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Attenuation of Longitudinal Acoustic Waves in Type-II Superconductors*f
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The attenuation of longitudinal sound waves in a superconductor with a spatially dependent energy gap
is studied by a Green s-function method. In order that explicit expressions for the ultrasonic loss may be
derived, the calculation is restricted to temperatures T T„ the transition temperature. The results of the
calculation are used to study ultrasonic attenuation in a type-II superconductor near T„which contains a
low density of Qux lines, B II„.It is assumed that under these conditions the Qux tubes in the material
are fixed, are well separated, and form a periodic array. It is then shown that not only is the attenuation
anisotropic, but anomalous absorption or transmission takes place whenever the sound wavelength matches
the distance between vortices. Although the above theory is only for T~T, and H~IJ„, it is expected that
this effect will exist over wider ranges of temperature and magnetic field, and, if accessible to experiment,
will yield a direct measure of the spacing of Qux lines in type-II superconductors.

I. INTRODUCTION

'YPE-II superconductors are distinguished from
those of type I by the fact that, although Aux

penetrates the sample at a magnetic field H=H„, it is
not until a much higher field H.,&&H, that the material
returns to its normal state. This was first explained by
Abrikosov' who based his arguments on the Landau-
Ginzburg2 theory for IC) 1/V2. Abrikosov predicted
that at H„Aux penetrates the material in the form of
Aux filaments or vortices having spatial dimensions of
the order of $, the coherence distance. Et was later
suggested' that associated with each Abrikosov Qux line
is one discrete quantum of flux ch/2e. A further pre-
diction of the theory was that the mixed state of type-II
superconductivity is characterized by the Aux lines in
the material forming a periodic array, the distance
between lines being dependent upon the magnetic field
strength.

Although the Abrikosov theory has stimulated a great
deal of experimental and theoretical work, the informa-
tion available on the structure of the mixed state is
mostly indirect. In this paper we investigate the possi-
bility of obtaining detailed information on the nature of
the mixed state from measurement of ultrasonic attenu-
ation for propagation parallel and perpendicular to the
magnetic field.

Ultrasonic attenuation has proved, in recent years, a
most valuable tool in the study of both normal and
superconducting material. The attenuation character-
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istics in type-I material determined by Morse' et ul. are
well described by a theory, based upon the BCS' de-

scription of superconductors, developed by Tsuneto. '
Ultrasonic attenuation in type-II superconductors has
been investigated theoretically by Caroli' et al. They
show that at very low temperatures T«T„where T, is
the transition temperature, the ultrasonic loss due to
the quasinormal cores is very small. Among the reasons
ultrasonic attenuation may yield information on the
structure of the mixed state is the fact that the normal
cores form a periodic array in the material. If we restrict
our attention to a superconductor which is near the
transition temperature T T„and which contains a low

density of Aux lines H«H„, then the e6ect of the en-

closed flux is to produce a slow periodic variation in the
energy gap 6, with period 5, the penetration depth.
Ke also note that in this region the magnetic field is
large in the vortex but drops o6 to a small value in a
distance 5. In type-II material the coherence distance

$ is always less than 5.'

Taking as our starting point the Gorkovs formulation
of superconductivity we determine, in Sec. II, the re-
sponse of a superconductor with a spatially dependent
energy gap to a longitudinal sound wave. It proves con-
venient to use the thermal Green's-function method to
calculate a temperature response function; the required
causal function is subsequently determined by analytic
continuation. In order to clarify ensuing theory the
main points of the argument underlying this approach
are summarized in Sec. III. Finally, in that section, the
response function is expanded in powers of A(T); terms
to order

~
A(T)

~

' are retained. This procedure is justified
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as long as we treat the attenuation near T,. In particular
it can be shown that this approach is valid in a type-I
superconductor if ~h(T) ~'/hT(orq)&&1, where q is the
wave vector of the sound wave.

In Sec. IV we discuss the attenuation using a theory
analogous to that used by Gorkov' in his derivation of
the Landau-Ginzburg equations. This theory is, strictly
speaking, only valid in the extreme limit of the con-
ditions stated above, and also when the wavelength of
the sound wave ) q&(B, the period of the gap. It has,
however, the merit of relative simplicity and illustrates
some of the features to be expected in sound attenuation
under more general conditions. In Sec. V we generalize
the theory in order that a wider range of sound wave-
lengths may be treated; particular attention is paid to
the attenuation when As~ b.

Finally, in Sec. VI we determine the ultrasonic attenu-
ation in a model type-II superconductor. The model is
determined by choosing an energy gap which varies
periodically in the plane perpendicular to the magnetic
field. The period of oscillation of the gap function is the
distance between Aux lines and is determined by the
external magnetic Geld. It is shown that structure in the
attenuation occurs when the sound wave propagates
perpendicular to the magnetic Geld and when its wave-
length X8 d, the distance between normal cores. Namely
anomalous absorption or transmission takes place when-
ever r)p~q&(2or/d)u~ =co, where q and oo are the wave
vector and frequency of the sound wave and u is a unit
vector in the direction of the gap periodicity. If this
eAect is accessible to experiment, determination of the
attenuation will yield a direct measurement of the
distance between Qux tubes.

