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Theory of Electric Shifts of the Optical and Magnetic Resonance
Properties of Paramagnetic Ions in Crystals

A. KrzL
Bell Telephone Laboratories, ¹mYork, ¹mYork

(Received 8 March 1966}

A theory of electric-field-induced energy shifts and g shifts in paramagnetic crystals is presented. This
theory is based on the modern tensor-operator techniques. An "equivalent even interaction" is introduced
v hich operates only among the states of the ground manifold. Using this method the g shift of Yb'+ in
CaWO4 tungstate is treated in detail with good results. We also consider the effects of odd fields on the
observed crystal-field parameters, optical shifts in external electric fields, and field-induced transition
probabilities.

I. INTRODUCTION
' 'N a paramagnetic crystal in which the ionic sites are
~ - not inversion symmetric, an external electric field
may induce energy shifts which are linear in the applied
field. These shifts can be described as linear shifts of the
g tensor or D tensor of the paramagnetic ground states
or by additional crystal-field terms in the excited states.
The linear electric shifts arise from the combined effect
of the internal odd fields within the crystal and the
externally applied field. It is therefore possible to use
experiments on electric shifts to learn more about the
influence of odd crystal fields on the properties of
paramagnetic crystals and to connect these results with
other odd-field effects such as oscillator strengths,
I araday rotations, etc.

In the past several years, there have been a number
of interesting experiments on the effects of electric
fields on crystals. These include the work of Bloem-
bergen's group on electric shifts in quadrupole reso-
nance, ' the magnetoelectric sects of Folen et al. ,' and
the pseudo-Stark efI'ect in the Rl state of ruby by
Kaiser et al.' Since this group of pioneering experiments
there has been the important work of Ludwig, Wood-
bury, and Ham4 on g and D shifts in a variety of transi-
tion elements and 5 ground-state rare earths, of Mims'
on g shifts in a number of rare earths with Kramer's
doublet ground states and Royce and Bloembergen, '
Artman and Murphy, ' and Krebs' on Cr'+ and Fe'+ in
A1203. Quadratic effects have been studied by Weger
and Feher. '

' N. Bloembergen, in Proceedings of the 11th Collogue ASIA'RE
(North-Holland, Publishing Company, Amsterdam, 1963), p. 39.'V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev.
Letters 6, 605 (1961).' W. Kaiser, S. Sugano, and D. L. Wood, Phys. Rev. Letters 6,
607 (1961).' G. W. I.udwig and F. S. Ham, in Proceedings of the Inter-
national Conference on Paramagnetic Resonance, edited by W. Lov
(Academic Press Inc. , New York, 1963), p. 620 (references to
earlier papers of Ludwig, Woodbury, and Ham are included).

W. B. Mims, Phys. Rev. 140, 531 (1965).'E. B. Royce and N. Bloembergen, Phys. Rev. 131, 1912,
(1963}.

7 J. O. Artman and J. Murphy, in Proceedings of the Inter-
national Conference on Paramagnetic Resonance, edited by W. Low
(Academic Press Inc. , New York, 1963), p. 634.

J.J. Krebs, Phys. Rev. 135, A397 (1964).' M. Weger and Eisa Feher, in Proceedings of the International
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Until the present, no quantitative theory unifying the
various electric eGects has been presented. It is the
purpose of this paper to take a step in this direction
through the application of some tensor operator tech-
niques. Section II is devoted to a general theory of
electric shifts in paramagnetic crystals. This is based on
the method developed by judd" and by Ofelt" for
calculating oscillator strengths in crystals and is pri-
marily applicable to rare earths although it may be of
some use in iron-series elements as well. In Sec. III we
consider the case of Yb'+ in Ca%04. In Sec. IV we
consider a number of applications of the general theory
including the sects of odd fields on the observed
empirical crystal-field parameters, optical shifts, quad-
ratic effects, and the possibility of induced electric
optical transitions.

II. GENERAL THEORY

In most considerations of the rare earths we can
picture the low-lying levels ((30000 cm ') to be of
pure f-electron character. Even crystal-Geld terms,
A»'V»'(g, VP), which are generally weak compared to
the spin-orbit interaction, break the spherical symmetry
and produce the crystal field splittings. If the crystal-
field parameters A2J, ~ are treated as empirical, one can
usually obtain good fits to the energy levels and g
values. The Hamiltonian for this system can then be
written as

36=X,+V, ,

3C, =BC(electrostatic)+XL S,
v..=p a„~v,„~(tl,~),

where 3C is assumed to act only within the manifold of
states of f", that is, a pure f-electron system, and V,
is the even crystal-field potential.

In a crystal in which the rare-earth ion is not at a
center of symmetry, the crystal field contains odd terms
as well, so that states of the opposite parity must
be mixed into the f" manifold, e.g., P=aC (4f")
Conference on Paramagnetic Resonance, edited by W. Low (Aca-
dernic Press Inc. , New York, 1963), p. 628.' B. R. Judd, Phys. Rev. 127, 750 (1962}."G. S. Ofelt, J. Chem. Phys. 37, 511 (1962}.
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+bC (4f" '5d). In fact, the d-state mixing is essential to
the explanation of the observed oscillator strength, since
in noninversion-symmetric crystals most optical transi-
tions within the (nominal) f"manifolds are found to be
of electric-dipole character. Judd" and Ofelt" have de-
veloped a theory for the determination of optical-dipole
moments in such crystals using tensor operator methods.
By a slight generalization of this method we shall see
how the linear electric shifts as well as quadratic effects
in the odd fields or in the external electric fields may be
analyzed.

A. The Equivalent Even Field

Consider the Hamiltonian

(K,+V, )f,„=EP„ (2)
'The odd crystal-field terms mix the ground manifold

with the higher, opposite-parity manifolds. For an
arbitrary odd interaction V„dd the two lowest order
terms are given by

and

O'--I v.«l |ko)Q o
I
v «I |k-'&

(E —E «)
(3)

Q.„l V.„I4,)&A I
v..

