)Dpo
=z'nP+E —(k —uXzp')'

+uz(1 —z)p'+u(1 —u)X'z'y'. (5.7)

We now selectively calculate terms linear in y. The
required a(Zu)E„r structure arises from the Iz, , terms
when we take the magnetic asymptotic 5-wave part of
the left-hand wave functions:

b+, ~CQ, V,

(
1) 1 1 1——lxx„—[xx",xxj—n

D

1 1 1 1 1
n —(2k. Xzp —X'z'p') —XX —[XX"II]—n

Do

(5.13)

where we have selected only that part of the shift which
contributes to the order of interest here. Selection of
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p2

2C„y.,V Vy.
DooD111

(2)c,(p., v(2p happ
—vp'p')

Doo I 2(1+z)m —4m)( —2m)(2u —1)z4
X (5.20)1 1 1 1

p pV 4- —.(5.14)
Qi Doo

D00D'
(1) (2)

After we combine denominators using (5.5), all of the
terms have the form

After combining denominators with the u integration
(5.5), we may integrate the k term by parts according
to (I-2.46), 1 I 00

dl dz A2 dEk Xzup
)

Dxu D)iu

7r2i(5.15) 4or

(p')"' I'(z, u)
X2C„&n,V VPn, i.21D„o,(D„)~('so we have the effective replacement

the parts linear in p lead to the identical structures for The matrix elements for IM „are
II., ~q„~ and I~„„.

2k Xzp —X'z'p'=)Pz'p'(2u —1) . (5.16)

We now turn to II,M and note that its structure is the
same as IJ 3 M and II,4 M in lowest order, differing only
by the replacement of z'M with —2zM.

I
We shall see

that the total a(Za)E„~ contribution of Ir, ((r and all
the Il.o, Ir4-derived terms actually cancel. j

Finally, we note that the only contribution to order
u(Zn)E„obtained in the reduction of I~ in Sec. 3 is
the shift correction

1 1 1 1
4., (2k p —'p') —'3I—4- —, ( .17)

Doo D1 D1 D'

plus a similar term for shifting the right-hand de-
nominator. To extract the a(Zn)E„~ contribution of
the term (5.17), we take M —p M„~ C„p'V, shift the
right-hand denominator D1 —+Doo, and integrate by
parts as in (5.16).

In order to obtain the total n(Za)E ~ contribution,
we must evaluate the detailed structures of II,, IM, and
I~M as given in Table I. The matrix elements for II.,
and Ir.„are

The matrix-element integration is easily performed in
momentum space using the asymptotic form

for example,

V@„~—— — Zny„(0)
p x'

dp pr 1

a'p'+z'm' 2 azm

(5.23)

(5.24)

We then obtain a common factor

—54~1 -(Z )'I4„(O)lo I2C„1 ——
4x x 2m

where p, 7=0,1,2, and the parameter X is 1 except in
the I1.1-derived terms.

The dE and d4k integrations may be done immedi-
ately as in Ref. 21 after shifting by ukzp' (which is a
c number in momentum space). There are now r de-
nominators, each of the form

z'm'+ [u (1—u) l('z'+ uz(1 —z) jp'=—u'p'+z'm'. (5.22)

2C„y.,V Vy„
DooDk1

4(1—z')z'm' 4z(1—z) 4z'(1 —z) 4z'

O' DooD Doo'-
(1) (2) (3) (4)

Doo'D

(5.18)

The matrix elements for I~ „,II„M, and II..~ are

p' ) 4(1—z')z'm'(2u —1)X'z'2c„y., v vy.
I

DooDX1 D),1Doo2D

(1)
-4z'(1 —z) 4zo

+ — Lz'(2u —1)+z'—2zj . (5.19)-D»Do& Doo'D»
(3) (4)

(Zu) E„~, (5.25)—

n(Zn)E. ~L-,oj, (5.27)

we obtain the total radiative correction

a (Za) E,~L——,'+ ln2 j, (5.28)

thus conhrming the results of Kroll and Pollack" and
Karplus, Klein, and Schwinger. "

multiplying X, z, I parametric integrals of the same
form as (II-5.46). The separate integrals and their
values are listed in Table II.

The total contribution is

(p(Zn)E„~L —13/4+In2j. (5.26)

Combining this with the vacuum polarization result
(C9)
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Term

ILI

ILl M, p

IL3 M p

IL4

Integrand

Xpi —z+)Hz {1—u) )-'/'

z(1—z'))P(2u —1){1—u)'
X/1 —z+)Pz(1 —u) ) "'

—4(i —z)t 1—uz] "'
—4z{1—z) (1—u) $1—uz) '/'

4(1—z)z(1 —u) (1—uz) $1—uz] 3/2

—4z2(1 —u)2L1 —uz| 1/2

4z'(1 —u)'(1 —uz) t 1 —uz| "
—2z(1 —z) (1—2u) (1—u)$1 —uzj "2

Integral

1/2+ ln2

5/8 — ln2

2 —8 ln2
—13/4+4 ln2

13/4 —4 ln2

3/2 —3 ln2
—3/2+3 ln2
—51/8+9 ln2

1 dz 1 du 1

TABLE II.a (Za) E„~coeScients. Integration — — —dX~
~ o v'z 0 gu 0

of the tabulated integrands. '
arise from the Iq terms, and we start our calculations
there. We first take seven steps in succession which

reduce the IJ. terms to a convenient calculable form.
After the calculation of the final form, we will return to
carefully consider in reverse sequence the contribution
of the neglected terms of each step.

