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The classical solution of the important (to plasma physics) problem of two opposite electrodes on an
infinitely extensive slab of conductor is in principle seriously incorrect. An exact solution of the problem in
two dimensions is given. The solution of the three-dimensional problem is presented in the form of a one-
dimensional integral equation by a new method. Rapidly converging series solutions are then obtained. The
method used has implications of usefulness which go well beyond the present problem.

INTRODUCTION

FREQUENTLY and currently quoted! solution

of the problem once known as Nobili’s rings,
given by Weber? in 1873, is incorrect. This problem
envisions two infinitely conducting circular disks juxta-
posed on the two faces of an infinitely extensive slab
of moderately conducting material. The problem be-
comes of modern importance when one inquires what
should be expected of electrodes or probes implanted
in a plasma, leaving aside any complexities introduced
by the anodic and cathodic behaviors of plasma elec-
trodes.> Weber’s result led to an approximation that
when the slab thickness 2a is large, but not excessively
large, compared with the electrode radius ¢, the re-
sistance observed would be given by

1 2¢ In2
R=——<1—- )
20¢ Ta

Weber’s method of solution was to solve the problem
of a single electrode on an infinite half-space of con-
ductor, and then combine two such solutions, facing
each other, to obtain the slab solution. Unfortunately,
he assumed that the current distribution to the single
electrodes was not altered in the two-electrode case,
and so his result needs investigation in respect to the
most interesting part, namely, that term, the second
one, which involves the conductivity deep in the me-
dium, since experimentally speaking, the first term is
of little interest, being strongly affected by local anodic
and cathodic processes. This investigation reveals many
interesting facts, among them that the approximate
Weber solution even though incorrect is in fact accurate
to the second order in ¢/a.

Weber’s Solution

The Nobili problem requires that over each disk the
potential be constant (or the tangential component of
L A. Gray, G. B. Mathews, and T. M. MacRobert, Treatise on
Bessel Functions (Macmillan and Company Ltd., London, 1952).

2 W. Weber, J. fiir Math. 75, 75 (1873).
3S. H. Lam, Phys. Fluids 8, 73 (1965).
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E be zero) that is, at z==a, V==V, for p<c. Outside
the disks, the component of E normal to the surface
must be zero to fulfill Khirchof’s first law, since the slab
is assumed to be insulated on both faces everywhere
except at the electrodes. Thus, at z==+a, E.,=0 for
p>c¢. The problem is intrinsically difficult because it
falls into the class of mixed boundary-value problems.

Taking as a basis for his approach the Weber-
Schafheitlin discontinuous integral

2V ™ d\
V=—- / (sinke)J o(Ap)—,
™ 0 )\

which has the value V for p<¢, and (2V /) sin=1(c/p)
for p>c¢, Weber found the potential for an infinite
half-space of conductor lying on the right-hand side of
a single disk by adding the z dependence dictated by
the Laplace equation. This yielded

2V ™ ax
V= / e (sinke)J o(A\p)—.
T Jo A

Then E,=—3dV /dz gives a second discontinuous inte-
gral at =0,

2V
E,=— / (sinhe)Jo(Ap)dX ,
m Jo

which has the values E,=0 for p>¢, and E,= (2V,/x)
X (e2—p?)~12 for p<c.

Moving two such solutions to new origins at 3= +a,
Weber gave the final expression,

2V, = sinhAz ax
= (sin\e) T o(Ap)—
coshh\a A

m™ Jo

as the solution of Nobili’s problem. Although this still
fulfills the boundary condition E,=0 for p>¢ at both
z==a, it no longer fulfills V=-constant for p<c¢ on
either electrode.
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A Two-Dimensional Nobili Problem

An exact solution can be obtained in closed form for
the two dimensional analog of the Nobili problem. It
will be presented here because it has a result which
demonstrates the pitfalls of simple intuition, and it can
be used as an interpolative connection between limiting
approximations for the three-dimensional case. In place
of the opposite circular disks, we now imagine two
opposite infinite strip electrodes of the same width.
The slab is perpendicular to the x axis, extending be-
tween y= ¢, as shown in Fig. 1. From the symmetry
of the problem, one may restrict the investigation to
the positive quadrant, and then find that around the
edges of this quadrant the boundary conditions are

x=0, V=0, 0<y<ow; x=a, E,=0, 0 >y>¢
x=a, V="V, ¢c>y>0; y=0, E,=0, 0<z<a.

