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Anomalous Particle Penetration in Perfect Crystals

R. F. BE WAMES, W. F. HALL, AND G. W. LEHMAN

¹rth American Aviation Science Center, Thousand Oaks, California

(Received 10 January 1966; revised manuscript received 21 March 1966}

A quantum-mechanical calculation of the potential dependence of anomalous transmission of particles
through crystals is made, showing that the anomalous effect can always be obtained at suSciently high
particle energy. Both the normal and the anomalous attenuation are found to depart markedly from that
calculated from the free-particle cross section when the potential is broad compared to the atomic mean-
square displacement. Two experiments to observe the predicted potential dependence are suggested.

I. INTRODUCTION
' 'N this paper the transmission of particles through
~ ~ crystals is examined theoretically in order to estab-
lish the conditions under which anomalous transmis-
sion, i.e., transmission with negligible attenuation,
occurs. The possibility of anomalous neutron transmis-
sion was realized shortly after this eRect had been identi-
fied and understood for the case of x rays. ' However, no
theoretical investigation was made at that time, and
the only experiment directed toward seeing anomalous
neutron transmission yielded a negative result, ' appar-
ently due to crystal imperfections. More recently,
theorists interested in electron microscopy have made
calculations along these lines for the transmission of elec-
trons through crystals. '4 On the other hand, in the
theory of radiation damage such eRects have not yet
been taken into account.

The existence of anomalous eRects is a consequence of
the crystal periodicity, which forces the particle wave
function inside the crystal also to be periodic, and hence
to be describable as a Bloch wave. It is precisely this
departure of the particle wave function from a plane
wave which has until recently been ignored in the in-
vestigations of neutron scattering from crystals. There
the crystal scattering cross section is calculated from the
Golden rule, taking plane-wave matrix elements be-
tween diRerent states of this crystal. ~ This approxima-
tion leads directly to the familiar quantization of scat-
tered momentum expressed by the Bragg condition for
elastic scattering, and to an intensity for Bragg scat-
tering governed by the Debye-%aller factor e '~, t/t/'

being given by
W =kg'(x')/2

where kp, is the reciprocal lattice vector for the scat-
tering plane and (x') is the mean-square displacement
for a crystal atom.

The approach taken in this work has been to utilize

' For a review see B.%. Batterman, Rev. Mod. Phys. 36, 681
(1964).

' J. %. Knowles, Acta Cryst. 9, 61 (1956).' H. Yoshioka, J. Phys. Soc. (Japan) 12, 618 (1957).' For a review see J. Phys. Soc. {Japan) 17, Suppl. B-II (1962).' Yu. Kagan and A. Afamasiev, Zh. Eksperim i Teor. Fiz.
49, 1504 {1965) [English transl. : Soviet Phys. —JETP {to be
published j.' R. J. Finkelstein, Phys. Rev. 72, 907 (1947).

the standard Born approximation, solving the coupled
particle-crystal equations for the amplitude of the trans-
mitted wave. In Sec. II we set forth these equations and
outline the procedure for their solution for arbitrary
interaction potentials. In Sec. III the conditions neces-
sary to obtain anomalous behavior are derived. Section
IV contains an evaluation of the attenuation as a func-
tion of the interaction potential for neutrons and high-
energy electrons and protons. In Sec. V we suggest two
types of experiments which could be used to test the pre-
dicted potential dependence of the attenuation.

where one has expanded the total wave function + in
terms of the crystal eigenfunctions

l n) corresponding to
energy E,:

(2)+(r,(R'))=Z
I n) ~.(r),

r being the particle position and I;being the position of
the ith crystal nucleus. In order to study the eRect of
crystal structure on the attenuation of an incident par-
ticle beam, it is convenient to take the crystal as ini-
tially in its ground state

l 0) and to set up an equation
for the coeflicient qp(r) of this ground state. Assuming
that yo is the major driving term in the equations for
the other y„one obtains the result

p, (r) =— gikn) r—r'(
dr' — V p(r') pp(r'), (3)

