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Resistance of a Plasma Slab between Juxtaposed Disk Electrodes
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The classical solution of the important (to plasma physics) problem of two opposite electrodes on an
infinitely extensive slab of conductor is in principle seriously incorrect. An exact solution of the problem in
two dimensions is given. The solution of the three-dimensional problem is presented in the form of a one-
dimensional integral equation by a new method. Rapidly converging series solutions are then obtained. The
method used has implications of usefulness which go well beyond the present problem.

INTRODUCTION

FREQUENTLY and currently quoted' solution
of the problem once known as Nobili's rings,

given by Weber in 1873, is incorrect. This problem
envisions two infinitely conducting circular disks juxta-
posed on the two faces of an infinitely extensive slab
of moderately conducting material. The problem be-
comes of modern importance when one inquires what
should be expected of electrodes or probes implanted
in a plasma, leaving aside any complexities introduced
by the anodic and cathodic behaviors of plasma elec-
trodes. ' Weber's result led to an approximation that
when the slab thickness 2u is large, but not excessively
large, compared with the electrode radius c, the re-
sistance observed would be given by

E be zero) that is, at z= &a, V = &Vo for p &c. Outside
the disks, the component of E normal to the surface
must be zero to fulfill Khirchof's first law, since the slab
is assumed to be insulated on both faces everywhere
except at the electrodes. Thus, at s = %a, E,=0 for
p)c. The problem is intrinsically diS.cult because it
falls into the class of mixed boundary-value problems.

Taking as a basis for his approach the Weber-
Schafheitlin discontinuous integral

V=
2Vp dX

(sinhc) Jo(hp) —,
Xp

which has the value Vo for p&c, and (2V0/m) sin '(c/p)
for p&c, Weber found the potential for an infinite
half-space of conductor lying on the right-hand side of
a single disk by adding the s dependence dictated by
the Laplace equation. This yielded

Weber's method of solution was to solve the problem
of a single electrode on an infinite half-space of con-
ductor, and then combine two such solutions, facing
each other, to obtain the slab solution. Unfortunately,
he assumed that the current distribution to the single
electrodes was not altered in the two-electrode case,
and so his result needs investigation in respect to the
most interesting part, namely, that term, the second
one, which involves the conductivity deep in the me-
dium, since experimentally speaking, the first term is
of little interest, being strongly aBected by local anodic
and cathodic processes. This investigation reveals many
interesting facts, among them that the approximate
Weber solution even though incorrect is in fact accurate
to the second order in c/a.

Weber's Solution

The Nobili problem requires that over each disk the
potential be constant (or the ta, ngential component of

' A. Gray, G. B. Mathews, and T. M. MacRobert, Treatise on
Bessel Functions (Macmillan and Company Ltd. , London, . 1952).' W. Weber, J. fiir Math. 75, 75 (1873).

3 S. H. Lam, Phys. Fluids 8, 73 {1965).
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V=
2Vp dX

e-"*(sinhc) Jo(hp) —.
p

which has the values E,=O for p) c, and E,= (2VO/~)
&& (c2—p ) ~ for p &c.

Moving two such solutions to new origins at s= +a,
Weber gave the final expression,

2VQ " sinhXs dX
V= (sinhc) Jo(hp)—

coshXQ

as the solution of Nobili's problem. Although this still
fulfills the boundary condition E,=O for p&c at both
@=~a, it no longer fulfills V=constant for p(c on
either electrode.
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Then E,= —8V/Bs gives a second discontinuous inte-
gral at a=0,

2VQ
E,= (sinhc) Jo(hp)dh,

7l p
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~=0, V=O, 0&y& ~;
x=a, V= Vo, c&y&0;

x=a, E,=O, ~&y&c
y=0, E„=O, 0(x&a.

If this quadrant is now regarded as a part of a complex
z plane, it can be mapped on an upper half-plane by
the transformation f= —cos(7rs/a). This moves the
turning points of the z plane to corresponding points
along the real axis shown in Fig. 2(a).

FIG. 1. Geometry
for a pair of tmo-
dimensional strip
electrodes in the two-
dimensional case.
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A Two-Dimensional Nobili Problem

An exact solution can be obtained in closed form for
the two dimensional ana, log of the Xobili problem. It
will be presented here because it has a result which
demonstrates the pitfalls of simple intuition, and it can
be used as an interpolative connection between limiting
approximations for the three-dimensional case. In place
of the opposite circular disks, we now imagine two
opposite in6nite strip electrodes of the same width.
The slab is perpendicular to the x axis, extending be-
tween y= &c, as shown in Fig. 1. From the symmetry
of the problem, one may restrict the investigation to
the positive quadrant, and then 6nd that around the
edges of this quadrant the boundary conditions are
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FIG. 2. {a) Complex t plane. {b) Complex s plane.
{c)Complex g plane.

which the correspondence of points is shown in Fig.
2 (c). The new constants K and E' are the two complete
elliptic-integral periods regarded as functions of k.