I y, '&&P,
'

I
v.„l|P,'&

(4)
oo. to' (E. —E, )(«E„—E„dg')

Equation (3) represents a shift in the energy levels of
the ground manifold without explicit consideration of
the odd state mixing in the ground states, while (4)
involves the splittings due to the even fields through the
small odd-state composition of the ground manifold
caused by the odd fields. The ratio of the magnitude of
the terms in (4) relative to (3) is given by

&4'odd
I
vev IO'0«)

(E, —E, )«
This term we will see is generally negligible for all the

cases we shall consider.
Now the term (3) can always be expressed as an

effective Hamiltonian acting only within the states 1p,

e+ Vev+ Vodd + Vodd

In this expression V. is the internal even field which
exists independent of the odd terms (in the simplest
form it is pure electrostatic in na, ture) and V,«"& is the
odd crystal field while V,dd"' is the odd potential energy
arising from an external electric field. The proper
functions of the even part of this crystal field are given
b y12

of the ground manifold, e.g., pure f states.

odd odd

Veq = Q Vo«Vodd 1

fodd Fodd ~ev
(5)

In our case the problem is greatly complicated by the
vast number of opposite parity states to be summed
over. The problem is greatly simplified by applying
arguments similar to those used in Ref. 10. We make a
fairly trivial extension of the two basic equations in
Ref. 10 to make them apply to the present case, the
computation of V,~ .

Suppose the ground configuration is (nP) and an
opposite parity configuration is (nP 'n'I'), where the I
are the angular momentum of single electrons (e.g.,
d, f electrons), the superscripts are the number of
electrons of type l, and the n are the principal quantum
numbers. We must further specify the states by intro-
ducing quantum number g;, J;, M„where J;, M; refer
to the total angular momentum and f includes all the
other quantum numbers necessary to describe uniquely
any given state, i.e., 5, I., y. The energy separation
configurations is then

E(n'l', P,'J,') E(nl, g;J—,) .

If the multiplet splittings in the primed states
are very small compared to the separation of the even
and odd manifolds, we can take the energy diGerence
to be essentially independent of J'. Performing sums
of J', M' one obtains for the product of spherical
harmonics Dor conciseness we omit the energy denomi-
nator DE(n, 'l'f', nip) as well as the crystal-field parame-
ters which appear in Eq. (5); they will be introduced
when necessary below, in Eq. (7) and after].

where V,~ is now an equivalent even crystal field term
which operates only within the ground manifold. Our
problem is now reduced to that of evaluating this
"equivalent even operator. "

Let us, without loss of generality, express V,dd as a
sum of spherical harmonics:

V,dg ——Q Al, 'Yg'(O, q), (k=2p+1).
If it is recognized that the I'A, ' are irreducible tensor

operators, the full power of modern operator techniques
may be applied. From an inspection of Eq. (5) and the
expression for V,dd we see that the evaluation of V,~ is
essentially the problem of determination of the tensor
product of spherical harmonics:

Y2k+1 Y2y+1 2 a2 Y2

(l~p;S;L;J;M;
I

Yg& ' P 'I'y'SL'J'M')&I"' 'I'—y'SL'J'M'
I
Y„"

I

P—ySL;J;M,&J~,3I'
(2k+1)'"(2k'+1)' ' (k K p p k k=Z (—)~"'*"f (21t+1)I (PySL J M ITq+ "

I Py SL,J',M'~&'k 4x kq q rr L—, L—' L;
The 3j and 6j symbols have been used in the above equation.

"In Eq. (2) it is immaterial whether a proper function g is even or odd so long as it is of definite parity. Here we shall alwaysdesignate the ground manifold as even in spite of the fact that we will occasionally refer to f electrons.
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Even though the closure procedure has produced an operator acting only with the ground manifold, it is still
much too complicated to use. We will not digress further with this equation. Following Judd, " we extend the
closure procedure by demanding that DE be invariant with respect to )p (only a fair approximation) which enables
us to dispose of 5' and J.'. We obtain

&P)p J;M;
I
Y)&

I

l~ '(n'l'))p'J'M'&(P '(n'l'))p'J'M'
I
Y„"

I

P')pJ, M, )
Jr ~l fl

[[)0+1)[2p+))]"' ). K p [) ), )')()' p ))= 2—(2l+1) (2l'+1) ikoooooo

k p~—=P(ll', kpK) (2K+1)(—)~
q

—
q
—r r&'

where

k p
X(2K+1&(—) " ( IU 'Ij)

q
—

q
—r r

(6)

)l K I )
(lI Uxo(e, v')

Ij&= « "O'J*M
I
Y~o Il "O' J)M&(4n)'" (2l+1) (2K+1)'"! I, Q=q+'

)o o oi

In obtaining Eq. (6) it is assumed that the energy difference between the states i and j of the ground manifold
is very small compared with the separation between the ground and opposite parity manifold. We have, therefore,
that the equivalent operator LEq. (5) ]arising from the tensor product of the odd harmonics A „))A„'Y)),. &(0, q)) Y„"(8,y)
is given by

V, „(ll',kqprKQ) =y(ll', kqprKQ) Yrr@(8,y)

where

a(ll', kpK)A ), 'A ~" k K p
(—)'' X Yrro(g, p),E(n'l') E(nl) —

q Q r

(l K l~
o(il', kPK) = P (li', kPK) f&7r(2K+1)]')' (2l+1)I

ko o oi'

Before completing the computation of the equivalent
even operators one must sum over all the relevant k, q
and p, r as well as l'. In general there are only a small
number of spherical harmonics to be summed over so
that this portion of the problem is not too dificult. It is
also possible that only one or two of the n'l' are signifi-
cant (owing to the size of the radial integrals and
progressively larger energy denominators) so that the
over-all method is not impractical.