As in Sec. 3 we first reduce the denominators of the
Ir, terms through the steps (i), (ii), (iii). The denomi-
nators acting on the wave functions

D00——z'm'+K —k'

may be combined with the inside denominators

De =z'm'+IF —k'+ s(1—z)H

Total

a Evaluated in II-(B.8-13).

—13/4+ ln2 with a parametric u integration. Carrying out the dE
and d4k integrations" and using the specific form of the
IJ. terms, we obtain as in Sec. I-3:

I 1

6. THE HIGHER ORDER RADIATIVE
CORRECTIONS TO THE HYPERFINE

STRUCTURE

Ke have anticipated in Secs. 2 and 4 the presence of
radiative corrections of order

n(za)'ln'(2n) 'E„a(zn)'ln(za) 'E~~

and n (2 )'nE.~.

AE„(L)= —— du Cz

p p

1
xs(,,)(, n„-Lrr,n) ), (6.&)

where

P(z,u) = —2(1—s')u(1 —u)+ (1—z)

+z(1—z) (1—u)+z'(1 —u)'
and

The specific sources of logarithmic terms may be found
using the order-determining rule given in Sec. 4. Con-
tributing terms can only have indices

6=zm'+ u(1 —z)II.

Continuing the reduction sequence, we

(6 2)

or
2 '/Vs 060 for n (Zn)' ln'(Zn) 'E (iv) take nonrelativistic forms:

II~E~s=p'+2mV+P') ~u) —+ ~u)~s., (6.3)
2 'X —06, (e(0), &60(i(0), u82 4104,

for n(2a)2 ln(Zn) 2E„~.

Thus, all terms but those derived from I~ and I~ are
eliminated from consideration since they are at least
quadratic in the field strength with 8~8, i~O.

Contributions to the nonlogarithmic order, a(Zn)'E r,
are legion and arise from all terms of Table I. As
pointed out in Sec. 4, contributions from terms quad-
ratic in the field strength with i~0 are of the size of a
small fraction times (a/z) (Za)'E ~ and do not contrib-
ute to the ratio 83E2/BE&. As in the corresponding
Lamb shift calculation of terms of order a(Zn)'mc', we
will only estimate a bound on the total magnitude of
such terms. We will, however, calculate explicitly the
terms of order n(Zn)'E ~ which accompany the
logarithmic contributions; as in the Lamb shift calcula-
tion, we expect such terms to have coeKcients much
larger than unity. This is indeed the case, so these terms
give the dominant contribution to the a(Zn)'E
coefficient. With the exception of one small term, which
must be calculated by a sum-over-states method, we
will also be able to obtain the total a(Za)'E ~ "state-
dependent" contribution to the (m=2)/(@=1) hyper-
fine splitting ratio.

The most interesting higher order contributions

(v) neglect the Coulomb potential in H~s.

2 ~s ~ 60 zm'+——u(1 z)(p'+—P'); (6.4)

and (vi) neglect all numerator structures in I~ but Ir.
If„.LII&,nj~ p Lp, Vjyo. (6.5)

The matrix element, to first order in the magnetic
moment, is thus reduced to

~ ~

1 1
3.4.,p —I:p,V34- + 4.,p —Lp, V13.4.

~

1
= ~4- —n n~

bp

1
+ P,p —,y, V b„P, 6.6

Ap

where ~p„) is the nonrelativistic Coulomb wave func-
tion: H~R~&~)=0. As the final step, we

(vii) neglect the second matrix element in (6.6).
Ke now can concentrate on calculating the first term

of (6.6), which we designate Ir„q ~. It is perhaps the
most interesting term considered in this section in that
it is the sole source of the double logarithm contribution.
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II 332), t(6 13) js found, using

n 2m' ' du ' dz——(Za)'E„~
np Q u Q1

&.4.,—I:v Lv, &l&s.)
P (B,u)

1

i/2 zms ) /2'+ ( —)p'j'" Ld'p'e (p )dap

~0(p)

1
(Zn)'—E„~—

B7r

du P(0,u)
= —«4-(0) d"r 1)„y„(r)

u(1—z
(6.7) +0[n(Za)'E ~]. (6.14

36

ent either in momentumhe matrix elemen ei e uma ri
hat will prove morespace, or w a

space:

where

with

u 1—z)P' (1—z)a)

zm'+u(1 —z)P' z+ (1—z ce
(6.8)

'b t'on of the y'/(1+y pa'b t'on o ' 1 ) part of (6.12) isThe contribution o

dzP (z,u) 2

e zm'+u(1 —z)P' 1+y

co p

2m» du ' dz"(' "'=:(')' p. -. —

(u —=up'/m'.

e functions for n=magnetic wav
r in Appen ix

I i h
re iven

rres onding to IL,, q & is

set Zo, =0mically at z 0 if we se
o tib tio i fo dr d The logarithmic con ri

' '
d

h 1by taking 1/(1+y) ~ 1; e

XP(z,u) s'ds f)„y.(s)

where, for n=1 and 2,

(6.9)
m' ' P(z, u) —P(0,u)

X P (O,u) ln + zdz
up' Q

(6.16)

1)„y.(s)=—2e-' +0»»+v —&)+(&—)( + )

the nonlogarithm' ic contribu-h e have included e
d terms of orderu and have droppe e

ribution o t e r
'

hicf h i d, h
b f f

integration (II-B.6c),a z integration to a y integra i

6.10)+ u —1)—(n 1)s ln s+y —————+-, (.
radial variablein terms o t e if h dimensionless ra