4ml r—r'l

with k.'=(2m/A')(& —&.) and V,p=(nl Vlo), where
one has neglected P p(nl Vlm)p with respect to
(nl V

l 0)yp. This is equivalent to treating the deviation
of the interaction potential from periodicity (due to
j.sa

II. PARTICLE DIFFRACTION IN CRYSTALS—
BORN APPROXIMATION

For the scattering of particles of mass m in crystals
with interaction potential t/' one may write the equations
coupling particle and crystal wave functions in the form'

2m 2ypg

7'+ (8 E,) -(n
l

V
l
n—) &p,

—(r)
h' h'

2'
— 2 (nl Vlm) v-(r), (&)

P2 man
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motion of the lattice ions) in the Born approximation.
Substitution of this approximation to p, in the equa-
tion for qo leads to the form

2m &I'2m

'7'+k"- «I VIO) «=-~ — dr'«(r')
h'

while the real part of Cg, is related by dispersion in

E to the imaginary part. In Eq. (g) we have used the
momentum representation of the free-space Green's
function

(k'/2m) [(ko+ kyar)' —ko'jig

+P Vg oeo+g Coogo=0 (o)

where we have written

and

Voo=g Va&""'
h

u=g Nhe""'

X g Vo,(r) V,o(r') . (4)
4s ~r—r'~

This is the general 6rst-order perturbation equation for
the particle beam including the renormalization of the
ground-state wave function represented by the right-
hand side above. In an in6nite periodic crystal qo must
have the form e+o&'N(r), where I is a periodic function,
and h~ is to be determined; this follows from the peri-
odicity of Woo and of the integral kernel on the right-
hand side of Eq. (4). One therefore looks for periodic
wave solutions, matching these to the appropriate
boundary conditions at the crystal surfaces. Expanding
Voo and u as reciprocal lattice sums transforms Eq. (4)
into

For k&, =k, =0, Eq. (8) can be written in terms of the
inelastic crystal scattering cross section 0.(" as given by
the standard Born approximation, using the Golden
rule'.

h'kp
Imcoo-—

V'2m

This measures the rate of loss of particles from the inci-
dent beam when only the leading term in the expansion
of qo is important. For k~ and k, difI'erent from zero,
one is thus calculating one term in the absorption rate
for a Bloch wave qo.

It thus becomes a matter of primary importance to
determine the coefBcients of those waves in the expan-
sion of yo which have appreciable magnitude in order to
calculate the actual rate of loss for the Bloch wave. Once
this has been done, we can proceed to investigate the
dependence of the attenuation on the physical param-
eters of interest, namely the strength of the interaction
relative to the particle energy, the range of interaction
relative to the atomic mean square displacement, and
the wavelength of the incident particle.

1 2'
V' h'

dr dr e
—'(kfo+ko) ~ +'(k +k ) ~

III. VALIDITY AND CHARACTERISTICS OF ONE-
AND TWO-WAVE SOLUTIONS

eikrt( r—r'
]

X Q Vo.(r) V.o(r')
o~ 4~~ r—r'~

kI, and k, being reciprocal lattice vectors, and V' being
the crystal volume. Since the imaginary part of k~ r is
small over many unit cells of the crystal, we have set
k~=ho in calculating C~,. The physical signi6cance of
the quantities Cg, can be seen most easily by specializ-
ing the interaction potential to delta-function form

with u, being the scattering length at I; and p, the re-
duced mass. The imaginary part of Cg, is then found
to be

X ~(k' —ko'+(2m/k')(~. —&o)), (g)

let us now examine closely the conditions under
which only a few waves are needed in the periodic ex-
pansion of «. From Eq. (5) if only uo is to be large
then one must require that the solution for u~ obtained
with uo as the source term be small:

Va+Cao
ug=— «1. (10)

(k'/2m) [(ka+ kyar)' —ko'j+ Vo+ Coo

Clearly, except at a Bragg condition, one is dividing a
Fourier coeKcient of the potential (Co,,«Va) by an
energy of the order of

Eg (k'/2m) [ko'+2ki, ko].