Some very important aspects of Eqs. (6) and (7) can
be discussed immediately. First, within our approxima-
tion that Eq. (4) is negligible and that the energy
separation of states within the ground manifold are far
less than the even-odd energy separation, the equivalent
even interaction yV~& is constant for all states of the
ground manifold. In the 3d and 4f elements, for ex-
ample, Fqs. (6) and (7) should hold quite well for all
states within about 20000 cm ' of the lowest state.
Moreover, (6) and (7) do not depend on X (the number
of 4f or 3d electrons in the ion) except in the matrix
element of Uk & or F k' within the ground manifold, that
is e(ll', kpK) is independent of E. Of course the odd
frelds and/or the radial integral may vary for different
rare earths, and the energy of the opposite parity states
differs from ion to ion, but the basic tensor reduction is
identical for all ions in a given series.

V,gg ——V, (odd)+ V,p.

In the tensor product Void!&&I V,sz/AE we get terms
like

! V, (odd) I)(I V, (odd)]/DE,

LV (o«) I)(l V"]/~E

LV" I &(I V"]/~E.

(8a.)

(8b)

Each of these gives rise to terms in the equivalent
Hamiltonian which may be easily interpreted. The first
term is just a correction to the even crystal field arising
from the odd crystal field. This may inHuence the energy
and g values of the states in the ground manifold. The
second term gives rise to the linear electric effects with
which we are primarily concerned here. Finally the la,st
term leads to an equivalent interaction quadra, tic in the
a,pplied field.

For each of the terms in Eq. (8), the corresponding
equivalent even field may be obtained through the
direct application of Eqs. (6) and (7). I.et us consider

B. Effects of Odd Fields (Including Applied Fields)

I et us express V,dd as a sum of an odd crystal field
and an externally applied electric field:
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(8a.) first:

V, (odd)
l

&t „qd)Q,qa l
V, (odd)

&&) —Q
odd

If we assuilie

then

V (odd)=Z ~~'(g, q)& k'('tt, q),

V,„.&'&= P P ~(tt', hqh'qXg) V o(e, q)-.

eE(i) r= (37r)"erPE, (i) Vi' E,(i) (Vi' Vi ')/v2— — —

+iE„(i)(Y,'+ V )/v25

The odd field is taken as Ai'(V~'+ Vi '). For a rare
earth ttt; can be 1, 3, 5, 7, while for a 3d element k =1, 3,
or 5. For simplicity here we take a single k and q and
also a single l'. Then for the case of 4f electrons with

This tenn can cause deviations of the energies and g
values from those one would predict assuming the even
"electrostatic" field was known.

It is important to note that V,~
(') must be identical

in form to the electrostatic even field V, , since the
odd field belongs to the identity representation of the
symmetry group just as the even field does. No new
crystal-field terms can arise from this tensor product.

Calculation of V.~„«' in a specific instance Lusing the
results of Eqs. (5)—(7) to be described later7 shows that
it is not necessarily negligible. This fact has been
recognized by Artman and Murphy. ' In actual practice
the even crystal-field parameters a,re always determined
empirically rather tha, n theoretically. Since V,~„") is
identical for all states of the ground manifold, it is
additive with the electrostatic part of V„. The egec-
tive field of the sum is indistinguishable from the usual
V„ in any parametrization procedure. Hence, to
within the approximations leading to Eq. (6), one can-
not a.ttribute a breakdown of the parametrization
method of determining g, D and crystal field splittings
to the presence of odd crystal fields. It is true that the
equivalent operator method is somewhat questionable
for the upper states of the ground manifold (i.e.,)25 000 cm ') and for extremely large odd fields. How-
ever, in practical cases the levels being fit in crystals are
rarely that high and the odd field rarely so large that
any significant departure from the crystal-field theory
could result. For the cause of any failure of the para-
metrization method (if indeed, such failure exists) one
must look for effects of interactions other than those of
the odd field. In Sec. III we will calculate V,~

") for
Vb'+ in Ca%04.

When an electric field is applied to a crystal which has
no center of symmetry, the expression (8b) becomes
important. The external field gives rise to the internal
potential

n't'=5d, we have for the case of E along the s axis

(3dlrlrf)
V,„&"= (,ir)'—"eE(i)

E(5d) E(—4f)

XLy(32, hq10h —1q)V&, &'(H, q)

+y(32, hq10h+1q)Vi+&'(tl) q)]. (9)

The y are given in Eq. (7).The generalization of Eq. (9)
to include other electric field orientations should be
obvious. "

V„„&"operating within the ground manifold (i.e., the
pure f or d states) can now produce changes in the
energies (D shifts and optical shifts) and g changes
which are linear in the applied field. These eRects will be
discussed in the next section and thereafter.

The question of the relation between the local applied
electric field at a paramagnetic ion and the external field
is very complex. We shall use the correction formula.

given in Ref. 14, which is based on the Clausius-Mosotti
theory.

There is also the question of the importance of ionic
motion in determining the electric shifts. The general
expression for the equivalent even field can easily be
extended to include this ca,se. However, the bulk move-
ment giving rise to the dielectric constant need not
produce much change in higher order odd terms at an
impurity site, which are determined by its close neigh-
bors. At a.ny rate, we find that the g shifts in rare-earth
tungstates can be well explained by the pure electronic
effect described in Eq. (9). (Sec. III.)

There is, finally, the last term in Eq. (8), the "direct"
quadratic terms V,~ '@. We must distinguish between
this term and the second-order eRects of the linear term
V q which are also quadratic in the electric field,
since, as we shall see, their symmetry properties are
very different. For an electric field in the x-s plane,
8=45', q=o,

V«v&@= (2ir/3v2)[e'r'E'(i)/AE]y(ll', 101121)
XLV"(9,.)-V.—(0,.)). (»)

The expression for V,~
(" for an arbitrary direction of

electric field may be easily determined.
If the crystal has a center of symmetry, V,q

") will
be the only electric-field terms of any importance. In the
absence of inversion symmetry, the linear electric term
occurs. Even when symmetry forbids a first-order linear
shift, the second-order linear eRects can in some cases be
comparable to the direct quadratic eRect. We will
postpone any consideration of this to Sec. IID.