2m~
(Zn)'E„~—

n

dy'P(z, u)

y'ms+u(1 —y')P' 1+y

s—=pr. (6.11) 1

du P(0,u)[—2 ln2]. ( .6.17)

—2
ds e—'e—'&=

2n Q

—1 y —y 1+-
n 1+y n n 2+y

e
'

1 for the leading term of b„pThe radial integral for t e (s) is

ion o t e
'

ofb„y„(s) toion of the leading term o
he orders of interest is then easi y

(6.8) and useess in terms of z and P as in
f the first part of (6.12),the Zo. —+0 limit of the rs p

—2 ln2 . (6.18)—Z )'E &—ln —I+—y2 — n
3n

u(1 —z)p'

'+u(1 —z)P'

P u(1—z) '/s

Za—+0 m
(6.13) 'als) the relevant radiaFor t e nexh ext part of 1)„$ (s t e

integration is

ra, tions of (6.9), we obtain a result
urey o

d
'

the calculationselude in
ln

1+y
2 dse '))e '(lns+y——1)=
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and we thus must evaluate

1 1

——(Za)'E F[4j du ds

P(s u) 1 1+y
X ln

z+ (1—z)~ (1+y)'

again from z od t dy' the integration for co=0 ts

1 2+y
2dy —ln(1+y) — ln

y

= —ln'2 —ln2 —1. (6.23)

ration with P(0,u), we then(6.20) Performing the u integration wi

obtain the contribution

~0 e~ term, which exhibits anLet us consider 6rst the P~,g~ erm,
en co=0. %e ma e t einfrared divergence at z 0 when co=

separation

ln = In—+In(1+y) — ln- . (6. )
1 1 2y+y' 1+y

(1+» »
' (+.)

Then by changing variables to x=, — —, zx= (1—(o)(1—s), the z

integration of the In1/y term has the form

dz 1
ln—

0 z+(1—z)co y

2 n'13 n'
——(Za)'E„~ —ln' —+—ln—

1—+ 2r' ——(ln'2+ ln2+ 1) . (6.24
54 9 3

(s,u) —P(0,u) 1 1+y

s+ (1—s)(0 (1+y)' y

P (s,u) —P (G,u)
dl dZ

nomial we notice the zFor the remainder of the polynom
integration is convergent
~ ~ ~

for co 0 and

1 1 P
JQ dz

0 0

2 1—Gl

dS ( X Go

In/
1—x (2 —x 1—) X —ln—+- ln +0(g(0), ( .

111 z
6.25)

2 (u 2 1—z

1 1 x
=—Inz—+—+0((0),

4 ~ 12

whic gives
'

h
'

the additional contribution
(6.22)

7 5 n
—(Za)'E„~ —+—In-' 36 6 Zn

(6.26)
ives the double logarithm ——', (a/2r) (Za)'E„~

Xl '(Za) ' radiative correction to t e »pe
. For the remainder of the function, .6.21, the zture. or e rem

'

in variablesintegration is convonvergent for co 0. Chang g

a '
h the same manner for the re-%e procee in muc

~ ~

f f') + (s). After the radial tntegrat&onmaining parts o „„s.
we have the contribution

4 (Za)'E„" du-
7r 0

1 dsP(z, u)

0 s+ (1—z)(a (1+y)-'

3 2y- 1 2y t2 +y1 7 3 y~-
X In2+(n —2) —— +(n 1) —+ —

~

In —n
2 1+y ( 4 1+y y

=4 (Za)2E„~— 1 ' 2+y yt 3
du P(0,u)

~

ln— y
—2 d

ii )n2+ —(»—2)+—(»—1))-I( (o 0 1+y

'+y
(n —2)—(n —1) ln —ln2+ ——

(1+»)' y 4

P(s u) —P(0,u) 1

0

1 3 31
a » ————2 ln2 ln2+-(n 2)+-(n —1) —-(n——2)+—(n —1

3 m kzo. 24 2
(Za)'E„~ In~ —————n n — — — —— —2 —n 1—(6.27)

for n=1 and n=2.



the contributions oCpmbinmg
(6 27) ~e obtam

7

CL

SE.(L.—S„y)=-(Za)&E„
7r
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~~

1„,. „,„..~.)Ap

The 7 matrix b gim ortant.however, » ve y
small components soso we have

atrix elementb disregarded here. The(6.18) hence may e

and

) '+ —1n2 ——1n(Za)—
8 59

X ——1n'(Za '+ —n ——
3

(
8 59 2 1151——ln 2+—ln2 —~+

1 e p
e eAfe) p' p) )

2m

(6.33)
I @., —p Lp,~.]4- l.