If this quadrant is now regarded as a part of a complex
z plane, it can be mapped on an upper half-plane by
the transformation /= —cos(wz/a). This moves the
turning points of the z plane to corresponding points
along the real axis shown in Fig. 2(a).

Fi1c. 1. Geometry

y
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It will be noted that the segment where V="V, i.e.,
the segment between points (2) and (3), lies unsym-
metrically arranged with respect to the origin. There-
fore, a fractional linear transformation to an s plane
is made by means of

s=(at+B)/ (vt+39)

with the correspondence of points shown in Fig. 2(b).
The new location of the outer boundary points is
given in terms of a constant k:

1 1
z= —[u+34+ (8u+8)'2]; wu=cosh(rc/a)

u—1

which is between 1 and . It is plotted in Fig. 3. The
four constants of the fractional linear transformation are

a=D/k, v=D,
o= (D/D{(1/k—V)u— (1/k+1)},
B=D/2){(1/k—Du+ (1/k+1)}.

The constant D remains arbitrary.
Now we map the upper half of the s plane into the
interior of a rectangle in a { plane with s=sn({ k), for
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F1G. 2. (a) Complex ¢ plane. (b) Complex s plane.
(c) Complex ¢ plane.

which the correspondence of points is shown in Fig.
2(c). The new constants K and K’ are the two complete
elliptic-integral periods regarded as functions of k.

A solution of the Laplace equation is now needed
fulfilling the above boundary conditions. This is quite

simple :
V(E;n)= Vﬂ(l—n/K’) ’

and with this the problem is solved.

Since we desire only the resistance of the medium
between the probes in this analysis, the answer falls
out at once. Let ¢=V+1¢U be the complex potential
for the problem. Then

<73V
[ (5) 2
—e\OXx/ 1eq
cr9U
[ (5).
—e\NOY/ g

=—o[U(ae)—U(a, —0)].
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F16. 3. The elliptic-integral-constant % as a function of ¢/a.
Abscissa is 1/k.
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Fic. 4. The geometrical resist-
ance behavior Ro for two strip
electrodes.

By the symmetry of the problem, this is
I=—2¢[U(a,c)—U(a,0)].

Our problem is therefore one of finding the imaginary
part of ¢(z). The complex potential which satisfies the
Laplace equation in the { plane is

e=Vo(1+4i/K").

Hence, our need is to evaluate the imaginary part of
¢ at the points (a,c) — (K,0) and (a,0) = (—K, 0). So

I=—2¢ Im[Vo(l—*-'if/K’)](_K,o)(K'o)
=—20¢Vo(2K/K").

Now the potential difference between two strips at a
and —a is 2V, so the resistance per unit length elec-
trode is

R=K'/20K.

The minus sign found for the current expression dis-
appears when the current-voltage convention is ob-
served. This expression is plotted as a function of ¢/a
in Fig. 4.
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Fic. 5. Geometry and image electrode system for a pair of disk
electrodes in the three-dimensional case.

The Three-Dimensional Nobili Problem

The solution of the three-dimensional problem can
be obtained in the form of an integral equation using a
technique related to one employed by Hafen* for the
solution of certain electrostatic problems.

We consider the problem of infinitely many regularly
spaced disk electrodes, with charges alternating in sign,
as shown in Fig. 5. Then the expression

0

2
V=_/ dx [. . .+e—[2+341|)\_ —|z+a|\
™
0 +e—|z—a|)\_e—|a—3a|)\-'-]JO(XP)A ()\)

satisfies by symmetry the boundary condition a4V /dz=0
for p>c¢ on every plane z=(2rn+41)a. (That the final
solution of the problem does indeed fulfill this boundary
condition can be verified a posteriori also.) We propose
that 4 (\) can be so chosen that the conditions V==V,
for p "¢ can also be satisfied on the planes z= (4n4-1)a,
respectively, Vo being a constant. Between the principal
electrodes z= 44, the potential can be summed to

2 r® sinhz\
y== / 2 1004,
mJo  cosha)

which is reminiscent of Weber’s expression, and on
z=a, this becomes

2 0
Vo=— / d\ (tanhal)Jo(Ap)A(N).

Rather than determine A(\) from this, we shall

4 M. Hafen, Math. Ann. 69, 517 (1910).
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attempt to find a function f(¢) connected with 4 (\)
through

AN = f dt (cosnd) [ ().