"It may be noted that potential terms such as VI and YI~'
have nonzero derivatives at the origin and thus one might suppose
there is a nonzero force on the nucleus. However it must be kept in
mind that the electron cloud will become polarized by such a
potential term thus shielding the nucleus from the applied field.
This polarization is described by the mixing of states of opposite
parity."J. O. Artman and J. Murphy, Phys. Rev. 135, A1622 (1964).
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C. Linear D and g Shifts

In the case of rare earths we are not usually dealing
with orbitally quenched states. Then we need only find
the matrix elements of 3C,~ within some J manifold to
determine the additional splitting induced by the ex-
ternal electric field. For example, if q=0, 4=1 and we
take the J=~5 state of Ce'+, which we assume to be
diagonal in the internal crystal field, we obtain the
following potential for E~~c:

The matrix of the interaction is

I Di+i
0
84

0
D2+ &2

0

84
0

D3+~3.

Ws'ow it is easy to see that the ratio D/22" is exactly the
same as the ra, tio between y and D' in 3C,~~yI'2 ~
D'[5,' —aS(5+1)$; the "quenching" of the crystal
field is the sa,me for all spherical harmonics of the same
order. To be explicit, if m=D/AP then

yVP-+ myf(So),

where f(5o) is the appropria, te Stevens harmonic. The
same rule of course holds true when considering higher

where the D are the energy of each level, which consists
of a Kramers doublet, and where the a; are the matrix
elements of V,q . The a, terms give rise to a shift of the
energy levels in the applied field. These are difficult to
observe since the D diagonal elements correspond to far-
infrared wavelengths. In the matrix above, all the a; are
expected to be much smaller than the energy diRerences
in zero field. Therefore the effects of a4, the oR-diagonal
term, will be negligible compa, red to the shifts induced
by the a&, a2, a3. The a4 will produce what we called the
second-order linear effect which is important only if the
a terms along the diagonal are zero (this occurs for
certain crystal symmetries and for some electric field
orientations).

The third-rank tensor for the electric D shift is well
known and indeed is identica. l to the piezoelectric
tensors. It is interesting to note that the form of this
tensor can be derived quite trivially by expressing the
crystal fields and the applied electric field as spherical
harmonics and writing out their products. This holds
true for any crystal symmetry. Hence in this method we
automatically compute a,ll the elements of the electric
shift tensor.

In iron-series ions and in Eu'-+, Gd'+ the ground state
is generally "orbitally quenched. " Only through inter-
mediate coupling eRects of the spin-orbit interaction
ca,n the orbital degeneracy be removed. For example,
within an orbitally quenched, "effective" spin-~ state
such as CI +

A Ql'2' —+ D[S,'—-',5(S+1)j.

order spherical harmonics and their associated Stevens
harmonics.

The D-shift tensor (second-order in 5) may be
written R,, i where BC,u is (axial crystals)

~,.ii ——tlH g S+D[Sa'—-',S(S+1)]
+Q R;, iL';5,5k. (11)

It is clear that the I,R,, I, are just equal to the quenched
form of the spherical harmonic products discussed
above. It is quite trivial to write out the explicit form
for any particular one of them (we are still dealing,
however, with the pure electronic polarizability case).

A number of interesting observations can be made
now which do not require a detailed discussion. First it
is ea,sy to see that any state which is not orbita, lly
quenched (e.g. , certain ions in cubic symmetry or some
non-Kramers systems in axial symmetry), will be very
sensitive to an applied electric field. In this case the
R-tensor component will be expected to be large corn-
pared to a quenched system. If the normal D tensor is
large, the R tensor may be expected to be correspondingly
large since the quenching affects both operators in an
identical way. If D is nonzero for the state under con-
sidera, tion, then unless V,~ belongs to the identity
representation of the site symmetry group (i.e., V&~V,ad

produces a term identical to the even crystal field), all
the matrix elements of V,~„will be og Chagonat -This.
means that since V,~,/D&&1, all energy shifts will be
= (V.~-)'/D.

Degenerate states in systems with an even number of
electrons would be expected to have a large shift if the
electric field produces an equivalent field with oR-
diagonal matrix elements [e.g. , a'(5, ' —Sr'), etc.$.
a'S,' would remove part of the degeneracy of the three-
dimensional representations in cubic symmetry, again
leading to exceptionally large shifts. The four-dimen-
sional I'a sta, tes (cubic symmetry, odd number of elec-
trons) may also be split by an external electric field.

g Shifts

It is also possible to obtain a g shift which is linear in
the applied electric field. In most cases of interest the g
shift is only an apparent change of the effective g which
occurs when we mix higher states into an isolated
K.ramers doublet. Consider a case such as Ce'+ with a
J=-,' ground state. In a paramagnetic-resonance experi-
ment, only one doublet will generally be observable
since the crystal-field splittings are usually ))kT. Al-
though the equivalent Hamiltonian t/', ~ never couples
Kramers conjugate states, it can mix the lowest doublet
with the other states of the J=-,' manifold. It is this
additional mixing induced by the electric field which
leads to an eRective change in the g of the spin-Hamil-
tonian. This tvpe of eRect can occur in all rare earths
with a Kramer's doublet ground state as well as in cases
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where the ground doublet arises from a state which is
not quenched in a pure cubic field. Ti'+, "strong-field"
Fe'+, and their isoelectronic counterparts are a few of the
possibilities for very large electric g shifts. The electric
Geld does not change the gyromagnetic ratio but instead
changes the state composition within the manifold in
which (1.+25) operates. In the spin-Hamiltonian for-
malism, this is expressed as a change in the g of an
effective spin--,' state.