A solution of the Laplace equation is now needed
fulfilling the above boundary conditions. This is quite
simple:

l'($,n) = I'o(1 alit ')—
and with this the problem is solved.

Since we desire only the resistance of the medium
between the probes in this analysis, the answer falls
out at once. Let y= V+iU be the complex potential
for the problem. Then

It will be noted that the segment where V= Vo, i.e.,
the segment between points (2) and (3), lies unsym-
metrically arranged with respect to the origin. There-
fore, a fractional linear transformation to an s plane
is made by means of

= ( ~+~)/(v~+h)

with the correspondence of points shown in Fig. 2(b).
The new location of the outer boundary points is

given in terms of a constant k:

I= —0 — d'v

0

= —oLU(a, c)—f. (a, —c)).

1 1
[u+3+ (Su+8)'"); u= cosh(s-c/a)

k u —1

which is between 1 and ~. It is plotted in Fig. 3. The
four constants of the fractional linear transformation are

~=D/k, q=D,
8= (D/2) {(1/k —1)u —(1/k+1) },
P = (D/2) {(1/k —1)u+ (1/k+1) }.

The constant D remains arbitrary.
Now we map the upper half of the s plane into the

interior of a rectangle in a { plane with s=sm(f, k), for
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Fzo. 3. The elliptic-integral-constant k as a function of c/g.
Abscissa is 1/k.
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FIG. 4. The geometrical resist-
ance behavior Ro for two strip
electrodes.
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By the symmetry of the problem, this is

I= —2o LU (a,c)—U(a, 0)j.
Our problem is therefore one of finding the imaginary
part of q (s). The complex potential which satisfies the
Laplace equation in the f plane is

Hence, our need is to evaluate the imaginary part of

y at the points (a,c) —+ (K,O) and (a,0) ~ (—K, 0). So

I= 2o' ImLVp(1+if'/K )]&
2o Vo(2K/K—') .

Now the potential difference between two strips at a
and —a is 2VO, so the resistance per unit length elec-
trode is

R=K'/2aK.

The minus sign found for the current expression dis-

appears when the current-voltage convention is ob-
served. This expression is plotted as a function of c/a
in Fig. 4.

The Three-Dimensional Nobili Problem

The solution of the three-dimensional problem can
be obtained in the form of an integral equation using a
technique related to one employed by Hafen4 for the
solution of certain electrostatic problems.

Ke consider the problem of infinitely many regularly
spaced disk electrodes, with charges alternating in sign,
as shown in Fig. 5. Then the expression

oo

dg L. . .+c—I z+i al i c—I zl-a I &

7I O

+c Iz—alk c—lz ~al k ~ ~ ~

gJ (y )A (y)

satisfies by symmetry the boundary condition cl V/cls =0
for p)c on every plane s= (2n+1)a. (That the final
solution of the problem does indeed fulfill this boundary
condition can be verified a posteriori also. ) We propose
that A (X) can be so chosen that the conditions V= +Vo
for p

- c can also be satisfied on the planes s= (4n&1)a,
respectively, t/"0 being a constant. Between the principal
electrodes z= +a, the potential can be summed to

V&Vo

I

I
I

I

I

50

I

I
I

V~-Vo
I

f
C

tl

I

I

I

I

V~-V

I

I

I
.
I

$o

V&Vo

I

I

I

I

I

Io

2 slnhzX
V=- dX J,(),p)A (y),

0 cosh8$

which is reminiscent of Weber's expression, and on
z= ~a, this becomes

00

Vo ——— dX (tanbark) Jo(hp)A (X) .

Fj:G. 5. Geometry and image electrode system for a pair of disk
electrodes in the three-dimensional case.

Rather than determine A(X) from this, we shall

4 M. Hafen, Math. Ann. 69, 517 (1910).
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A (X)= d$ (cosh))f(( .
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dX Jo(gh) 1—Vp
2 211/2da o(a n ~—

X (cosh/) f($) .
b drawing the f1 n be performed, an yThe g integra can e

integral to the front, one has

where

l'o=f(E)—
+C

dn f(s)&($,n),

F(x)=P a2 P,„(x).