2m&

—~+ (6.28)
2 1385——1 '(Z ) '+—ln(Z ) '+~~ —~ )3

e
'

th terms neglect
=2 res ectively.

ed ln
0

(") i o d h
consi er e

n () ogs h,vii). En step vn w
d matrix element in 6. , wsecon

s ace asbe wn en'tt in momentum p

P (s,u) 1 d't""' '" ".+(-.)-- (+)p p

d't t' (t- t')—

8+1 (t—t')' 1+y't" 1+ 'yt2

l ded the contributionwe have only incu e
arts of the wave functions p„

(A2) d (A5) Th d't',
can e

~u ' i the integrais given
in Appendix 3 of paper

AE„(L„)= —— d
7C p

, 2 )'"~-(0)XP(s,u) — iC„
2m&

(6.34)
sm'+ u (1—s) (p'+P')

or, wit eh th use of the wav qe e uation

p'p„= L
—2m V—p']4 „,

may e wrb ritten in position space as

a ' ' P(su)
aE.(L„)= E.~ du ds—

(6.35)

contribution vanishes uponO' IP
gu g

may eb written in momen u

—(Za)'E ~ d
P(s u)

s+ (1—s)co (1+y)'

H 2 R 2
(Za)'E„~ —1n—

4 13 5——1n2+ +0 (Za)
3 18 12

d-()
r redr e "s~t( 2m-V+'P)

0

'l to but easier thanThe radial integratio
'

ns are simi ar o,
and ieldthose in II„~„&,a

a ' ' P(s)u)
(6.30)

m the nonasymptotic parts of theThe contnbutlon from e

space. This is done in Appen ix
additional contributions

y y'

3

+2—( —1) —2 + (6.37)
19 8

—(Za)'E„~ —,—
3 2

(6.31)

olve all the varioused in step vi invo v
(4.1) ~ t I„.Thructures of Il,

all
o es dratically on the 6eld strength andof these depend quadratically on e

2. As in 6.12), the leading term proportrpnafor e 1

1 The codBcient o~ p
the two vectors e an p

in turn and then averaging overeac

tion:
o s. Since e

.33), the D-wave pa o „giv
e qp q —e q~=~3p"p(g q„
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matrix element. Ine used for the Il.„y m
' Insimilar to those u

h the logarithmic con-e we thus avemomentum space
tribution

1 1

du ds P(s,u)u(1 —s)

—e n(2P)'"~' Z—a

2 Zo. 2m ) 2m

a (1a (pXp'). (649)
~o(P') y' (1' ~o(y")P"

The momentum integr als reduce to

, ~ p(p —y') y' (65o)
~o(p') y' e' ~o(p")p" 3

contributionana wed thus obtain the II,„~f,

——+O(Za)' [—sl. (6 51)(Z )'E„-—1 ——+

e calculation o
'

ndf the logarithmic andp
)'E r contributionso t e

e
' t (', i", "', (1o ot ild hte S ~1, 11 ) 111p

discuss since z lsers are easier to isc
6 '

of th d toin a modi6cation onegative. Following a 6
'

ed in Sec. 3, we s af- ':'f k
All of the neglected terms

D in owerso, an

d ti d d o th
thin but zp.

can be rearrange ed toshow qua ra ic
r negative, we will no

consider them further. T e remaini

1
Mds)( —1+a)s'n(n

4m p

1 1
n —. (6.52)

s ace the momenta following M areIn momentum space e
a nators can be corn-denoted as usua y p.

bined with a parametric I integration in

—z 21—u)D'= s+omE' —ko'+ (&—sy„
+s'u(1 —u) q', (6.53)

where
p~= up+ (1—u)p
a'= (y —y')'.

h'ft the d4k integration
rfo th dE d'k dd t-

ace we may s i
by the c number zp„, perform t e
grations, and obtain

a/ 1
dE (1M') = du—

0

M n . (6.54)
1 u1—uq'm'

~&here

, ,~-(p)~. (p')
X du d'p d'p'

Q2
u(1 —u)

m2

inate s ace by using the FourierKe transform to coordinate space y
transform

—r/a1 2m' e

f1+a'q' (211)' a'
(6.56)

'
ns ma be done immediatelyso that the y, p' integrations may e

and yield

~Pm(~p)NRLC
2 2m"

e—r/a

XZn du d'ry '(r)
ru'

(6.5i)

1 here we may use the expx ansion of theSince r c ere,
wave function about Ps=0,

y„(r)=y„(0) 1 Znmr—

1 1
1+ (Znmr)'+0 (Zamr) 6.58)+— 1

to obtain the power series

+Pa(~p) NRLC

dx xe-* 1—2Znx[u(1 —u)])('=—E~ dl dx xe—
2X 0

+ 1+— 1+— o,x(Zax)'u (1 u)+O(Z—a)'
3 2s2

—
1

&+—)(& )'+0(& )' . (659)=E r ———Zn+ —5+— a
2x 4 6m ( n'

rm is a ain the contribution of the static

f hcorn lete relativistic wave uncp
the nonrelativistic arge compthan

easily obtained if M„ is ivi e

M„= (M„+2y eA)+( —2p eA). (6.60)

t the M„contribution for non-
1 Fcorn onents on y.relativistic large

the momentum-spaceMp C 'V and we have t e
ex ress o

~En(~p)NRLC
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ns to the first-f t on correctioThe relativistic wave- unc i

error of order (Z )nominator structure )an error o o
recall

e, . = — eA~n. ). (6.61)2 eAtn. )=(n,
~

—y e n. .—(1/2 rn)(n ~6M„+2y e, = — e n. .