For reciprocal lattice vectors perpendicular to ko this
is about 50 eV for electrons and about 0.025 eV for pro-
tons and neutrons. Away from the perpendicular, but
still not fulilling a Bragg condition, for ko»ky„ the
second term dominates, tending toward E„(ko/ko).
Therefore at su%ciently large energy only the planes
parallel to ko contribute appreciably to p(). To justify
the one-wave picture when such planes exist, it is

~ G. Placzek, Phys, Rev. 86, 377 (1952).
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necessary that the Fourier coefFicients of the potential
V p be small compared to Vp+ AP4P/2m. For sufficiently
high order reflections VI, will in any case be small com-
pared to Vp, limiting thereby the number of waves
which must be taken into account.

The two-wave solution will be a valid approximation
when the inequality (10) is violated for a single reflec-
tion —e.g. , when a Bragg condition is fulhlled. In this
case, as is well known, there will exist two solutions for
pp having k~ essentially parallel to kp ..

go= po +ye,
e pP~( expi[k p+q+8] r}[1 e'~—"'],

happ' (expi[kp+g 8] r}[1+e'~"'],
where 8 is a unit normal to the entrance surface of the
crystal, pointing inward, and p+ is given by

(~p/27p+p)[~ (Vla+Chp) (Vp+ Cpp)] (12)

yp being kp. n. The decay of these two solutions with
penetration distance is determined solely by the imagi-
nary part of q+.

Im41y ——[&ImCpp —ImCpp](kp/2ppE„), (13)

and one notices that for ImCp, p~ImCpp the solution cor-
responding to q+ will propagate almost without attenua-
tion while the other is attenuated at twice the rate of
the oG-Bragg (one-wave) solution. This is physically
reasonable, since

~
ypP~ ' has nodes at the atomic sites,

where scattering out of the beam occurs, while
~

ep'~ '
has its maxima there. One thus obtains the familiar
phenomenon of anomalous transmission, when the crys-
tal is sufFiciently thick to exclude transmission ofI'

Bragg. Even when several orders of reflection from the
same plane contribute appreciably to po, these two
solutions dominate and one still gets anomalous trans-
mission (see, e.g., Ref. 8 for the many-beam solution in
electron microscopy).

IV. POTENTIAL DEPENDENCE OF
ANOMALOUS PENETRATION

Summarizing the results of the previous section, one
may say that the validity of the one- and two-wave
pictures is determined by the requirement that the
ratio Vp/Fp be small for all but one plane, while the
characteristic anomalous attenuation is proportional to
ImCpp —ImCpg. Our investigation of the potential de-
pendence of the attenuation will thus proceed in two
steps: erst, establishment of the range of energy where
the few-wave picture holds and second, calculation of
ImCI, p from the interaction potential.

For neutrons the two-particle interaction potential is
very local, being on the order of nuclear dimensions.
For wavelengths larger than the nuclear scattering

' P. B. Hirsch et al. , I4lectron Microscopy of Thin Crystals
(But terworths Scientific Publications Ltd. , London, 1965),
Chap. 12, p. 276 ff.

length a one can replace the actual interaction by a
potential whose width is intermediate between the scat-
tering length and the wavelength. We shall choose a
form which passes directly over to the Fermi pseudo-
potentialP as the width P ' vanishes:

where p is the reduced mass for the neutron-nucleus
interaction. The crystal itself we shall approximate by a
cubic lattice of local, independent harmonic oscilla-
tors of mass M and frequency 4p (Einstein crystal).
With these assumptions we obtain

Vp ———(2n.ah'/p) pe '""4 '

where p is the number density of atoms in the crystal
and 1/2a' is the mean square displacement (x') of the
crystal atoms. Because the scattering length is so small
(~10 " cm), even Vp is only 10 " eV, so that Vp/Ep
oft Bragg is never larger than 10 ', independent of the
neutron energy. The attenuation is therefore accurately
given by that for the one- or two-wave solution, in
terms of ImCI, p. This latter quantity can be written,
assuming a Gaussian potential and an Einstein crystal,
in the form

27MA
ImCy, p

———wp

dk

(27r)'

—(Icf +&2 ) /4P

h2k 2

XZ 4 —8 +wit )rt=1 2m

where ki ——k—kI,—kp and k2= k—kp. Note that the sum
above runs over the excited states of a single oscillator.