Changing for the moment the old variable p into 5, we
act on the integral for V, with the operator

d/" ndn
dpJo (—mty"

with the following result:

il el

X (coshg) £(8).

The 7 integral can be performed, and by drawing the £
integral to the front, one has

+c
Vo (8- / dn fK (&),
where -
COSAE COsAn
—a\

2 0
K(tn)=-
(&m) w/o e

This is a standard inhomogeneous integral equation
with the symmetric kernel K (£,1).
In terms of new dimensionless variables as follows:

F=f(§)/Vo, &/c=x, n/c=x1, 2ah=p, and c¢/2a=¢,

a solution can be found in terms of Legendre poly-
nomials letting

F®)=Y" danPon(%).

The integral equation then takes the form of an infinite
set of algebraic equations

1
dn+1

involving a matrix whose elements are given by

M2m.2n=/ [dxl

X Pam(2) Pan (&) /

€ ©
Aon—— Z a2mM2m.2n=80.2n

m m=0

® du COSeux COSEUy

e*+1
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These elements can be treated by expansion of the
denominator of the kernel into a series in e~¥, and
performing the infinite integral term by term to give

2w
Mzm_2n=—2(—1)l+l / dx/
mi=1 -1 Ja

If we define

Pom (x)Pzn(xl)
EEREY,

M2m.2n=z (— 1)l+1Ml2m,2n ,

I=1

then the expressions M, 2. can be found in a series
by expanding the denominator of the integral for
M om 20, or in closed form by integration by parts. Both
results (given in Table I) are useful in computation,
because the circle of convergence of the series is deter-
mined by /!, denoted hereafter as 6, being <i. For
e=1, the extreme case in which all the series repre-
sentations are convergent, the explicit numerical values
for asn, are ap=1.626, a,=—0.0819, a,=0.00387. For
e=1 the explicit values were ao=1.269, a;=—0.0127,
and ¢4=0.00027. For larger values of ¢, the M, 2, can
be evaluated by use of the exact expressions to establish
those with the lower values of /, and the series can be
used as soon as ! is sufficiently large to ensure con-
vergence. It has not been possible to derive a type form
for the coefficients of either the series or the closed
forms, except for small ¢, when the summation over !
can be accomplished in terms of Riemann’s zeta func-
tion to yield

® 1
M2m.2n= EZ(M”) Z C2m.2n; v-—(m+n)62”[1—‘—*———]
v=0 4(y—m—n)

X @v—2m—2n+1),

where the coefficients C are the tabular coefficients of
the various series expansions of Table I.

Let the entire coefficient of € of any term in the
series for Mom 2, be labeled T'om,2n;,. It is now possible
to solve the infinite set of algebraic equations for the
@45, Obtaining

1 1
Qo= 1-}_'_1100 0€+—I‘00 0 52+(_I‘00 03+_I‘00 2)63_*__1"00 OPOO 2€ +<_P00 0 I‘0() 2+_F02 0+_F00 4)6
- » 7 1.2

™ ™

9
(14'—"‘1'04,065‘ LS
™

™

5 1 5
a2="I‘02.0€3+;F00.0P02.064+<—P02,0+;P02,0P00,02)€5' )
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TaBLE I. Matrix elements for solution of the two-disk integral equation.

ﬂr['zm_ 2ﬁ7rl/2 (0=€/l)

(4/6) tan™120— (1/6%) In(14-46?)
- (_1) vQ2
4y .

=0 (y4+1) (2v+1)
- (—=1)r22
2z 2
= (r+1) (v42) (2v +3)

© (=1 (p—1)w2

4 311 3
— tan‘120—(——+—~+—) In(1+462) +—+—
56 4000 26* 6 106t 562

5 (y1) (v42) 043) 2o +1)

35 10 7015 1 14 19
(————) tan“20+(———+—— —) ln(1+402)+(———+-—)
465 ¢ 865 20 o 6 36

w (=) —1)p(2p—1)2%

— (3/6%) tan~120+4(1/26*—1/6%) In(1+-46%) +4/6°

7

f2v

= (y+ 1) (v 42) (74+3) (20+3) 20 +5)

7 1 N
——tan™1204H+{ ——4—
& 1668 8¢ ¢*

© (=1)"(»—2)(v—1)p2%

3 1 1 2 1
+-—= ln(1+402)+(————+—)
62 465 6 362

B (1) (42) (1 4+3) (1 +4) 20+3)

9 X 27010

166° 8¢% 3¢ ¢
(=1)"(»—=3)(r—2)(v—1)»2?%

9 5 1 35 145 143 43
————— In(14+46) 4 | —+—+—+—
28865 1446° Sdgt 1862

v

4y

B (1) (1+2) (5+3) (74+4) (5+5) 2+ 1)

The numerical values of the coefficients needed for
these series have been calculated and are given in
Table II.