One 6nds the contributions

n(Zn)'E„r is

Q
—(Z66)' E„

4

—1 1 1

2 16
(6.69)

Pr ' —d )iy
2 dl i

3 17Q

(Z )6'—6E r —;—
4

(6.62)
have the total contributiond n=2, we thus aveFor m=1 an n=,

5&.(M„6Ira ))—= (Za)'E—„
tivel . The contribution ofp

e —2 eA, to the S-state s
'h b konents, whic can 'n „. Inon the nonrelativistic wacting on

momentum space we

—( —1) (6 70)
4

ina y, ,—— . V contributes to the aboveFinaHy, M.= —n. [y, ]
g

their nonre a
' '

the magnetic moment we

1Q 1 oe p
dn d'p y. (p)

2' 2m

du d'p d'p'
1 —ZQ 1

0

Q
(P'). (6.63) ~E„(SS.=——

q' 2m2' 1+8 q

cture is writtenace the operator struc uIn position space e

1 p yXq

1+a2q2 q'

p y, Xr
d'r e ''i'

zr4m
(6.64)

r

, b.~-(p'), (6.»)
2m 1+ ' '

n
'

d relativistic modi6cations,goig gn hi her or er rea
the magnetic contrie

'
ribution to e

o pXro r
o ~

@X' 2
X-=' —o p

r r 3

so we have simp y1

re for S states isand the spin structure

(6.65)

—6reA ay
e.(p)+ ~.e.(p). (6.72)

~ ~e co
' '

f m the erst term of (6.72) in positionThe contribution from e
space is

Q —1

4m2

1

( Zn) du —d'r
6 — —

) . (6.66) 2
dr g„(0) dr r0

1—e '
6r r 6r I6Xr

Xy.(r)—art of the wave function,The asymptotic part o e

d e.(r)

dr g„(0)
where the S-state s

'
hfs is obtained from(6.67)

oropXr 2op
3 r2zr r'n=1, yie s an=, '

ld a result of order(which is exact for n=, '
a

n (Zn)'E„lnZrn,
(6.74)

a.s in (6.68) andarts and proceeding as inIntegrating y par s
(6.69), we obtain for n=1 an n=

—1 2aP 1

4 0 1+2aP 1+2aP 1 'du
(Z )'E6.6r ——

(6.68)
1 2ZQQ=—(Zn)' rE——ln 0 Zn)

nx'
2ZQ —1+—(n —1)+0(Za)

5
(6.75)

8
+ln'

ution of ordere additional contribu ionFor m=2, the a i i



F Rg CKSO&s. J. BRODSKy AN

The contributionth another contribution obtorder o.ZeL&'„~ term will cancel wit ano
.71 and (6.72) combine to formsecond terms of (6.71) an

2x 2m2 2~2
) — —~A. (p')du d'p d'p'@„(pg
1+a'q

e—r/a

du d: r@.(r) b„y„(r)
ra'

I

=—(Za)'E„r du
7r 0

3
1»Pr+y —2+-(n —1)+O(Znmr)

2Zcl'pc r

1 ' d
(Zn)'E—r

ZCE

1
+ln —2j—(n —1)+—+O(Zn)

2ma n
(6.76)

=2. The total contribution is thusfor n= i and n= . e

Q

AE„(M,)=—(Zn)'E„

X — n —— —1) '. (6.78)
8 n 4 64

1 p 5 2 2n'
=—E r —+m.

~

ln2 —— Zn ——(Za)' ln'—
2

22 2 457
+ —ln2 ——x'+1

3 9 2~

/ )(Z )'E " coefficient accom-
'b tion (second hne i

'mc' the (a vr n
e ln' Zn) ' contri u ion

) q g, +
ate of the total coefficient since e

11(h o1 dd
D exce t the smallest are

~ coeKcients are sma

~Linet s disc th rio

n1 + —(—n —1 — n

expec et d to be even smaller. e us i
uncalculated terms.

~

~ ~

~

~

ber of uncalcu ate cond tributions toThe largest numbe
order (n/s)(Zn)'E„are the terms

q~u~a
ra

the I~ terms to the or ers n o.

e s
XlnZO. is

g
nd the momentum integration o2 F

ctor m occurring in the n o.

aE (u) =-(Zn)2E„n

ld tb tdto ddK' t i cenoneof the
. The terms wou no e

'h h hf o h
e a lar e coeKcien sin

ms uite conservative to pu a
Vo SUMMARY

con ri
'

d bound of &1 on the total of e ~ ~ 0.
d h hiderms calcu- cients from terms q

he onl other unca cu a e
in

Th
ntsof n x o, „aa be written as coe@cients ( /

ti t 1 b 1 dL
contri ute an extremely sma amoun

ll contributions to t e o.
7 ( s

will estima e eite their contribution to order (n/s. n
15 2 I2Z

—+—+-(I—&) (Zn)' n

I d terms are anticipated

72

The largest uncalcu ate e
s of the nonsympto icbe the contributions

in the V expan-
h fi

'
h V

ctions in the second term in e
f I . This is because t e rs

ntire contribution of order

~ ~

~

~

~

~

r and the dominant contnbutions
EE b thf th'ln Za) 'E r and n(Zn „, o( )

e-inde endent and state-depen enl es of the various state-in ep
t of the wave functionsd

'
Table III. when the no ymp o st the coefhcients are liste in a

ed. Toestimate thesizeo t econ
contributions o

amb-shift calculation of areuse .As anticipated from the Lam -s i
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TABLE III. (a/7r) L'"„COefhCientS.

Term Eq. No. Xi Xz Za X (Za) ~ ln2(Za)
X(Za)'ln(Za) '

n =1 (e =2) —(n =1)
X(Za)&

(n =2) —(n =1)

L& —8 +—asym
Lc —6 p —nonasym
Le —b p —V —asym
Le —PQ —V —nonasym
L —8 p —V —V

fs

L —asym
L —nonasym—V —asym
L —V —nonasym
L —V —V
L —p
L —M.~I
Quadratic in I'»
Vac. Pol.