Let us restrict our attention to neutron wavelengths
small compared to the atomic mean-square displace-
ment. There, because the width of the interaction P '
is smaller still, one obtains the approximate result [to
lowest order in (Aa&/E)]

2maA. " ' pmkp
IrnCgp =—

p 2mb'

p2
y e »'l 4~4 (1 e

—P«—'IP4)

2kp'

m
—2

—1 e P«'«' (-17)
M

9 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics,
John Wiley R Sons, Inc. New York, 1952), p. 74 ff.
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which through dispersion gives for the real part

X.- "& -' — 1+— +1 . 18

We see that ReCpp grows with P, so that the width of the
interaction cannot be allowed to pass to zero to regain
the Fermi pseudopotential. However, ReCI, p acts only
as a small correction to V~, since

( ReCpp/Vp
~

aP&(1.

At the same time, since the width of the Gaussian must
be chosen small compared to the neutron wavelength,
lmCgp becomes approximately.

ImCpp —(rq p(A'ko/2m)e '"'" '=e P"'" 'ImCoo, (19)

where 0f„,=4mu' is the total neutron cross section of a
free atom. Therefore the one-wave solution at short
neutron wavelength is attenuated by the free atomic
cross section~:

(
yp'~' exp( —pa4„.A r) (20)

while the anomalously transmitted solution has attenua-
tion given by

eU. For electrons this requires an incident energy of
about 400 eV and for protons, an energy of 1 MeV.

Because the one-wave attenuation as given by ImCpp

has interesting structure as a function of xp—=A'/2a',
we shall consider this case separately. For the screened
Coulomb the expression for ImCp, p becomes

ImCo(j ———orp(44rZ, Zpe') '

e—(l:12+Ic22) /4a2

X
(27r)' Pk&P+A'1(kp'+A']

X Z 4~~

—p, +wow)( )
—.(24j

At high energy one may write to lowest order in (kp&/E)

—It'kp
ImCoo —— po 4„. dx e '* "(xo/x), (25)

2m

where 0 f„,, is the screened-Coulomb free-particle elastic-
scattering cross section in the Born approximation:

Irf4(((( 2m(Z~Zpe')'m. /'k'Erit' (26)

The asymptotic behavior of the so-called exponential
integral in Eq. (25) is well known. For large xp(A'/2a'»1)
it tends to unity, while for small xp one has

exp( —p(r4„,(1—p)(4 r), (21) (&&x e "(xp/x) xpI p l—nxp5, (27)
where 1—e= 1—e ~I"4~'~10 Vjle thus see that for an
interaction potential narrow compared to the mean
square displacement, the attenuation at short wave-
length is independent of the width of the potential.

For electrons or protons three types of transitions in
the crystal become important: excitation of nonlocalized
electrons, excitation of the electron cloud. surrounding
the lattice ion, and vibrational transition of the lattice
ion. The first eBect contributes a large directionally in-
dependent background to the total attenuation, while
the latter two, because of their localization, will show
anomalous behavior at Bragg angles. %'e shall illustrate
the e6ect of the localization by consideration of the
purely vibrational transitions, taking for simplicity a
screened Coulomb interaction of appropriate range as
the potential of interaction between incident charged
particles and lattice atoms:

v(r) = (ZqZpe'/r) exp( —Ar), (22)

where A ' is the screening length, Z~ is the charge (in
units of e) on the incident particle, and Zp is the atomic
number for the lattice atom. One obtains immediately