2 "cosh& cosh'
d).~(~,~) =-

7f p
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'
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'
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X X] ~

~ l~l
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2vM Q C2m, 2n; v—{m+n)O22n, 2n

dp, cosqpx cos&pxl
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XP2 (x)P2.(x2)

oo

a ——Q a2 M2, 2„={lo,2„
422+1
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TAaLE I. Matrix elements for solution of the two-Cksk integral equation.

ui, , ,„~l/2 (g=./l)

(4/e} tan '2e —(1/g') ln(i+4g')

( 1)v22v

4p g ~

(v+1}(2v+ 1)

—(3/e') tan '2g+(1 /2g' —1/g2) ln(1+4g')+4/g'

( 1)vv22

g2v
"-' (v+1) (v+2) (2v+3)

3 1 1 3 7—tan-~2e ——+—+- ln(1+4e2)+ +-
40g6 2g g2 10g 5g

{—1)"(v—1)v22"00

g2v
"=' ( +1)(v+2) (v+3) (2 +1)

10 7 15 1) 14 19)

(—1)"(v—1)v(2v —1)22v

4p
(v+1) ( +2) ( +3) (2v+3) (2v+5)

7 ( 1 5 3 1 ( 1 2 17——ton '28+~ — +—+——— ln(1+48o)+~ +
tp k 168o 88' 8' 8'

—2 v —1 v22"( 1) ( )( )

" ' (v+1) (v+2) (v+3) (v+4) {2v+3)

5 9 5 1) ( 35 145 143 43 i
i
ln(1+48o)+

i + +
9e 9y2'e«
—ton '28+ — n

'E 2888' 1448' 5484 188o)
(—1)"(v—3) (v —2) (v —1)v22"

"=4 (v+1) (v+2) (v+3) (v+4) (v+5) {2v+1)

The numerical values of the coefIj.cients needed for

Table II.

Calculation of the Resistance

The Qux of 4' over the disk is I, and so

I=o. 2~pdp 8,

2V ' "
pp)

pdp pdp A —
i

dxt (cosopxt)F(xt) .
o o &a& o

e

The potential in completely expanded form is

Then differentiating with respect to z

Defintng a resistance functton f/(R= —I/4aV &

sinh(ps/2a) pp)

cosh (p/2) 2a) o
new integrating variables p/c=x, Ep= v, and introdtlc-
ing the Legendre expansion for F(xt),

pdp Jo dxt (cosopxt)F(xt) .
2Q- 0 2a 0

TAmz II. Numerical values of coeScients.

1

o (o) xdx vdv Jo(vx) dxt (cosvxt)po~(xt).
Q, 0

%e can now perform the indicated integrations in any
order, with the result that

F p, p =2.7726
I'p2, p =0.4808
rp4, p=0 09875

r„.,= —2.0738
I'p2, 2 = 1.481

Fpp, 4 =4.1476 1/(it= ao(o) .
It is a remarkable physical fact that only the co-

eKcient ao influences the resistance, and for small ~,
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FIG. 6. The resistance func-
tion for disk electrodes, shovr-
ing how the various approxi-
mations and the exact solution
compare.
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it deviates from the Weber solution only in the third
order. Thus, the resistance proper as given by %eber
was

2= (1/2oc)t 1—(2c/na) ln2j,-

while for the above method, to second order it is

1 2c 4c
E= 1+—ln2+ —ln2

20c 7f'8 X'8

Co~~ents on the Result

It becomes increasingly diKcult to evaluate the disk
solution as e exceeds —,', although it must certainly
approach the simple solution for two parallel in6nite
plates. %e believe, however, that by combining the
disk solution for small c with a suitable modification
of the two-dimensional strip solution, this connection
can be established adequately for practical applications.
One notes that in the case of the latter, as c/a-+~,
R varies as (c/a) '. For infinite parallel disks, E must
be given by a/os. c'. Thus, for constant a, as c increases
toward in6nity the function (R should approach

61= (4c/a) (E'/2E)'.

The exact function Gt=i/ao is plotted ir. Fig. 6 over

its known range, together with the asymptotic exten-
sion expression above, and the %cher approximation
and parallel-plate approximation, these last being for
comparison purposes only.

That intuition deriving from Ohrn's law is a failure
in extensive-medium problems like these is shown by the
fact that the resistance between 6nite disk probes on
opposite sides of an infinitely thick slab of in6nite
lateral extent is 6nite, while the resistance between
infinitely long strips of the same width, under like
placement, is infinite. The reason can be found in the
logarithmic behavior of the potential in the two-dirnen-
sional case, and it is instructive to compute the re-
sistance between two parallel cylinders, infinitely sepa-
rated, which leads to

R= (1/2vro) ln(a/c+ (a'/c' —-')'"j

and displays this logarithmic singularity of the re-
sistance clearly.

1Vote added im proof. C. J. Tranter, Quart. J. Mech.
Appl. Math. 3, 411 (1950), has presented a solution of
this problem by a somewhat diferent technique, which
leads also to the small-e approximation we have given
above. Our use of the I,egendre polynomial expansion
seems to provide a more rapid convergence for large
values of e.