II. THE ATTENUATION COEFFICIENT

We consider a pure superconductor in the presence
of a static magnetic Geld A„and subject to an impressed
ultrasonic wave. The effect of the sound wave is to
induce in the superconductor longitudinal @ and trans-
verse A Gelds which then drive the system. If we choose
as a model for the superconductor the weakly coupled
electron gas of SCS,' the Hamiltonian of the system in
second-quantized formulation is

where

a,=P d'r g.'(r)[ho(r) —p74 (r)

where

a'()!)=p d'r |f '(r)h'(r, t))f (r),

h'(r, t) =eP(r)+ (ie/2mc) [[V (—ie/c)A, (r)7 A(r, t)

+A(r, t) LV—(i%)A,(r)7] . (5)

The attenuation constant n is given by the ratio of the
power dissipated by the sound wave per unit volume to
the energy per unit volume contained in the impressed
wave) 1.e.

where

p (t) —e~&otp(r)e ~&a) (10)

Integrating Eq. (9) and keeping only terms to second
order in a'(t), we get

pr(i) = po dt')LHr'(i'), p, 7

dt «[H r(r'), La'r(i"),po7], (11)

where po is the density matrix of the system in the
absence of the perturbing Geld.

p, =e e~o/Tr(e e~o). (12)

The average energy of the system is immediately found
by substituting the approximate expression for pz in
Eq. (7).

(H'}(r)= (Ho)+ (Hr'(t) }—i dt'(LH„H '(t') 7}

is the time-averaged rate of increase of the average
energy of the system at time t.

The density matrix p(t) of the system in the presence
of the perturbing electromagnetic fields satisfies the
Von Neumann equation.

imp/af= t H.+H'(r), p7. (8)

Using Eq. (8) and the interaction picture for con-
veince, we can now determine the density matrix to
second order in the perturbation H'(t) It is ea.sy to
show that

i~pr(r)/~f=LH (r) pr(f)7

where

+g g d' p.'( )0e'( )A(r)f-(r) (2)

«([.H .(r),H .(r )7)
ho(r) = (1/2m) t V/i —(%)A,7, (3)

'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
LEnglish transl. : Soviet Phys. —JKTP 9, 1364 (1959)g.

«' «"([LH„H'r(r')7, H', (i")]). (13)
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All statistical averages in Eq. (13) are with respect to and

po. Taking the time derivative of Eq. (13) and remem-
G p"n(r, r': t—t') =—iO(t —t')([n (r),np(r')$) (21)

we have

y~I(t)fi)tj +i[fan, ffrI(t)j (14) is the retarded two-particle Green's function.
Finally, carrying out the time average in Eq. (16) and

Fourier analyzing we have

d d—(&)(l)=—(& r(t))
dt dt

—i dt', HI' t' . 15

Finally, time averaging, the power dissipated per unit
volume is given by

where

Q= (Q(l))- (16)

BH'(t)
Q(t) = i —dl' , Hr'(t') (17)

Bt I

We now use this general formula for the power dissipa-
tion together with the interaction Hamiltonian given
by Eq. (5) to determine the attenuation of longitudinal
sound waves in a type-II superconductor. Although this
calculation could be carried through in all generality,
we now make approximations which reduce the com-
plexity of the problem, but which will not significantly
aQect the general structure of the results.

We choose a gauge in which the magnetic field in-
duced by the sound wave is transverse. For sound fre-
quencies of interest we may neglect any transverse
currents which arise when the longitudinal sound wave
propagates in the presence of the static magnetic field.
It must also be pointed out that, as we do not calculate
in a gauge-invariant manner, we are forced into neglect-
ing the dependence of the energy gap on the perturbing
fields, and consequently the sects of collective modes.
It has been shown' however, that the collective modes
in a superconductor give a negligible contribution to the
ultrasonic attenuation.

When these approximations have been made the
interaction Hamiltonian becomes

lt'(1) = e(t (1)

and the power dissipated by the ultrasonic wave is

III. THE RESPONSE FUNCTION

The two-particle Green's function in the temperature
representation is defined:

G p, „s"(12:34) = —(T,f (1)irr(3)fp(2)ps(4)), (23)

where

and

4-( )=4-( )= '" ""'V-( )
it, (1)—e(&o u&)~g (r)e

—(sro uN)r— —

0(r(P.

(24)

For our purposes it is only necessary to study the
special case

Gap, ap (12:12)= (TRIP (1)ag' (1)alPp(2)gp(2))

(n(11)rl)n(12qrs)) ) r1) rs. (25)

The density operator n(r, r) is formally considered as a
function of the "time" parameter r.