The method for dealing with the g shift in unquenched
states is to set up the matrix for the entire J manifold
(or its equivalent for 3d cases like Ti'+) of

x=pn. g. 2+v„..
One must then diagonalize the resulting matrix and
determine the energy (hence the effective g shift) for
various values of H and E.

In the principal-axis system of the unperturbed
crystal we can write the previous equation in a form
applying only to the lowest doublet (to first order in

Veqv) as

~=ti p g,ad, +p p a,x(g;j,v.,„.)

=pga.j;+E,T„,(gJ,a,+gj,a,). (12)

In this expression Tk;; is a constant of proportionality
arising from the tensor product of J, and V,~ . From a
practical point of view the Tk;; in the spin-Hamiltonian
is most conveniently calculated by directly diagonalizing
the full matrix expression of the complete manifold.
This question will be considered more explicitly when
we discuss the g shift in Yb'+ later in this paper.

tensor on the explicit crystal structure. As a result there
is a vast decrease in the number of independent corn-

ponents in the quadratic electric tensor. Taking all

possible products of first-rank spherical tensors [each
may be taken as z~ VP, —y~ (Y&'+V& ')/&2i,
—x —+ (V&'—V& ')/v2j and interpreting the resulting
second-rank tensor in usual way we obtain components
xxzz, yyzz, zzzz, xxxx, xxyy, yyxx, yyyy, xyxy, xzxz, yzyz.

These are not independent since they are all related
by 3j symbols. In terms of the internal electric field, we
can express the quadratic electric tensor as

Xo=2;,g('E;E,xlx(/r'.

In this form (which is equivalent to using the V"
effective operator) A;,~~' can be determined directly
from (Sc) and (7). In spin-Hamiltonian form

q ——8;,k)'E;E jSkS).

In either form we find the following relation among all
the tensor components 8;,kE or A;,k~'.

xxzz yyzz '2 zzzz

xxxx= —yyxx= —xxyy= yyyy= (Q-, )zzzz, (13)
xzxz = yzyz = (1/2VS) zzzz.

Let us define a second-rank tensor e which relates the
internal to the external fields. Therefore E,=e;pEp',
where Fp' is the applied electric field. e is of course
related to the polarizibility tensor. If the principal axes
of e are the same as that of the paramagnetic system, we
can write 3C in this system as

D. Direct Quadratic Effect 3C =8;jk)E, 'F, 'SkSI, , (14a,)

Ke saw in Sec. IIC that the second-order linear terms
are proportional to [V,~„'z'jz/D while the energy shift
due to the direct quadratic term is proportional to
V,~„&@. Using Kqs. (8) and (7) but ignoring coupling
coefFicients, the ratio of the second-order to direct
quadratic terms is very roughly

V,z(odd)/(AEX D),
where hE is the energy separation of even and odd
manifolds. For V.(odd) large ( 5000 cm ') and D
small ((300 cm ') we see that the ratio is near unity.
However, taking the exact expressions including all the
coupling coefIicients we find that the direct effect will
generally be dominant for K~~c while the second-order
linear effect dominates for K~~x. In calculating the direct
quadratic effect it is interesting to note that Eq. (10)
does not involve the crystal symmetry at 311. By taking
the tensor product of the electric-field terms we can
derive the fourth-rank direct quadratic tensor in a
straightforward way. The following analysis is inti-
mately connected with our closure method since it is
this procedure which eliminates the dependence of the

8sj.W= ~s'~j.j8sjkt ~

8&jkl= ~ &ipfjq8pqkl
p~q

(14c)

Of course if we do not use the closure procedure these
simple answers do not occur and the inherent crystal
symmetry arises in 8' as well as in 8. For the general
case the terms in 8' are not all related and several
additional terms may occur. The tensor will become
identical in form to the piezoresistive tensor. A careful

There are now as many independent components of 8
as there are independent e.

In crystals which do not have unique x and y axes, a
complication arises. For in such crystals there is no
reason to suppose that the principal axes of the polariza-
bility will coincide with the principal axes of D or of g.
In an axial crystal this is unimportant since the projec-
tion of the e or D ellipsoids in the x, y plane are circles.
For lower symmetries which are neither dihedral nor
contain vertical refIection plane which specify x and y
directions, e;j. cannot be used in diagonal form. In this
case
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check of the quadratic electric eEect could provide a
good check of the validity of the closure method.

E. Relation of the Various Odd-Field Effects

We have seen that the linear D shift and g shift
depend on the size of the odd crystal 6elds. This is also
true of the oscillator strength of the optical transitions.
Indeed, the equivalent fields which cause the optical
transitions are derived in exactly the same way as those
resulting from the static electric field. That is erEoe' 'V, dd

=ykoYko(8, 33)e'~' where the methods of IIA are used
for the computation of y~q. Ordinary time-dependent
perturbation theory is then applied using the above
equivalent fields. Obviously, the oscillator strength de-
pends on (yko)3 and hence on V,qqk. The linear g and D
shifts depend linearly on yI, and V,dd. The latter ex-
periments may therefore be expected to be more sensi-
tive to the effect of the odd fields. Kiss and Weakliem,
Ref. 15, have used a relation between f numbers and
electric energy shifts to analyze their observation (the
first in rare earths) of optical shifts. In this paper, I have
taken a slightly diferent approach in that I always
assume the rare-earth wave functions are exactly known.
In this way the spin-orbit interaction does not enter
into the expressions given for the electric eGects. This is
partly based on an earlier paper (Ref. 16) where I
predicted large optical shifts in rare earths.

The static electric field experiments may depend on
the ionic polarizability as well as on the electronic eAect.
If the former dominates, the values for the odd crystal
fields computed from the electric effect would be in
error. It should be possible to sort the ionic and elec-
tronic contributions by comparing the odd fields de-
termined from the optical f numbers (where the ionic
effect should be negligible) and the odd fields required
by the g, D-shift experiments. We shall do just this for
the case of CaWO4 in the next section.