Vo=+pf4&rZ&Zpe'/(ko'+A') exp( —ky, '/4e(. '), (23)

which is a number typically of the order of a few elec-
tron volts. Thus, to ensure that only the plane parallel
to kp contributes in the expansion of qo, we must take
k'kpkp/2m for the incident particle to be at least 100

where y=0.57721 ~ is Euler's constant. Thus, when

the screening length is small compared to the atomic
mean-square displacement the one-wave solution is
attenuated by the full free cross section, just as in the
case of neutrons. But when the interaction potential
becomes broad compared to the mean square displace-
ment, the attenuation of the one-wave solution falls far
below the free cross-section value, going approximately
as AP(xo) ln(h. o(xo)). This result can also be obtained by
considering only the one-phonon transition in the origi-
nal expression LEq. (2)j for ImCpp (dipole approxima-
tion). For A=O (pure Coulomb) one must retain first-
order terms in Apo/E in the expression for ImCpp,

giving
k'k 4r(ZpqZpe')' m 4hcp m &j

ImCp~~ p —ln
2m E„k ~ E, ~i (28)

kg'
Xe '4'&4" 1+— -e-&*-*o&(Xp/X)dX-

So,'
(29)

6a'

The character of the screened-Coulomb attenuation
is essentially undisturbed by consideration of more than
one wave. For kp, small compared to A one obtains
(for

~
kp+kp~ =k(j)

h'kp
lmCy, p= fTfree
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ImCgp e '&'I4 '(1 k—a'/24n') ImCoo (31)

which differs only by the factor in parentheses from the
relation obtained in the neutron case, Eq. (19). The
attenuation for the anomalously transmitted solution
for h. '(x') small is, from Eqs. (13) and (30),

Imp+= (~f„,/yo)(ki, /12a ) (32)

which for A'(x') small tends to

ImC~O (k'ko/2m)of. ..[xo 1nxo+k~'/6a'] (30)

while for A'(x') large one, has

with atomic mean-square displacement. Such an experi-
ment might be carried out with high-energy electrons,
providing that the large inelastic background could be
suKciently reduced by energy selection on the trans-
mitted beam.

For MeV protons there exists the possibility of de-

tecting anomalous behavior by observation of nuclear
reactions such as neutron production, even in the pres-
ence of large nonlocal electronic attenuation. If the
crystal is thick enough to absorb the incident proton
beam, a dip in the number of neutrons produced will be
observed at the Bragg angle, the intensity ratio being
given by

which is typically a factor of 100 smaller than the
attenuation one would calculate from the free cross
section.

I~(Bragg) Oy

y~1—e 1I (Normal) q+,) (33)

V. CONCLUSIONS

From the foregoing calculations several characteris-
tics of anomalous particle penetration emerge. First, the
existence of an anomalous e6ect has nothing directly to
do with the wavelength of the incident particle, but
rather is determined by two criteria, namely that the
interaction potential be sufFiciently weak compared to
the particle energy $Eq. (10)] and that the interaction
is localized in the vicinity of the lattice sites. This last
condition ensures that the anomalous solution will be
negligibly attenuated compared to the one-wave solu-
tion. At high particle energy the effect of the atomic
mean-square displacement has been shown to be negligi-
ble when the range of the potential is small compared to
it; however, when the reverse is true, the attenuation
depends strongly on the ratio of these two lengths,
falling markedly below the attenuation which one would
calculate using the total free-particle cross section. This
suggests that one could observe experimentally varia-
tions in the intensity of the transmitted elastic wave

where a „and 0f are the charged-particle scattering cross
sections from the lattice atoms and the free electrons,
respectively, and e„ for a broad screened-Coulomb po-
tential is, from Eqs. (25) and (30)

= Ll —k '/3A' 1n(2n'/A')] (34)

These formulas apply so long as the neutron production
cross section is small compared to either O.„or O.f.
Thompson' has performed an experiment of this type
with 2.8-MeV protons incident on copper in the (110)
direction, where a 5%%uo decrease in neutron production
was observed at the Bragg angle. This is consistent with
a value of e„near unity, since 0.„/af is generally con-
sidered to be about 5%%uo at these energies. One sees from
Eq. (33) that even when the atomic interaction potential
is poorly localized, so that e„departs signi6cantly from
unity, the anomalous e6ect persists, providing a means
of probing the distribution of charged particles inside
the crystal.

' M. W. Thompson, Phys. Rev. Letters 13, 756 (1964).