Calculation of the Resistance

The potential in completely expanded form is

2Ve 2 sinh(uz/2a) /pu\ !
V= f M J 0(—) / dx; (coseux:)F (x1).
™ 0 0

cosh (u/2) 2a
Then differentiating with respect to z

2Vo e [ o\ !
E =———| pduJo| — / dx; (coseuxi)F (xy).
™ 2(1., 0 20 0
TasBLE II. Numerical values of coefficients.
roo,o=2.7726 Puo_2= —20738 I‘oo. 4=4.1476
Foz,o=0.4808 Poz, 2= 1.481
T'os,0=0.09875

The flux of ¢E over the disk is 7, and so

I=0'/ 2mwpdp E,
)

ZVO c ®© Pl 1
=—— / pdp / udu Jo(—) / dxy (coseux:)F (xy).
c Jo 0 2a 0

Defining a resistance function 1/®=—7 /4aVoc, and
new integrating variables p/c=wx, eu=», and introduc-
ing the Legendre expansion for F(x;),

1

© 1 i 1
—=3 a, (e)/ xdx/ udv]o(ux)/ dxy (cosvy) Pom(%y) .
R m=0 ° 0 o

We can now perform the indicated integrations in any
order, with the result that

1/(R=ao(e) .

It‘ is a re.ma.rkable physical fact that only the co-
efficient @, influences the resistance, and for small e,
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WEBER APPROXIMATION

EXACT DISK SOLUTION
(FOR ¢/a <)

PARALLEL PLATE
APPROXIMATION

ASYMPTOTIC EXTENSION
( SQUARED STRIP SOLUTION)

i1l L [ N R A | 1

Lt

.8
Fi16. 6. The resistance func-
tion for disk electrodes, shovsf— o
ing how the various approxi-
mations and the exact solution 6
compare.
.45
2F
c 1 1 1 1
.0l

it deviates from the Weber solution only in the third
order. Thus, the resistance proper as given by Weber
was

R=(1/20¢)[1— (2¢/ma) In2],

while for the above method, to second order it is

1 2c 4c 271
R=——l:1—|—— ln2+(—- ln2> :| .
2a¢! Ta Ta
Comments on the Result

It becomes increasingly difficult to evaluate the disk
solution as e exceeds §, although it must certainly
approach the simple solution for two parallel infinite
plates. We believe, however, that by combining the
disk solution for small e with a suitable modification
of the two-dimensional strip solution, this connection
can be established adequately for practical applications.
One notes that in the case of the latter, as ¢/a —=,
R varies as (¢c/a). For infinite parallel disks, R must
be given by a/orc?. Thus, for constant a, as ¢ increases
toward infinity the function ® should approach

®R=(4¢/a)(K'/2K)2.

The exact function ®=1/a, is plotted i Fig. 6 over

0.1 1.0 10.0
¢/a

its known range, together with the asymptotic exten-
sion expression above, and the Weber approximation
and parallel-plate approximation, these last being for
comparison purposes only.

That intuition deriving from Ohm’s law is a failure
in extensive-medium problems like these is shown by the
fact that the resistance between finite disk probes on
opposite sides of an infinitely thick slab of infinite
lateral extent is finite, while the resistance between
infinitely long strips of the same width, under like
placement, is infinite. The reason can be found in the
logarithmic behavior of the potential in the two-dimen-
sional case, and it is instructive to compute the re-
sistance between two parallel cylinders, infinitely sepa-
rated, which leads to

R=(1/2w0) In[a/c+(a*/c*—)*"2],

and displays this logarithmic singularity of the re-
sistance clearly.

Note added in proof. C. J. Tranter, Quart. J. Mech.
Appl. Math. 3, 411 (1950), has presented a solution of
this problem by a somewhat different technique, which
leads also to the small-e approximation we have given
above. Our use of the Legendre polynomial expansion
seems to provide a more rapid convergence for large
values of e.