III. g SHIFT IN CaW04

Recently Mims has reported an extensive set of ex-
periments on g shifts in four rare-earth ions in Ca%04.
Because of its relative simplicity and the fact that the
optical spectrum of the Yb3+ is known in CaW04, we
will concentrate on Yb3+ and to some extent on Ce'+. In
CaWO4, there are four terms in the electric tensor. In
usual notation for a third-rank tensor (first index
represents electric-field direction, x~ 1, y —+ 2, s —k 3)
these are T$3]—T232 Ti32 — T23$ T3]g — T322 and
T3i2 with the added provision that the tensor is sym-
metric in the last two indices. The Hamiltonian is best

'6 Z. J. Kiss and H. A. Weakliem, Phys. Rev. Letters 15, 457
(&W5j.

"A. Kiel, in Proceedings of the International Conference on
Magnetism (The Institute of Physics and the Physical Society,
London, 1965},p. 465.

described by the expression

3C= V,q +gPH;J;,
V„=Q Ak3LYk3(8, y)+ Yk '(8, (p)]eErYi '(8, rp)

+Bk'LYk'(8, ~) Yk—'(8, 3)j«r Yi'(8, k ),
(15)

where the products in V„are evaluated through the
use of Eqs. (6) and (7). For our cases, the lowest state
is an isolated Kramers doublet. The effective Hamil-
tonian is

+2Bk33mn+ 2Bkl glm+2B klgin], (16)

where l, m, m are direction cosines,

Bk', = (1/P) (g *.Tk.;+Tk'.g. )

Only in this form does the expression for the g shifts
have a simple geometric form. For example, for E along
s, H along the x direction,

8g'= E3(B311'+B3,3')'" sin(2y —2p3), (17)
tan2 ip3 ———B31/B33,

and in the principal axis system (axial case)

B311 (2/P)gl7 311

B312 (1/P) (glT312+g2T312) (2/P) (glT312) ~

For E along a, H at an angle |I, y relative to the a, b, c
set of axes,

Bg =E (B123 +B1133)'"sin28 sin (3 —q'1)

tan &Pl B113/B123 y

B113=(1/P) (gi+ g(i) &113,

B123—(1/P) (gi+ gr I) T123 ~

In S4 symmetry, the g tensor has arbitrary orientation
in the x-y plane. This, of course, is of no consequence in
usual resonance experiments since the axial symmetry
requires g&

——g2
——g =g„ for any mutually orthogonal

directions in the a-b plane. In the electric g-shift case,
this is not the case since the changes in the g tensor will
be relative to directions of the principal axes. Even for
identical crystal fields the principal directions in the a-b
plane will vary from ion to ion (i.e., will diGer for Ce'+,
Nd'+, etc.) in an arbitrary, though in principle calcu-
lable, manner.

The efI'ect of this is that given the orientation of the
principal axes, the orientation of the effective field (and
the odd field) is arbitrary relative to this set of axes. For
this reason in an S4 symmetry, the zeros in the g-shift

3C=Pg;H, J;+PEkTk;, (g;H;J, +g;H,J;) .
Mims' has shown that the g shift of the lowest

Kramers doublet can best be described by the tensor
representing the quantity bg'.

5g'=r" 5A i
Q Ek[Bkllt' +Bk22m +Bk33N
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expression may lie almost anywhere in the a-b plane and
will vary from ion to ion almost arbitrarily. In addition,
&pi in general will not equal q3 Lsee Eq. (17)j and the
difference between them will vary from ion to ion. We
will give some examples below.

First we return to the equivalent field method and we
thus evaluate the actual tensor elements in a simplified
case.

Pappalardo' has investigated the optical spectra of
Yb'+ in CaWO4. From his data and some additional
calculations, we find the energy and wave functions for
the 'I'7/2 state given in Table I. In that paper, the
optical oscillator strengths are also given for the several
transitions L(1—8)&&10 sj. The oscillator strength is
given by the expression

8~2m. 4~ (il V.«V,
l i) ~

(r )..—
h 3 6I'.

(18)

y2'(Vg' —V2 ') = —0.00033 (V22—V2 '),
y4' ———0.00055,

r2 (L 2 +V2 ') =0.00033 (VQ V9 )
y4'= 0.0021,

p4' ———0.00028 cm '.
(19)

The electric g shift depends intimately on the corn-
position and energy of all states in the J=-,' mani-
fold. Specifically, we must diagonalize the term V,~

+PH(1.+25) within this ground manifold. Clearly the
J=-,'manifold centered about an energy of 10000 cm '
will give a negligible contribution to this effect.

TABLE I. Proper functions and energy of Kramer pairs in J= ~~

manifold; Yb'+ in Ca%04 (H=O).

Function

&1{~)= —0.70

)WAN)+0.

713
I 2, ~ ~)

i{4{&)=0.92l~, w-', )—0.392 —,', &-,')

Energy (cm ')

0
220
350
600

"R. Pappalardo and D. L. %'ood, J. Mol. Spectry. 10, 81
{1963)."It is clear that we could have used the f numbers to calculate
the eGective Geld directly. However, we will use the AP in another
application later so we have chosen to find it directly.

For Yb'+ it is a moderately good assumption that the
A 3 I 3 term in the crystal-field expansion dominates
since the

l rl " terms are particularly small in this case.
Using the strongest transition of Ref. 17 and Eqs. (18)
and (7) gives

A3'~7500 cm '.
We can now use these parameters to calculate the

effective-field terms. "
In units of inverse cm per 1000 V/cm we obtain for

Ybs+ in CaWO4 the following equivalent even fields (we
discuss the choice of the imaginary form below):

The calculation of g shifts requires the manipulation
of an 8X8 matrix for Yb'+ (and up to 16X16 for Er'+).
Instead the entire problem was programmed for a
computer by the author. Given the state functions and
energies of the ground manifold and the equivalent
fields, all components of the g-shift tensor could be
computed. Complex wave functions and fields could be
handled by this program but required doubling the
dimensions of all matrices. Subsidiary programs were
written to find the wave functions to be used in the
main computation. The same programs can be used for
determining D shifts, optical energy shifts, oscillator
strengths, and quadratic effects in a fairly routine
manner.