Putting in a complete set of states

G"(12,12)=—p e("+u~" e")pe"" 'n„(l)n (2). (26)

Fourier analyzing the r dependence of Eq. (25) and
using the boundary condition G"(r)=G"(r+P), we
have

G"(1,2: (oo) = —p A.„(1,2)((j(o,—(o„„), (2f)

l(d d g
~p'((1,~)4*(q,~) (22)

2)ri 2sr (211)1

To determine Q it is convenient to use the 6nite-tem-
perature Green's-function technique to find p'. Although
the prescription for obtaining p' from the two-particle-
temperature Green's function is given in the literature, "
we will sketch briefly the main features of the argument
in order that later steps in the calculation may be
exhibited clearly.

a@(r,t)
Q(l)= dsr p (r,l)

Bt
(19) where

(oo= 2ntsr/P, (tn= integer)

where p'(r, t) is the causal charge response of the super- and
conductor, in the presence of a static magnetic field A „
to the scalar field 4)(r,t). A a(1,2)=e "(++u" e")p(1—e aap)n~ (l)n„(2). (2g)

2 D p 3 I / I IIR
"See, for example, A. A. Abrikosov, L. P. Gor'kov, and I. E.p~(r, t) = e dt d r $(r, t )g Gap (r,r: t t ) (20) Dzyaloshinski, Me—tl)ods of Qnontnm Field Tl(eery tn St(stistieot

—oo aP Physics (Prentice-Hall, Inc. , Englewood CliGs, New Jersey, 1963).
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IV. LOCAL APPROXIMATION

The normal-metal Green's functions, e.g. G'(1,2) occurring in Eq. (36) decay exponentially for distances

(1—2)& $, where $ is the coherence distance. Therefore, as the pentration depth 6 of the magnetic field H«H„ is

such that 8& $, then, in integrals such as (35), the magnetic field and the energy gap may be treated as slowly

varying functions. To be more precise, the magnetic field varies over a distance of the order of 6; however, when

H(&H„ the energy gap in the intervortex regions is essentially constant, but in the neighborhood of the vortices
it may vary over distances less than h. We assume then that 8& $ (definition of type II) and 8& & s, the wavelength
of the external field. This treatment will give some indication of the sects to be expected in the more interesting
case, when ) q 8, which will be treated in the next section.

All slowly varying quantities will then be expanded about the point (1), for example,

86(l)
&(3)~*(4)=l~(I) I'+(3—I) ~*(1) +(4—I)

B(l)

-as*(l)
.~(I)

B(l)
(37)

keeping terms only to first order in the derivation of the gap.
Secondly, if the magnetic field is sufficiently weak, H«H. „ that (the Larmor radius) epr/H))5, i.e., pr))eHf'&,

then a semiclassical method can be used to determine

Go(12 H) = e~&u, s&GO(i 2)
where

n 84(1,2)/B(1) =en A(1).

As the field A(1) is slowly varying, the phase 4(1,2) can be written

4(1,2)=eA(l) (1—2)
and as near T,

A Hb [1 T/T]'&', —

(38)

(39)

the phase is small, and the exponential can be expanded with respect to A giving to first order in the static field

G'(12,H) =G'(1—2)[1+~A(l) (1—2)+ ], (41)

where G'(1 —2) is the normal metal Green's function in the absence of the external field.
Substituting Eqs. (37) and (40) into Eq. (36) and expanding all quantities near (1)up to first-order terms, wehave

p(I, T&) =2e' p.'— dr2 dr3 dr4 d'2 d'3 d'4[GO(1 —2)G"(4—1)G'(4—3)G'(2 —3)
0 0

+G'(4 —2)G'(4 —3)G'(1—3)G'(2 —1)+G'(2—3)G'(1—3)G'(4 —1)G'(4—2)]

86(l) 86*(1)
~
5(1)1'+(3—1) 6*(l) +(4—1) A(1)+ [1+2ieA(1) (4—3)+ ~ ]@(2, 2) . (42)

a(1) a(1)

The leading superconducting term is then the term proportional to
~
i1(1)

~

' which would, if A(1) were independent
of position, give the charge response of a type-I superconductor in the small gap region. It is also immediately
obvious, because the kernel [Go(1—2)GO(4 —1)Ga(4—3)GO(2 —3)+ ] is symmetric under interchange of 3 and 4,
that the term proportional to [A(l). (4—3)

~
A(1) i'] vanishes. Thus there is no correction to the charge density

due to the magnetic-field dependence of the Green's functions to the order considered here. The only remaining
terms are those proportional to the gradient of the energy gap. We will now exhibit the gross features of such terms
saving a detailed calculation for the next section where this term can be picked out as a special case of a more
general calculation.

To illustrate the procedure let us assume for simplicity a real energy gap; then on carrying out the Fourier trans-
forms and some straightforward but tedious algebra we have

pgrsa(I ~ )—
(2x.)'P

d'k p d'p[8(1) p]4(k, cv ) expik l(G' „(p—k)G' t„.„&(p—k)[Go „(p)]&Go (p)
m Cal

+LG'-(p)]'LG'--(p)]'G'---. (p—k)+2[G' (p)]'G' —..(p—k)G' .(p)+c.c.}, (43)
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where

B(1)= [~~(I)/~(I)]~ (1)

Equation (43) demonstrates, as B(1) p=(B(1) k)(k y) apart from terms which vanish on averaging over angles,
that if the sound wave propagates in a direction perpendicular to B(l), i.e., parallel to the magnetic field, then there
will be no contribution to the absorption from p«"~(l,~ ). Thus we see immediately that there will be anisotropy
in the ultrasonic attenuation arising because of the presence of the magnetic Geld. The theory developed in this section
is only capable of describing the attenuation when the sound wavelength Xq(b, the distance over which the
magnetic 6eld and energy gap vary. In the next section we will generalize the theory in order that a wider range
of sound wavelengths may be studied, we will be interested in particular in the eGects which arise when 'A8 b.