Total

(5.14)
(6.51)
(3.4), (5.1 7), (6.78)

(C9)

Coefficient of F&~ for Z =1 1161
ppm

(5.9), (6.18),(6.30) 0
(6.24), (6.26), (6.27), (6.31) 0
(6 44)

0
0
0
0
0
0
0
0
0

0.50
0
0

0.50

—1.18
0
9
0
0—1.18
0
0
0
0—0.07
0—0.14
0

+0.75

—1.81

—96.21
ppm

0—0.67
0
0
0
0
0
0
0
0
0
0
0
0
0

—0.67

—7.98
ppm

+2.00—2.76—0.52
0
0

+2.00
0—0.85
0
0
0—0.33—0.88
0

+0.27

—1.07

—1.30
ppm

—0.67
+2.82

0
0
0—1.17

+0.67
0
0
0
0
0
0
0
0

+1.6S

+2.01
ppm

+0.14
+16.63
+0.32

not calc.
not calc.

+0.14
0

+0,53
not calc.
not calc.
not calc.

+0.21
+0.46

not calc.—0.08

18.36+n.c.
= +18.36~Sa

+2.27 &0.62
ppm

+1.13—7.34—0.71
not calc.
not calc.
+1.40—0.61—1.18

not calc.
not calc.

0—0.46
+0.99

0—0.33

—7.11 +n.c.—5.57 +0.06b
-0.69 &0.01

ppm

a Estimated limit of uncalculated terms.
b Result of complete numerical calculation in Ref. 15.

of the state-dependent coefficient has been uncalculated.
Taking about the same fraction of the calculated state-
independent coefficient, +18.36, we estimate about &4
for the corresponding uncalculated contributions to the
(n/vr)(Zn)'E„r coefficient. Adding this to the &1 for
terms quadratic in the 6eld strength, we estimate

~
cga(1) —18.36

~

(5 (7 2)

as listed in Table III.
Having used the precision of Zwanziger's result to

estimate the size of our uncalculated terms, let us
reverse the procedure and note that our calculated
terms provide a good check of the sign and magnitude
of Zwanziger's (v=2) —(n=1) difference. Such a check
is particularly desirable since the Lamb shift state-
dependent coefIicients are quite small and one might
thereby expect the hfs state-dependent coefficient to be
similarly small. This is not found to be the case, either
for the n(Zn)'ln(Zn) 'E„r coefficient or (especially)
the n(Zn)'E r coefficient. The reason for the large
coefficients is seen to be that the 8„&„(r) (the "magnetic
correction" parts of the wave functions), unlike the
Coulomb wave functions, are strongly state-dependent
near r=0, apart from the state-independent divergent
leading term —1/2Znmr in (A3). This was particularly
seen in the calculations in Appendix D.

nonasymptotic parts in the second term in the V

expansion, we combine them with the contributions of
the remaining terms in the V expansion to give the
only uncalculated state-dependent coefficients. (The
calculation of the remaining terms in the V expansion
requires a sum-over-states method. ) Comparing the
total calculated state-dependent coefficient with the
complete numerical results of Zwanziger" in Table III,
we see that only

(—5.57W0.06) —(—7.11) 1

5.57 4

Using the value

in Eq. (1.7) with"

cn(1) = 18.36&5 (7.3)

and

16 p,„
Ei~=~'CE—

3 pp

tQc
= 1421.102~0.039 (&27.4 ppm) (7.4)

sec

where"
8~= (—35&3)X10 ', (7.5)

n '= 137.0388~0.0019 (~13.7 ppm), (7.6)

c=2.997 925X10"&3X10'cm/sec
(&0.9 ppm), (7.7)

=109 737.31+0.03 cm ' (+03 ppm), (7.8)

ps, /@0=0.001 521 032 5,

we obtain"

(7.9)

bE~ (H; theor) = 1420.345&0.044 Mc/sec

(&31 ppm) (7.10)

for the ground-state hfs in hydrogen. This disagrees
with the experimental value'

8E~(H; exp) =1420.405 751 800&28X10 '
Mc/sec (7.11)

"The error intervals quoted for the numbers used for the
theoretical values of BEy represent estimated absolute limits of
error rather than a standard deviation or expected error. Thus,
we use three standard deviations for the EP error limit of ~27.4
ppm (which is almost entirely due to the uncertainty in o.) and
add this to ~5(Zn)~ =~0.6 ppm from c20(1) and to ~3 ppm from
b„or ~13 ppm from p,„/p~ to get the ~31 ppm in (0.10) and
(7.12) or the ~41 ppm in (7.15). Smaller error intervals quoted
elsewhere (Refs. 1, 4, 14) are obtained by using one or two
standard deviations for the uncertainty in .
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by"'

"ef':)(H; exp) —6E)(H; theor)

hEi(H)
=43&31 ppm. (7.12)

This discrepancy makes the hydrogen hfs measurement
unsuitable for determining n,.