Two points should be mentioned before presenting the
results of these calculations. First, we have assumed up
till now that the electric field was the internal field. In
CaWO4, the "average" dielectric (it is slightly aniso-
tropic in this case) constant is 10. We use the correction
formula derived by Artman and Murphy" to relate the
external to internal fields in CaWO4. "We present all
results in terms of the measured laboratory field (V/cm).
The second point involves the fact that we have chosen
the imaginary forms for the equivalent fields which
implies that the 33' odd field is also imaginary. We have
done this arbitrarily to obtain approximate agreement
with the orientation of the tensor observed by Mims.

We obtain finally for the bg' tensor

(Bi2 2+B 2 2)'i2= 171)(10 9/(V/cm),

(B,iP+B ')'"= 71&&10—'/V/cm),

pi=90', q 2=45'.

This compares with Mims' results

(B$2 '+B ')'"= 212&& 10 '/(V/cm),
(B3iP+B ')'"= 81&(10-'/(V/cm),

yi ——106', q2-—47'.

These results, which obtained only for pure real wave
functions and the mentioned assignment of the odd
field, give no "twist" of g tensor for Elle and EJ c (i.e.,
2y2 ——yi ——90'). This corresponds to a case of pseudo
Dma symmetry, the g tensor (8=0) having been rotated
by 45' from its position in real DM symmetry.

By rotating V, aa by another 15' Lthat is if we set the
ratio of the real component of V, (odd) to the imaginary
part equal to tan 15'j we get

yg= 103.7' yp = 50.1'.
The over-all agreement for this case seems quite

acceptable and strongly indicates that the electronic
effect is sufhcient to account for the observed g shifts
without recourse to ionic effects. In a later paper we will
consider the cases of Nd~ and Er'+ and Mn'+ in some

"Using the correction formula given in Ref. 14, which includes
the Lorentz correction and some additional corrections, we find
that the internal Geld is 3.5 times the applied Qeld.



148 ELECTRI C SH IF TS OF OPTI CAL AN D M AGiN ET I C RESONANCE 255

detail and go into greater detail in the angular

dependence.
The Yb~ results can be used to predict the approxi-

mate size of the g shift in Ce'+. Unfortunately, in this
case, we do not have any optical data to guide us. The
ground state in Ce +has a form 0.895

~ 2,2s)+0.44
~

~~,
—2).

gfi=2.93, g~= 1..48. Extrapolating from Yb'+ data, the
p, =-,' state should be at about 180 cm ' with the other
p=-,' state perhaps another 200 cm ' above p=-', . (r) in

Ce is about 1 atomic unit (au) compared with some
0.55 au in Yb'+, and 6(f d) i—s about 45 000 cm ' com-

pared with 90 000 cm '. If we assume that A3' is the
same for both, the Ce'+ e6'ective 6eld should be about
four times as large as for Yb'+. Actually A32 should be
about four times as great in Ce since (f~r'~ d) is larger,
but this large u variation in the crystal-field components
is not observed in the even field components, nor in the
oscillator strength analysis. ' %'e therefore assume A 3 in
Ce is 25% greater so that overall the effective fields in
Ce will be five times as great.

%e get then

(8&2/+8» ')'I'=171X10 ' (V/cm),

(83jf +8 $2 )'"~60X10-'/(V/cm) .

This compares with values of 170)&10 ' and 87X10 '
obtained in experiment.

IV. MISCELLANEOUS COMPUTATIONS

A. Optical Energy Shifts

Using the equivalent 6eld values for Yb~ given in
Eq. (19), we have calculated the energy shifts of all the
4f states of Yb'+. For an external 6eld of 100 000 V/cm
and effective dielectric constant of 3.5, we tabulate the
results in Table II. The states of the J=-,' manifold
were given in Table I.

The largest possible optical shift for this case is about
3.1X10 3 cm ' per 100 000 V/cm. If the electric 6eld
is taken along the c axis, the shifts are all about —,', of
those obtained for E~~x. In view of the rather large
linewidth observed in the tungstates these shifts mould
be extremely dBBcult to observe. The reason for the
smallness of these shifts in comparison with the very
large g shifts obtained is due to the fact, mentioned

earlier, that in 54 symmetry the eGective field cannot
have any diagonal elements [see Eq. (19)j. This

property occurs whenever there is a horizontal reQection

plane. For other rare-earth ions in Ca%04, the optical
shifts will be as small or smaller. These shifts are
examples of the second-order linear effect. They will be
compared to the direct quadratic effect in IVC.

If we consider a case such as that for garnets where an
odd field of the form I'3 occurs, one finds that for

K~~ (c axis), the effective 6eld has a form identical to that
of the even crystal 6eld. For about the same magnitude
of the crystal 6elds, one obtains optical shifts ranging up
to 1 cm ' for Yb'+ for very large external fields ( 100
ltV/cm) along the c axis. A shift of this magnitude
should be easily observable. In other rare earths such as
Nd3+ or Sm'+, the shifts generally mill be somewhat
smaller than this but it should be quite large in Pr'+.

It should be noted that it is not necessary for the f
number of a given pair of levels to be large for a large
electric shift to occur (and vice versa as in Yb'+ in
CaWO4). The electric shift with E~~c will arise chiefiy
from the dMgonal terms in V, fg and whatever off-
diagonal contribution may arise will come from withe
the J manifotds of the individual states. The oscillator
strength arises from the matrix element of the oscillating
efI'ective 6eld between the two states in question. It is
therefore possible to have very small oscillator strength
because of the smallness of the matrix element and still
have large shifts. The opposite case is somewhat less
likely, except when 0~ occurs, since two states must
each have very small or nearly equal diagonal elements.