V. NONLOCAL THEORY

It was shown in Sec. II that the power absorbed by a type-II superconductor on applying a compressional
wave is given by

j. den d'q
0= — — ~p(q, ~)@*(q,~),

27ri 2&r (2&r)'
(45)

where in the temperature representation

p(1,«&,)=P d 2 &t&(2,«&,)[G „(1,2)G „& &(2,1)—J" „(1,2)F „& &(1,2)]= P p "(1,«& ),
n t&=0

(46)

where

p"(I,~-)"
I
~ I"

Mn = GO&
—(drn.{—)—

Again making the assumption that we are suKciently close to the critical temperature T,: we cut o6 the series
expansion at order

~

A~ . A consideration of higher order terms shows, that in the case of type-I superconductor,
this procedure is valid if

I ~(T) I
'P»(~'C)«I.

Ke now have

p(1 «& ) = po(1 ~ )+p-(I,&». ),
where

2e
po(1,~ ) = Q d'2 4(2,(o )G' „(1,2)G'„„&-&(2,1) (48)

and

28
p.(1,~ )= — Q d'2 d'3 d'4&t&(2&v )[G" „(3,1)G' „(3,2)a(3)

p

XG' „&-&(4,2)&*(4)G' „&-&(4,l)+G' „(1,3)Go „„(4,3)h(3)Go „(4,2)D*(4)G' „&-&(2,l)
+G' „(1,2)G' „&-&(2,3)i&&(3)G' „„&-&(4,3)a*(4)G'„„&-&(4,l)j. (49)

As before both the functions 6(l) and G „(1,2) are subject to the static magnetic field A, (1).
The magnetic-field dependence of the normal-state Green's function is separated out using Eq. (38). We will

again assume that the magnetic 6eld is weak and slowly varying so that the results of Sec. IV are valid. As we have
remarked previously, the magnetic held dependence of the energy gap manifests itself in a spatial variation of A.
The functional form of 6 should be determined self-consistently. In this paper we will choose a physically reasonable
form for A(1) emphasizing the fact that if in a type-II superconductor, where H«H. „the magnetic field penetrates
the sample in the form of a periodic array of Qux tubes, then the energy gap must vary periodically in the plane
perpendicular to II. It will be assumed that the flux tubes remain stationary under the inhuence of the perturbing
fields.
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The summation is performed by noting that
tanh(Pf/2) has poles at f' =(2m+1)zi/P, with residue
2/P at these points, and integrating around the contour
of Fig. i.

'V(0) ' dx tanh(Pf/2)
R+— . (63)

4zi .
z 2 c, (f'—»)L(i —z) —»+F,]

iL
X

z+6 -P

%e now transform the integral along the contour
C~ into an integral along the two contours C2 and C3.
It is easily seen that the integral along C3, regarded
formally as a function of s, has singularities at the
points z=(2m+1)z.i/P »+—Fe, since the contour of
integration goes through the points 1 =(2n+1)xi/P,
where the function tanh(Pl'/2) becomes ininite.
Therefore as the causal charge response is obtained
only when z —+ (al+i8) we need the branch of the
function R&(z), which is analytic in the upper half z
plane. To obtain this we transform the expression (63)
for the special values z=2»uzi/P in such a way that
the contour of integration does not go through singu-
larities of the integrand when we later extend (63) to
arbitrary values of s.

Ke make a change of variable in the integral along C3,
and let i'=1 z, then—as tanh[P(f'+z)/2] = tanh(P1'/2),
(63) becomes

Cl &r

f plane

FIG. 1. Contour for P„, the points on the imaginary f
axis are f„=(2n+1)~i/P.

which reduces to

X(0) ' dx- tanh(Pl. /2) tanh(Pl /2)
RN= +

4 i, 2 e, (f )$Q —z) e+—F,]— c, (f+z—)(f'—+F,)

X(0) F,
R~= — ---- dx

2 g (F,—z)

(64)

(6S)

If we now analytically continue z~ (al+ib), integrate over angles and expand in powers of pe/p&, where ps
is the velocity of sound, we have:

and therefore

R~ —— $(0)I—1+izal/ppq 2( / —paql)p'+

p~(qa&)= 2e'E(0)[—1+,'iz(co/vzq) — O(oo/v&q)—'+ .].
(66)

This is the result obtained by conventional methods: see for example Tsuneto' Eq. (3.27).
The remaining terms Ro, Rj, and R2 can also be evaluated using the method illustrated above. These contributions

to the charge response are dependent on the system being in the superconducting state vanishing when the energy
gap goes to zero. If we consider Ro(q, z) as an example, then converting the sum into an integral around the contour
C& of Fig. 1 and taking care that the resulting expression is an analytic function of s in the upper half s plane
we obtain:

dQ„ 1 00

Ro(q, z) = —iV(0)
4n. (z—Fo+Fe )(z+F,—Fe)

d» tanh(t4/2)

where

2E.2s 2/+ g 2s+ 6
X + —,(68)