For muonium, we may take"

p»/)a»=3. 183 38&0.000 04 (&13 ppm) 2' (7.13)

and 8» as in (1.5) with

and obtain26
M„,/m, = 206.765, (7.14)
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APPENDIX A: WAVE FUNCTIONS
USED IN THE CALCULATIONS

The 15 and 25 nonrelativistic Schrodinger wave
functions for the electron in a Coulomb field are

4i(r) =Pi(0)e—e",

V (r) =@ (o)e-'"(1—Pr), (A1)

hei(M; theor) =4463.16&0.18 Mc/sec
(a41 ppm) (7.15)

which agrees quite well with experiment, '

6Ei (M; exp) =4463.15&0.06 Mc/sec
(&13 ppm). " (7.16)

If, instead, we use the experimental values to determine
the fine-structure constant, we obtain"

e). '= 5131.2210(p»/p+Ei)' "=137.0390&0.0012

(a9 ppm), (7.17)

which agrees quite well with the value (7.6) obtained
from the fine-structure separation of the 2P3/Q 2+$/2
levels in deuterium. "

The S-wave part of the first-order magnetic dipole
perturbation to the above wave functions is""
5»gi (r) = 2 (Zn)'mC»& „(0)e

—1 3
X + (ln2Pr+ y 1—) +P—r—

2 r 2

f)»$, (r) = 2 (Zei)'mC»@„(0)e e'—
—1 1

X + (ln2Pr+y —1)+—
4 r 4

13) 1—» (ln2»r+v —
~

—(Pr)' (A3)4] 2

where y=0.577+ is Euler's constant and

Z r = 2Zo.P'C»/m=4
1
e

I
(e' p&P'/3m. (A4)

The asymptotic form of these wave functions in momen-
tum space is~

p'+ p'
&.~ (p)-C.I'~. (p) =-C. -~.(p) (p'-»P') (A5)"

2m

1 1
I,=—2'„(k—z11)—[II»,11]——

D D D'
(81&

into the terms I, and If of paper I, we take an approach
more convenient to the hyperfine structure calculations.

We first note that if y» is anticommuted past (0—sII)
and commuted past D ' we obtain the magnetic
moment structure

~„t II,IIj=2M, (82)

APPENDIX B
In this appendix we account for the difference in form

of the terms IL,~, I„I~, and I, of Table I and the terms
I„Id, I„and If of paper I. We first note that the term
I, of Table I can be identified with the contribution of
the second part of (I-2.48) before the latter is reduced
to the terms I. and I~ of paper I. Second, instead of
transforming the term (I-2.71)

where

with
I y„(0& I'=P'/~,

p= p(n) =Z~m/ri.

and thus rewrite Io as the sum of the terms

1 1 1I0' ——2s(k —srI)—(—2M)—
D D D'

(83)

.(2P)'"
4-(p)- (p'»p')

2s (p'+ p')'
(A2)

27 D. P. Hutchinson, J. Menes, G. Shapiro, and A. M. Patlach,
Phys. Rev. 131, 1351 (1963).

"The error intervals in {7.13) and (7.15) are estimated error
limits, while the error interval in {7.16) is one standard deviation.
The error interval in {7.17),

~9 ppm &+)t (~13 ppm)2+ (~13 ppm)'g'&

is essentially one standard deviation.
9 E. S. Dayhoff, S. Triebwasser, and %. E. Lamb, Jr., Phys.

Rev. 89, 106 (1953).

The asymptotic form of these wave functions in momen-
tum space is

1 1 '1
Io"——4z (&„—sII„)—p[»,II)—

D D gy
(84)

1 1 1I,= —2s(k —sII) p„, —Lll» 11) (85)
D D D'

We next use an integration-by-parts identity (I 2 46)

k„

iD
(86)

D
80S. J. Brodsky, thesis, University of Minnesota, 1964 {un-

published) .
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to reduce the term

1 M ( 1 1 1i M
I,'= —4s(r —sn) ——= —4s

~
~,—rr —rX—~—

DD kD D Di D

1- 1 — 1-1i M=—4s2 ~., —11—n, ——
~

—.
D D D D) D'

(87)

[~„pr]= 2[11„,rx]

is used. Thus, we have shown

Io——Igm+Ig+I „
(813)

(814)
as required.

The terms Iq and I, turn out to have cancelling m =0
contributions (w is defined in footnote 22). In Ie we note

[lr„,D]= [11„,2' rr —sn2]
=2',[rr„,ll"]—en[11„,n]—s[rr„,n]rX. (813)

The last two forms give m=0 contributions to Id when
H s between the commutators:

Note that commutators of M occur when we apply the
identity

B 1 1 B 1 1
[A—,D—] +—[A—,B]—. (88—)

D D D D D D

Thus,

(1 1 1 1 1) M
Io' = 4s'~ —[y„,D]—11„——[n,D]—

~

&D
'

D D D
'

D2) D2

1 1 1 1 1 1—4s2 —[&„,m]—rl„———[n,Sr]— —.(BV)
O D D D O' O2

The subsequent reduction of the 6rst line in Io' is just
like that of (I-2.61) and yields Iz~ of Table I.

We write the second line of Io' as

1 1 1—4s2—([~„M]rr —[n,M7)——
D D2 D

1 1 1 1—4s'—[y M]—[II",D]—— (810)
D D D2D

and combine it with

1 1 1
I,"=4s'—[[rr,rX],rr„]——

D
' '"D2 D

1 1 [II",rI]
+4s' [II„,D]—— , (811)

D D2 D2

where (86) and (88) have been used again. The sum
of the first terms of (810) and (811) vanishes,

—[&„,M]II"+[n,M]+[[II;n],II„]
=-,'~„&„~,[[rr,lr"7,11 ]=0, (812)

as in (I-2.73). The sum of the second terms of (810)
and (811) becomes Ie in Table I when the identity

1 1 1
I,(~=O) = —4e —[rr„,xx]n—[rl,rx]—

D2 D

1 1
+—[rl„,rx]n—[rl,rx]—

D D D2

1 1 1——[rr,n]—n[rr„,n]—
D D D2

1
(816)

D

APPENDIX C: THE VACUUM-POLAMZATION
CORRECTIONS TO THE HYPERPINE

STRUCTURE

The energy shift due to vacuum polarization" is given
to order n by

hE (VP)=(n~p eA" (n), (C1)
R. Serber, Phys. Rev. 48, 49 (1935);E. Uehling, ibid. 48, 55(1935).