1 (A ')'
p 0y4'F40= y (32 323—32 240) F4' ———

3(g~)
5 (+13) (A P)'

y 0

16X21(gm.)
y6'Y6'=y(32 323—32 260) F6' ——

3. Effect of Odd-Fields on the Empirical Crystal Field

In Sec. IIA we interpreted Eq. (8a) as an effective
Hamiltonian which is a correction to the even crystal
field. Using the value of A3' determined in Sec. IIIA, we
can now calculate the size of this correction term to the
even field. Using Eq. (7) we obtain

Level J
Unperturbed

energy
{cm ')

0
220
350
600

10 000
10 000
10 400

Energy
shift (cm-')

-1.5X1O-'
3.7X10 4

3.8X10 4

7-6X10 '
1.6X10 '

—1.3X10 g

—2.9X10 4

Ener shift
Etc

—1.4X10 4

—3.8X10 '
8.0X10 '
1.6X10 4

2.2X10 '
—1.7xio 4

—5.6X10 5

TAsz, E II. Energy shift in efketive Geld
(100OOO V/cm. ..«—-3.5).

For our value of A3' ——7500 cm—', 6=90 000 cm—' we
find the coefBcient of I'4' to be —110 cm ' and that of
Y60 to be —18.4 cm '. In addition y4' ———(10/7)'"y~
=+132 cm ' and y&' ——(l4)"'y6'= —69 cm ' Some of
these efI'ective 6eld parameters, especially y4' and y4',
form a substantial part of the observed empirical even
crystal 6eld parameter (A4'~700 cm—', A,4 800 cm ).
In cerium, where the 5d states are much closer and the
A3' terms probably are considerably larger, the contri-
bution of the effective 6eld may be almost comparable
to the "electrostatic contribution. "As discussed in Sec.
IIC, this does not lead to a breakdown in the para-
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metrization procedure since the effective 6eld and
"electrostatic" even 6elds are simply additive so long as
the effective Geld may be taken as constant over the 4f
manifold. However, in some of the upper states of the
4f manifold (E)30000 cm '), some of the closure
approximations may be invalid which could then lead
to breakdown of the parametrization.

C. Magnitude of the Quadratic Effect

Ke will now calculate the size of the quadratic
electric interaction. Using Kqs. (7) and (Sc)

A/F2'=y(32 101020)Fm'

(eEr)' tt'2 1 1 1 2 1
20(21r)'"(—1)~ '~

EO 0 0 3 2 3

(eEr)'
X 1.35F2'.

We obtain Gnally (r=0.55 au, 3,=90 000 cm ')

(y %,fP) =6)& 10-15 (cm i per (V/cm)2)E'F2 (8,y).
For e,gf = 5, E=30 000 V/cm, the quadratic potential is
about 3..3X10 cm '. This compares with the linear
tungstate potentials for this field ranging between 0.04
cm—' and 0.3 cm '. Thus at this fairly high 6eld, the
quadratic potential effects are expected to be 1/100 of
the linear effects. The procedure for determining the g
and D shifts, once the quadratic potential is known, is
identical to that for the linear case.

The quadratic shifts, although small, are still within
the range of possible observation. Unfortunately, the
observation of relative shifts of inversion image sites as
used by Mims in his spin-echo technique is not appli-
cable to this case. It might be noted that the quadratic
optical shifts can be larger than optical shifts owing to
the linear (but off-diagonal) terms in crystals with
horizontal reflection planes.

If we express FP as a(S.'——',5'), then from IIC,

Bgggg' ——6&(10-"Xccm—' per (V/cm)'
2—~zzzz/ &eff

The other terms in the quadratic electric tensor may
be derived simply by using the relations given in Sec.
IIC. In rare earths as previously it is more convenient to
leave the effective potential in spherical-harmonic form
rather than to convert to spin-Hamiltonian form.

D. Induced Electric Transitions

Let us consider the possibility of inducing electric
transitions by applying an external electric Geld. This

is a possible method for inducing electric transitions in

centrosymmetric crystals or for cases where selection
rules forbid electric-dipole transitions. In this case we

want the eifective interaction of [see Eq. (7)$

(xs.)'"(Fg'e*'"') (eErFg ')

= e'~' (eEr/6) g (32,1qi q'2Q) Fmo,

The oscillator strength therefore becomes

83-2mVr2br eErg '
f= —

I &il F2'1 i) I
'

h 3

In Gelds of 100 000 V/cm and for the most favorable
cases, we Gnd that the induced f due to an external
electric field is less than SX10 "and usually very much
less than this in cases like Nd'+, Sm'+. Hence we con-
clude that the application of external 6eld is not a prac-
tical method for enhancing the transition probability.

V. DISCUSSION

We have seen that if an effective-field approach is
taken, virtually all types of electric shifts may be
described within a single, consistent formalism. Further-
more, it is quite feasible to calculate the size of any of
the electric shifts and to relate these to oscillator
strengths, etc. One can also make an a priori estimate of
the size of the electric effects if the energy level scheme
of any system is known. For example, in g shifts one can
see from the formalism that the existence of a close-
lying excited state mill lead to large shifts. This in part
causes the large g shifts in KW in CaW04. Furthermore,
we know that the effective 6eld is inversely proportional
to the separation of the odd- and even-parity state.
Hence in divalent rare earths, where the d bands are
depressed, one may expect especially large electric
effects. Similarly in states with incomplete quenching of
the orbital momentum one expects large electric shifts;
indeed whenever D is large or g deviates substantially
from 2 the corresponding electric shifts should be
especially large unless forbidden by symmetry con-
siderations.

In a succeeding paper, we shall consider the case of
electric shifts in a quenched system, Mn'+ in CaW04 as
well as other rare earths in the tungstate.
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