(2»)'—Fe' (2»+z)' —I', ' (2»)' —Fe ' (2»+z)' —F, '

F~ =F~—Fg—F~, (69)

which is an analytic function of s for values of s in the upper half s plane.
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The e integral is evaluated by noticing that if we close the contour in the upper half e plane in such a way as
to avoid the poles of tanh(po/2), then the analyticity of Rp(q, z) as a function of z is preserved. Further noting that
poles on the real axis have zero residue, we have

4m.j
Rp(q, z) = —V(0)

p

where

dQ„ 1

4x (zyr. , —r,)(.+r,—r„)

2P„ 2g„ 2g„+z 2f„+z
X Q + — —,(70)

n o(=2/ )'—Fop (2f )'—Fo z (2f„+z)2 F—z (2f „+z)z—F

f.= (2m+ 1)~i/P

If we now remember that in the case of interest the minimum value of f„kT„and that the wavelength of a typical
ultrasonic wave is such that qz)F«kT„ then we may expand Eq. (70) in powers of pro, for example,

Now using the fact that

2g„

2 I/~'=t(r),
n=l

QO p-. 1 . pr 2

+2
n=o (2f ) —Fo 22ri n=o 222+ I F=I 22rz n o(222+=1)on+2

(71)

(72)

where f(z)) is the Riemann zeta function, we have

Similarly

where

2f' P ~ 1 (Pro '( 1
Z +xi 11- f(2.+I) .

=o (21 ) —Fo 22ri n o 2)z+I n 2( 22rz

2f' +z P w Pro)z' / 1 Pz
+z 2 —

. I f1 »+I, -+
= (2(,+s)'—F,' 2 I - (2 +I)+Ox/2 I - 2 '/ I 2 2 ()

(73)

(74)

I'(x, n) = P (zz+n) 'X.
n=o

Substituting Eqs. (74) and (73) in Eq. (70) we have

dQ„ 2 1 1
Rp(q, z) = 2)V(0) Zl-

4 (3—F,+F,, )(a+I',—I',) —- (2 +I+os/n2 2+I)'

(75)

p zn
~ ] It P "

/ 1 Pzy-
(Fp"+Fg„")] 1— f'(2z)+1)+—

( (r "+r '")f( 22)+I, —+ [
. (76)

2=2 2 i zrE 2"+' 2 442ri 5 2 42ril

Further, as we may now analytically continue z~ (o)+ib) and as o)=z)z~q'~&&2)2 ~q'~&&P ', we can expand
f(2v+1, z+Pz/42ri) in Powers of

~
Pz~ to leading orders. We find

71 (3) p ' dQ„(r,—I' .)(I',—I' )+z' ipz) dII„ 1
R,(q,z) = X(0) — —" ' ' —3|-(2).V(0) I

—" . (77)
4~ (r,—r, ,—.)(r,—r,+z) 2x) 4x (r,—I,, —z)(r, —r„+;)

'

Similarly it can be shown that

RI(q, z) =—

and therefore

71 (3) P 2 dfl„r,r,.+z z(zr, —r,.) 3f (2) zPz~ dII.
-~'(0) — — — + -v«)

I (»)4 22r 42r (I',—z)(I'p —z) 2 22r/' 42r (Fo—z)(ro —z)

z)'(q, z) = —2e'
d'k d'k"

P(k",z) A(k)A(q —k —k")R(q,k,k",z),
(22r)' (22r)'

(79)
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where

71.(3) P i' dQ„-(r,+r,")(r,—r,)+z' r, r„"+zz
Z(q, k,k",z) = X(O) —

I

2v) 4~ .(r,+r„,.—.)(r,—r„+z) (r,—z)(r,-—z)

-3&(2)(iPz) dQ„ 1 j.

2 ) 4 (r„yr„,.—z)(r,—r„+.) (r,—.)(r„-—z)

In the case of a homogeneous or type-I superconductor h(k) = P(k)h and Eq. (80) reduces to

71 (3) p )' dQ„r '+z' r '+z'
p"(q,z) = —2e'I 6

I
'P(q, z) — $(0) —

I

2 2v i 4v (I',—z) (I',+z) (I',—z)'

(80)

iPz dQ„1 1—3f(2) — . (81)
(2 ) 4 (r,—z)(r,+z) (r,—z)

Carrying out the integrals and expanding in powers of (vs/vv) we have:

Vpg

3f'(2) IA(T)I' 4(ve ' vs '
p"(q,co) = — X(0)e'y(q u)) 1—i—

I

—+0—
2 3&vp v,

(82)

Combining Eq. (82) with the expression for p~(q, &o) given by Eq. (67) we find the response function for a type-I
superconductor at a temperature T T, is

3f (2) I
5(T) I

z 7ri co 2f (2) I
d(T) I vs)

p(q)co) = —2e'V(0)y(q, co) 1+ — P +. +— I— P ~ ~ ~

4 'vga 2 vpg- 7I co vga
(83)

VI. ATTENUATION IN A MODEL
TYPE-II SUPERCONDUCTOR

In Sec. V we have derived a general expression for the
absorption of a longitudinal sound wave by a super-
conductor in the region where T T, and B B„.The
formalism is adapted to take into account explicitly a
spatial variation of the energy gap.