Similarly I, gives m=0 contributions when the
))k'=' ~~srl" insertion is performed on the middle D':-

1 1 1 1 1
I,(~=0)=—4s ~,—[rr„,rX]—rl —[II,XX]——.

D D D D D
(817)

If we anticommute the y" in (817) through the
D '[II„,II]D ', and ignore conunutators with D '
(which are higher order since they are cubic in the field
strength), we see that (816) and (817) cancel. The
remainder containing the anticommutator

h.,[rl„,n]) = 2[II„,rr„7 (818)
has an odd number of y matrices in the numerator,
bringing in the small components of the wave function
so that m~ i.

Ke also wish to demonstrate that only the IL,„and
Ir„structures of the Ii, numerator (4.1) contribute to
nominal order %=6. A representative matrix element
for the terms in the third line of (4.1) is

(
1 1 1 1

n —pi'—[eA„,(m —II)]—n —. (819)
D D D D

This is clearly zero (since m —II vanishes acting on
either wave function) except for commutators of II with
the denominators or with the operator p"= (E„,p). The
commutator with the denominators may be written

1 1 1 [DII7 1——p"—t'.g—
D D D D O

1 1 1 [rr, rx] 11„
=' —2s'—p~eA„— — —, (820)

D D D D D

where we have used the identity

[D,n]= 2s[rr, n]u, (821)
and the equivalence (86). The contributions of (820)
are of order a(Za)'E ~ (e82) and higher. The term from
the commutator of II with P" is also easily seen to be of
higher order, as are the terms in the fourth line of (4.1).
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d d vacuum-polanzationis the in ucewhere APPENDIX D

the contribution of the
th

osition space e
~ ~

second term in (6.6), we may per orm
over angles and obtain

oo oo g+g' 1

DE„(vii) = (Zn—)'E„" s s' " d
7r 0 0

s s' s"y)—0 ("), (Dl)X bP s X s,s,s,y
—„

y'+ (1—y')~

potential

~,"(a)=—a'
7l p

rms at least cu ic inrms b' in the external
I th 1 1 t'oe been ignore . n e

~ ~ ~

the h, „erfine s ruc
modifications to the waveve functions ma
wit e o ( )'

b art y eA —+y0, e
1 etc co ec-aken from the linear magdependence is taken
. In osition space wetions to ei er'ther wave function. n pos' '

obtain the contribution

dv 2v'(1 —~s/3)/sE„(VP —c) = —— dv v

s—=Pr, s':Pr—', an s

&.&.(s) =&.& -(r)/(Za)'rnid@. (0)

Las given ln (6.10) for n=1 and 2j,

&-(")=-~-(")/~. (o),

(D2)

(D3)

0

e
—rla

andd' e-() &,@.(), C3)
fC

e
—8 s I /2"'~" s" s' —s'"—2s' s'

X(s,s',s",y) =——
where $2y

s of the wave functionsThe asymptotic parts o

8„Q.(s) e '/ns, —-
a'—= (1—v')/4ns' (C4)

a „„ in A endix A. The required integra-
' the result through ordertions are straightforward; the resu (D6)

a(Zn)'E r is
3 n g-

/lE (VP c) =a(Za)E—, — ++ (Zn)'—ln

the Cou om1 b S-wave-function matrix-e emen
used in the calculation of II.„,

—q'y eA='2M„(V+e, ).
We thus obtain the contribution

o. C
2r'(1 —~'/3)esE„(VP p) = ———

d
y.(—s') ne—

dS

e as totic parts (A5) and (A2) in
ld h o ib

(Za =0) so the contribution of order n
obtained by taking the limit

I IIP (s,u)X(s, s,s,y

y'+(1 —y')~ '"'3
o y'0 0

I /2 g I2 1 s''-+ s' —s —2s /s= ——e "' —+—
2II I /2 $

(C6)

(Dg)

The result through ord er ,nZ)~nEr lS

3
nE„(VP p) =n(Za)E—.r—

ne ', (D9)——X b„y„(s)I„(s)—
~

—— ne—-

Zo,'

g 4m2 0

e s
' '

easil done, and we obtain
—ala

The s" integration is now easi y oX d" ~.() ~.()(V+" . (C7)
CL

2

vii =— 'E ds

ra

AE„(vii; nonasym) =—Za

10 1
(Zn)'E r ——+—& 2—

of (CS, and (CS) is thusThe total contribution o

IsE (VP) =/sE (VP c)+/sE„(VP—
3 a n 8

—Zn)' ln

—(«)'E.'
225 10

where, for n=1 an 2

3—n+ 2s (n —1) ln 2s+y+-n

3

00 $+g
-2sLn+2s(n 1)j 4—e-"' in

0

(D10)

=—' s. The anal results given in 6.36.3I may be
s alld tllell tile t jntegra, tionsobtained by performing the s an en