To make further progress we must now construct a
model for a type-II superconductor in a magnetic held
H& H„. The choice of model is based upon Abrikosov's
suggestion that when H&H„magnetic Qux penetrates
a type-II superconductor in the form of Aux 6laments
which form a periodic array inside the material. We
visualize the type-II superconductor as superconducting
material threaded by a periodic net of tubes of normal
material; the periodicity is represented mathematically
by choosing an energy gap A(x, y) which varies periodi-
cally in the plane perpendicular to the magnetic 6eld.

A(x,y) =-z'6(T)L1+cos(ax) cos(ay)).

We hnd it convenient to consider the case of an
energy gap which varies one-dimensionally over the
system

A(x) = —',A(T)L1+cos(ax)] (85)

h(k) =x'(2x)'h(T)L28(k)+b(k —au)+8(k+au)], (86)

where u is a unit vector in the x direction. This choice
simplified considerably the ensuing mathematics, and
the results obtained when the energy gap given by
Eq. (84) is used can be readily deduced from it. The
gap of Eq. (85) could also be realized by periodically
superimposing laminae of normal and superconducting
material.

The charge response in this two-dimensional array
is given by

d'k d'k"
p'(q, a)) —2e' y(k", ra)

(2v-)' (2v )'

&&A(k)A'(q —k—k")E(q,k,k",~), (87)
This representation of A(x) speci6es a body-centered-
cubic array of flux tubes of spacing (d), a=2m/d. The
parameter A(T) is the energy gap attained at the center
of the superconducting region at the particular tem-
perature of interest. This parameter h(T) will be equal
to the energy gap in bulk material provided the typical
distance over which the energy gap varies is greater
than the coherence distance.

where R(q, k,k",co) is given by Eq. (80).

Integrating over k and k" we have

~'(q, ~) = —2"L(I~(T) I'/4)4(q)~(q, 0,q,~)

+(Ih(T) I'/8)4(q —au)R(q, 0, q—au, ~)

+(I~(T) I '/8)4(q+au)~(q, 0, q+au, ~)

(88a)

(88b)

(88c)
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+(I A(T) I '/8)g(q —au)R(q, au, q—au, co) (88d)

+(I D(T) I '/8)$(q+au)R(q, —au, q+au, co) (88e)

+(I A(T) I '/16)g(q —2au)R(q, au, q —2au, co) (88f)

+( I
D(T) I '/16)$(q+2au)R(q, —au, q+2au, u&) (88g)

+(I~(T) I'/16)4(q)R(q, —«, q, ~) (88h)

+(I~(T) I'/16)0(q) R(q, au, q,~)] (88i)

Note that Eq. (88) reduces to the type-I limit, constant

gap when a —+0, i.e., the distance between flux lines

becomes very large. The local approximation is obtained
from Eq. (80) by expanding the Kernel R(q, k,k") in

powers of k/k".

Explicit expressions are given for E in the Appendix.
Inspection of Eq. (88) shows that the dominant terms
in the power absorption will come from

p'(q co) = —2e'[(I A(T) I '/4)g(q)R(q, 0,q,co) (89a)

+(I A(T) I '/16)p(q)R(q, —au, q, co) (89b)

+(I~(T) I '/16)4(q)R(q, au, q,~)] (89c)

The remaining terms in Eq. (88) will give only a small

contribution to the power absorption: because of overlap
integrals of the form j'P*(q)p(q+au)d'q and the fact
that P(q) is peaked around q q, &. We also note that
the term (89a) looks like the charge response of a type-I
superconductor except that the role of the energy gap
is now played by the average A(T)/2.

Using the results of the Appendix Eq. (89) becomes

p'«") = p' ""'"'—se'I ~(T) I'&&&(»&(0)~&/2~)'{J~[Iq —«I]+J~[Iq+«I]—2Ji[I qI]—2~Ii(q, q) I

+3/(2)(iP~/2v. ) {I~[(q—au), —(q+au)]+I&[(q jan), —(q—au)]+2I&(q, q) I ) . (90)

Ke now use the fact mentioned in the Appendix that if I~ is written I~= I~„+I~~, then I~~ does not contribute
to Eq. (90) and I» contributes only to the terms proportional to f (2). Therefore

p'(q co) = p' '""&'—~se'I ~(T)
I
'{7l'(3)X(0)a&(P/27r)'{J&[l q aul]+ J&[I q+aul ] 2J&[Iql]I

+31 (2)(iso/2v) {I»[(q—au), —(q+au)]+l»[(q+au), —(q—au) I+2I~(q, q)+even function of ao)), (91)

where

and

J~[Iq-«I]= ivB[1—a)/(vp
I q —au I)]

2vpIq —auI

4vv'(q —au) q tr4vp'(q+au). q-
Ig„[(q—au), —(q+au)]=1»[(q+au), (q —au)]= tan-'— +tan 'I— (93)

E (gL)
where

L=16vv'(q'I q+«I '(I —~'/v~'I q+«I ') —L(q+au) q]'). (94)

The terms of Eq. (93) give rise to an attenuation which is critically dependent on the direction of the acoustic
wave. In fact from the discussion in the Appendix it can be seen that the two terms of Eq. (91) become singular
when v& I q&au

I
=veq, respectively.

We then expect anomalous attenuation whenever Iq&auI =vs/v» IqI, that is the component of q perpendicular
to the magnetic field is of the order of a, and when the component of q parallel to the magnetic field is of the order
of (ve/v&)a. It can also be seen that the terms proportional to f(3) namely J~(Iq+auI) and J&(Iq—auI) also
become very large when vv Iq~auI ve/vz, although these terms actually vanish in the type-I limit.

To complete this section we analyze in more detail the f'(2) terms for sound propagation perpendicular and
parallel to u.

(1) qt u: It is easily seen in this case that the anomalous absorption mentioned above does not occur for any
value of q.

(2) qIIu. In this case there is a possibility of structure: for reasons of comparision we will 6rst examine the
type-I limit.

We call I(q, au) = 2[I[(q—au), —(q+au)]+I(q, q)]. Using Eq. (93) this becomes

2i ( (QL)+i4vp'(q —au) .q (QL)+i4v&'(q+au) q
I(q,au) =

I
ln +ln +2I(q,q),(gL)k (gL) —i4v~'(q —au) q (QL)—i4vv'(q —au) q

which becomes, in type-I limit,

4i (QL)+i4vy'q' )
lim I(q, au) = ln I+2I(q,q),

(QL) (QL) i4v p'q' i— (96)
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where

Thus

where

lim I(q, au) =
1 (o+t pq

ln —+2I(q,q),
vp~q~(o cd —vFq

(9i)

I(q, q) = —("'q') 'Ll —(~/vFq)~j '. (99)

This yields the result obtained previously in Sec. V. The leading term in I(q, —q) is cancelled by the leading term
in I(q, q) leaving

limI(q, au)= ——,'(v, jv )'t ij(v q)'j.
a~0

(100)

We now examine Eq. (96) when q~~au. In this case I.= —16v~'q'ce' and the first term in I(q, au) is

1 a)+ v p(q —a)
I'(q, au) = ln

2veqid ce—ve(q —a)
(101)

The function I (q,au) decreases for increasing q until q=a —cu/v~, where it becomes negative and infinite; at
q=a the logarithm is zero and when q= a+co/vF, I (q au) is infinite and positive. That is when q~~u the absorption
is first of all drastically reduced and then immediately shows a sharp increase. It is also noticed that the terms in
Eq. (91) proportional to f (3) become very large when q~~u and q= a+co/vv leading to a consequent increase in
absorption.

To summarize, it has been shown that ultrasonic attenuation in a type-II superconductor, in the mixed state,
depends on the direction of propagation of the sound wave. It has also been shown that when a sound wave propa-
gates perpendicular to the magnetic field, the attenuation will show structure whenever the sound wavelength
matches the distance between Aux lines. Because of this fact it might be expected that the eEect should be present
over wider ranges of temperature and magnetic field than can be treated by present theory. If this effect is accessible
to experiment, it should provide a direct measure of the distribution of the Aux lines in a type-II superconductor.

APPENDIX: ANGULAR INTEGRALS

From Eq. (87) the pure superconducting part of the charge response can be written:

where

p'(q s) = —2e' @(k",s)h(k) A*(q—k —k")R(q, k,k",s),
(2n.)' (2n.)'

(A1'l

if.(3) tf ' « — (I .+I ' )(I,- I .)+s2 I .I '+"
R(s) = X(0)

2 2 4m. (Pi+I'i —s)(F,—Fi+s) (I',—s)(r„., —s)

its «v 1 1—3f (2)X(0)—
4 -(I' +I'. —s)(I',—I' +s) (r,—s)(r„„—s)

(A2)

where

Equation (A2) can be written:

R(z) =$t'(3)X(0)z(P/2ir)'(Ji(k+k") —Js(k) —Ji(q) —Ji(k")—2sIi(q, k")$
+3/(2)X(0)(iPz/2ir)LIi(k+k", k—q)+Ii(q, k")], (A3)

Ji(s) = dQ~ 1

4v. (I',,—s), „+,g
(A4)

dO~ 1
J2(s) = = —Ji(s), (A5)

Ii(s,s') =
(1,—.)(r„—s)

(A6)
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ln what follows, as we are interested in the power absorption, only terms in R which are odd functions of s will

give a contribution.
From Eq. (A4)

1+vps/ppP p"S

Thus as far as the power absorption is concerned

J (s)=z 0(1—/z")/2i",

&)(1—p/vps) '1 —cp/vps t)(1—vps, co) 1 —v„s/pp
J i(s) =—— izr+1n +— ln

1+pi/vp s — 2vz s
(A7)

where 0(1—x) is the Heavyside step function.
The terms involving the integral I~ are complicated to evaluate in all generality: we will just pick up those

points which are significant for our computation.
Using a trick due to Feynman, I(s,s') can be written:

where

1

Ii(s, s') = dzz

1

)
4~ (r,—.)z

(A9)

Thus
Is+( —')

I
= 'IQI*

1 1

Ii= dzz —P — + izr —6(1'o—zp)dx if zp/vp
I Q I

(1,
2 p (3co i (Fq —cp) i &3M

(A10)

(A11)

1
du—I'

BOO l, Fq —M

if Gpy vp
I Q I

) 1 .

A. The Principal Part

Ke have then an integral of the type

and

pp 2 2 Q)2

:1 =vp Is—s
I

where 8= vp'-2s' (s—s'),
() .-lu2+Bu+C

C= vp s —(d
&2 2

(Al i)

I.=4AC 8'=4vp'((s' ——s)'s"[1—co'/(vps')'] —[s' (s—s')]')
=4v~'((s' —s)'s'[1 —pi'/(v&s)'] —[s.(s—s')]') . (A14)

Thus
2 2vpzs (s—s')

I» ———— —tan '— —tan '
(Ql. ) (y/I )

2vpzs' (s—s')
(A15)

Properties of I». I» can only have singularities when (1)L=0, (2)L(0.
(1)

1 1
llln I»=—

vi s (s—s') s' (s—s')
(A16)

The type-I limit which corresponds to s= s'= q can be extracted from Eq. (A16) as a special case. We see in fact
in this case there is no singularity other than the trivial s=s =0 which is not allowed by the theory.

hrn I,,' "=—(vp's') '[1—pi':(vps)'] '
S ~S (A17)

The important singularities arise when in the first term of Eq. (A16) sII(s—s') is consistent with I-=O, namely
v hen

1 —cp'/(vps) '= 0 (A18)
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Similarly the second term is singula. r when s'~~(s —s') a.nd

1 N"—/(vf-:S')" =0-. (A19)

(2) I.(0. Inspection of Iiv when I.(0 shows that again the first terni is singular when 1—cu'/(vrs)'=0, and

the second term when 1—co2/(vvs')2=0.
Finally we note that Iiv is an even function of id and therefore will only contribute to the f(2) terms of R(v).

8. The 6 Function

i.e.)

iz
Ig =— —fI(I'q —(o)d.i,

2 1 BCd

Jg=- [b(vp
i
Q

i

—co) —8(vr
i Q

i
+a))]dn.

2&'~/Q/ 0

(A20)

We see by inspection that I& is an odd function of co and therefore will contribute only to the f (3) terms of R(s).
We may also easily check that I&(q,q), the only term arising in the power absorption, is identically zero.
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Mdssbauer Hyper6ne Spectra of Fe'+ in Corundum: Magnetic-
and Crystal-Field Effects

H. H. %ICEMAN AND G. K. KERTHEIM

Bell Telephone Laboratories, Murray Hill, ¹mJersey
(Received 16 February 1966)

The Mossbauer technique was employed to study the paramagnetic hfs of Fe"-doped corundum (o.-A1203)
in the presence of an external magnetic field. Experiments were performed with an oriented single crystal
and with external field strengths to 41 kOe parallel to the trigonal axis of the crystal field at the iron site.
The results showed noticeable field-dependent features. Several of these effects were analyzed by detailed
calculations of theoretical hfs from the ground-term electronic levels of Fe'+. Effects of small local fields
and of mixing of electronic states by crystal-field terms and by the hyperfine interaction are shown to produce
gross changes in the Mossbauer spectra. Some of these features were observed; others which require a more
homogeneous magnetic field were not observed because major changes in the Mossbauer spectra occur over
relatively small ranges of external field strengths.

I. INTRODUCTION
' 'N previous work, the well-resolved, low-temperature
~ ~ paramagnetic hyperfine spectra of trivalent Fe"
in corundum (Al208) have been investigated by Moss-
bauer effect, primarily in the absence of an external
magnetic Geld. ' ' The major features of the Mossbauer
absorption spectrum in zero field were explained on the
basis of the "superposition" of three essentially inde-
pendent hfs from the three Kramers doublets of the
ground term of Fe'+:3d', '5~~2. However, the observed
and predicted spectra for the ground doublet were not

' G. K. KVertheim and J. P. Remeika, Phys. Letters 10, 14
(1964).

' G. K. Wertheim and J. P. Remeika, in Proceedings of the XIII
Colloque A m pere, Loueain, Belgium, 1964 (North-Holland Publish-
ing Company, Amsterdam, 1965), pp. 147-161.

' C. E. Johnson, T. E. Cranshaw, and M. S. Ridout, in Pro-
ceeCings of the International Conference on Magnetism, Nottingham,
1964 {The Institute of Physics and the Physical Society, I.ondon
1964), pp. 459-461.

in complete agreement. Since the spin-Hamiltonian
parameters of I'e'+ in A1~03 are known to high ac-
curacy ' so that theoretical hfs are readily calculated,
we have extended these measurements to study mag-
netic-Geld-dependent features of the hfs and to obtain
further comparisons of experiment with theory.

It is known from ESR work that a relatively small
cubic term in the spin Hamiltonian causes a large
mixing of electronic wave functions for certain critical-
field strengths. It is shown below that this leads to
dramatic changes in the hfs for small changes of the
externally applied magnetic fieM. The magnetic Geld
also causes certain levels to cross. At these points equally
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